JPH01289114A - Process and device of x-ray exposure - Google Patents
Process and device of x-ray exposureInfo
- Publication number
- JPH01289114A JPH01289114A JP63119836A JP11983688A JPH01289114A JP H01289114 A JPH01289114 A JP H01289114A JP 63119836 A JP63119836 A JP 63119836A JP 11983688 A JP11983688 A JP 11983688A JP H01289114 A JPH01289114 A JP H01289114A
- Authority
- JP
- Japan
- Prior art keywords
- pattern
- ray exposure
- rays
- ray
- soft
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 14
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 20
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 20
- 239000000758 substrate Substances 0.000 claims abstract description 11
- 238000003860 storage Methods 0.000 claims abstract description 10
- 238000004519 manufacturing process Methods 0.000 abstract description 7
- 229910003460 diamond Inorganic materials 0.000 abstract 3
- 239000010432 diamond Substances 0.000 abstract 3
- 239000010408 film Substances 0.000 description 19
- 239000006096 absorbing agent Substances 0.000 description 14
- 229910001385 heavy metal Inorganic materials 0.000 description 8
- 239000010409 thin film Substances 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 230000005469 synchrotron radiation Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001020 plasma etching Methods 0.000 description 3
- 238000000992 sputter etching Methods 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 2
- 238000007687 exposure technique Methods 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910004205 SiNX Inorganic materials 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000002164 ion-beam lithography Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000007261 regionalization Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
Landscapes
- Preparing Plates And Mask In Photomechanical Process (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Particle Accelerators (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、微細パターンの高精度転写を目的とするX線
露光方法およびシンクロトロン軌道放射光を図形の転写
媒体とするSR露光装置に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an X-ray exposure method for the purpose of highly accurate transfer of fine patterns, and an SR exposure apparatus using synchrotron orbital synchrotron radiation as a pattern transfer medium.
(従来の技術)
従来のSR露光装置においては、放射光強度のピークが
数人ないし10人にある電子ストレージ・リングを光源
とし、真空ビーム・ライン中に放射光を取り出し、数十
l1m厚のBe箔を用いて該ビーム・ラインと仕切られ
たHe雰囲気中において、SiNxまたはSiCもしく
はSi等の薄膜を基板とするX線露光マスクを用いてパ
ターン転写を行っている(例えばノースホランドパブリ
ッシングカンパニー(North−Holland P
ublishing Company)刊行のニューク
リアインスッルメンツアンドメソッズ(Nuclear
Instruments and Methods)第
208巻(1983面)第281頁参照)。(Prior art) In a conventional SR exposure system, an electronic storage ring whose synchrotron radiation intensity peaks at several to 10 m is used as a light source, and the synchrotron radiation is extracted into a vacuum beam line and is deposited into a film with a thickness of several tens of liters and one meter. In a He atmosphere separated from the beam line using Be foil, pattern transfer is performed using an X-ray exposure mask with a thin film such as SiNx, SiC, or Si as a substrate (for example, North Holland Publishing Co., Ltd. North-Holland P
Nuclear Instruments and Methods published by Publishing Company.
Instruments and Methods) Vol. 208 (page 1983), p. 281).
(発明が解決しようとする課題)
上述した従来のSR露光装置に限らず従来のプラズマX
線源や電子ビーム励起X線源を使った露光装置でも、高
々lO人前後の波長の軟X線を利用していたため、十分
なマスクのコントラストを得るにはマスクパターン(X
線吸収体パターン)をおよそlpm近い膜厚の重金属で
形成しなければならず、縦横比(アスペクト比)の大き
いマスクパターンの形成が不可欠であった。ところが、
アスペクト比の大きいX線吸収体パターンの形成並びに
欠陥修正は非常に難しく、所望のX線吸収体パターンを
形成することができなかったばかりでなく、高々111
mないし2pmの厚さのマスク基板上に1μmもの膜厚
のX線吸収体パターンを形成するため、X線吸収体パタ
ーンの応力によるマスクの歪が増大し、転写パターンの
寸法に見合った位置合わせ精度を確保することが極めて
困難であった。(Problem to be solved by the invention) Not only the conventional SR exposure apparatus described above but also the conventional plasma
Exposure equipment that uses radiation sources or electron beam excitation
The line absorber pattern had to be formed of a heavy metal with a film thickness of approximately lpm, and it was essential to form a mask pattern with a large aspect ratio. However,
It is very difficult to form an X-ray absorber pattern with a large aspect ratio and to repair defects, and not only has it been impossible to form a desired X-ray absorber pattern, but it has also been difficult to form an X-ray absorber pattern with a large aspect ratio.
Since an X-ray absorber pattern with a film thickness of 1 μm is formed on a mask substrate with a thickness of 2 pm to 2 pm, the distortion of the mask due to the stress of the X-ray absorber pattern increases, making it difficult to align the pattern according to the dimensions of the transferred pattern. It was extremely difficult to ensure accuracy.
本発明は、X線露光技術の最大の欠点であるX線露光マ
スクの製造の困難さを軽減し、且つ精度を向上させるた
めに、通常のフォトマスクと同等もしくはそれ以下の膜
厚のX線吸収体パターンで十分なコントラストを得られ
るX線露光方法とそれに用いるX線露光装置とを提供す
るものである。The present invention aims to reduce the difficulty of manufacturing an X-ray exposure mask, which is the biggest drawback of X-ray exposure technology, and to improve the accuracy. An object of the present invention is to provide an X-ray exposure method that can obtain sufficient contrast with an absorber pattern, and an X-ray exposure apparatus used therein.
(課題を解決するための手段)
上記の問題点を解決するために本発明は、従来より長い
波長の軟X線を露光用として用い、4Å以上の軟X線に
対する透過率の大きいダイヤモンド状カーボン膜基板上
に0.1pmないし0.2pmの膜厚の重金属パターン
を形成したX線露光マスクを用いてパターン転写を行う
。X線露光マスクの温度上昇を防ぐため、X線露光マス
クは減圧He雰囲気中に設置される。電子ストレージ・
リング側の真空中へのHeガスの進入を防ぐための隔離
窓には、ダイヤモンド状カーボン膜を用いる。(Means for Solving the Problems) In order to solve the above-mentioned problems, the present invention uses soft X-rays with a longer wavelength than conventional ones for exposure, and uses diamond-like carbon fibers that have a high transmittance to soft X-rays of 4 Å or more. Pattern transfer is performed using an X-ray exposure mask in which a heavy metal pattern with a film thickness of 0.1 pm to 0.2 pm is formed on the film substrate. In order to prevent the temperature of the X-ray exposure mask from rising, the X-ray exposure mask is placed in a reduced pressure He atmosphere. Electronic storage
A diamond-like carbon film is used as an isolation window to prevent He gas from entering the vacuum on the ring side.
(作用)
本発明の構成においては、20Å以上44Å以下の波長
の軟X線はダイヤモンド状カーボンマスク基板に殆ど吸
収されてしまうため、パターン転写は44人以上の軟X
線によって行われる。44人にに吸収端を有し、それ以
上の波長領域における透過率の大きい炭素を除いては、
20Å以上の波長領域では、あらゆる元素の吸収が大き
く、このため例えばX線露光マスクパターン材料として
Auを用いた場合、X線マスクに必要なコントラスト値
20を得るために、必要なパターン厚は、従来の7人な
いし8人のX線露光では約0.711mないし0.9p
mであるのに対し、射入では0.1pmでよく、X線露
光マスクの作製並びにパターンの欠陥修正が格段に容易
になる。またレジストによる吸収効率も飛躍的に増大す
るため、露光時間は大幅に短縮される。(Function) In the configuration of the present invention, most of the soft X-rays with a wavelength of 20 Å or more and 44 Å or less are absorbed by the diamond-like carbon mask substrate.
It is done by a line. Except for carbon, which has an absorption edge of 44 mm and a high transmittance in the wavelength range beyond that,
In the wavelength region of 20 Å or more, absorption of all elements is large. Therefore, for example, when Au is used as an X-ray exposure mask pattern material, the required pattern thickness to obtain the contrast value of 20 required for the X-ray mask is: Conventional X-ray exposure by 7 or 8 people is approximately 0.711m or 0.9p.
m, whereas the incidence is only 0.1 pm, making it much easier to manufacture an X-ray exposure mask and correct pattern defects. Furthermore, since the absorption efficiency of the resist increases dramatically, the exposure time is significantly shortened.
(実施例)
以下、本発明の実施例について図面を参照しながら説明
する。第1図に示すように、放射光の臨界波長が20人
ないし80人の電子ストレージ・リング11の電子軌道
の接線方向にビーム・ライン12を接続し、ビーム・ラ
イン12の内部を真空排気装置を用いて少なくとも1O
−5Pa以下の圧力まで減圧する。電子ストレージ・リ
ング11から放射される軟X線13を前記ビーム・ライ
ン中12に取り出し、このビーム・ラインの真空中に設
置したミラー14で全反射させる。(Example) Examples of the present invention will be described below with reference to the drawings. As shown in FIG. 1, a beam line 12 is connected in the tangential direction of the electron orbit of an electron storage ring 11 with a critical wavelength of synchrotron radiation of 20 to 80 people, and the inside of the beam line 12 is vacuum-exhausted. at least 1O using
Reduce the pressure to -5 Pa or less. Soft X-rays 13 emitted from the electronic storage ring 11 are extracted into the beam line 12 and totally reflected by a mirror 14 installed in the vacuum of this beam line.
ビーム・ライン12の中間を約1pm厚のダイヤモンド
状カーボン膜15で封止し、このダイヤモンド状カーボ
ン膜15とビーム・ライン12の終端部の間の試料室1
6にHeガスを導入し、圧力制御装置を用いてHe圧力
が100Paないし1000Paになるように制御する
。厚さ約1pmのダイヤモンド状カーボン膜基板上に厚
さ約0.111mないし0.2pmのAuまたはW等の
重金属でパターンを形成したX線面露光マスク17をX
線レジスト例えばFBM(商品名)やCPMSを塗布し
たウェハ18に任意の方法で重ね合わせて前記試料室1
6内に設置し、露光シャッター19を所定の時間開放し
て、前記ミラーから全反射された軟X線を照射して該パ
ターンをウェハに転写する。The middle of the beam line 12 is sealed with a diamond-like carbon film 15 having a thickness of about 1 pm, and the sample chamber 1 between this diamond-like carbon film 15 and the end of the beam line 12 is sealed.
He gas is introduced into 6, and the He pressure is controlled to be 100 Pa to 1000 Pa using a pressure control device. An X-ray surface exposure mask 17 in which a pattern of heavy metal such as Au or W with a thickness of approximately 0.111 m to 0.2 pm is formed on a diamond-like carbon film substrate with a thickness of approximately 1 pm is
The sample chamber 1 is overlaid by any method on a wafer 18 coated with a line resist such as FBM (trade name) or CPMS.
6, the exposure shutter 19 is opened for a predetermined period of time, and soft X-rays totally reflected from the mirror are irradiated to transfer the pattern onto the wafer.
第2図(a)〜(e)はダイヤモンド状カーボン膜の製
造プロセスの一例を示す。数百pmないし数mmの厚さ
を有するSiウェハ21の一表面上にこのSiウェハの
所定の領域をエツチング除去するためのエツチングマス
クパターン22を例えばLPCVDS■3N4膜を用い
て形成する(第2図(a))。Siウェハ21の他方の
表面上に反応ガスとしてCH4とH2を用いたDCグロ
ー放電により、数百nmないしlpm程度の厚みのダイ
ヤモンド状カーボン膜23を堆積した後、前記ダイヤモ
ンド状カーボン膜23の内部応力が約2×108dyn
/cm2ないしI X 109dyn/am2になるま
で約300°Cないし400°CのN2雰囲気中で約1
時間ないし2時間アニールする。続いてスパッタリング
法もしくは電子ビーム蒸着法などの方法により、約0.
1pm厚のW、AuもしくはTa等のいずれかの重金属
薄膜24を前記ダイヤモンド状カーボン膜23の表面上
に堆積し、この重金属薄膜24上に電子ビーム露光技術
もしくは集束イオンビーム露光技術を用いて所望のレジ
ストパターン25を形成する(第2図(C))。しかる
のちレジストパターン25をマスクに用いて反応性イオ
ンエツチングもしくはイオンミリングなどの方法により
、前記重金属薄膜24をバターニングする(第2図(d
))。最後に前記重金属パターン24を任意の治具を用
いて保護しつつ、沸騰した30wt%KOH水溶液でS
i3N4膜パターン22をマスクとしてSi基板21の
所定の領域をエツチングすれば所望のX線マスクが得ら
れる。(第2図(e))このX線マスクの製造プロセス
においてX線吸収体パターンの形成プロセスを省略すれ
ば、ダイヤモンド状カーボン膜を用いたX線取り出し窓
が得られる。FIGS. 2(a) to 2(e) show an example of a manufacturing process for a diamond-like carbon film. On one surface of the Si wafer 21 having a thickness of several hundred pm to several mm, an etching mask pattern 22 is formed using, for example, an LPCVDS3N4 film for etching a predetermined region of the Si wafer. Figure (a)). After depositing a diamond-like carbon film 23 with a thickness of several hundred nm to lpm on the other surface of the Si wafer 21 by DC glow discharge using CH4 and H2 as reaction gases, the inside of the diamond-like carbon film 23 is deposited. Stress is approximately 2×108 dyn
/cm2 to I
Anneal for one to two hours. Subsequently, by a method such as a sputtering method or an electron beam evaporation method, about 0.
A 1 pm thick heavy metal thin film 24 of any one of W, Au or Ta is deposited on the surface of the diamond-like carbon film 23, and a desired pattern is deposited on this heavy metal thin film 24 using an electron beam exposure technique or a focused ion beam exposure technique. A resist pattern 25 is formed (FIG. 2(C)). Then, using the resist pattern 25 as a mask, the heavy metal thin film 24 is patterned by a method such as reactive ion etching or ion milling (see FIG. 2(d)).
)). Finally, while protecting the heavy metal pattern 24 using an arbitrary jig, S
By etching a predetermined region of the Si substrate 21 using the i3N4 film pattern 22 as a mask, a desired X-ray mask can be obtained. (FIG. 2(e)) If the process of forming an X-ray absorber pattern is omitted in the manufacturing process of this X-ray mask, an X-ray extraction window using a diamond-like carbon film can be obtained.
本発明ではX線マスクの、X線吸収体パターンの膜厚が
わずか0.1pmでよいので、レジストをマスクに用い
た反応性イオンエツチングもしくはイオンミリングによ
るパターン形成が可能であり、従来のX線マスクのX線
吸収体パターンのように多層レジスト技術を用いた複雑
なパターン形成プロセスは不用となる。また従来は殆ど
不可能であったX線吸収体パターンの欠陥修正も、集束
イオンビームリソグラフィ技術を用いてマスク基板を殆
ど損傷させずに行うことができ、X線露光マスクの歩留
りを飛躍的に向上させることができた。In the present invention, since the film thickness of the X-ray absorber pattern of the X-ray mask only needs to be 0.1 pm, it is possible to form the pattern by reactive ion etching or ion milling using a resist as a mask, and it is possible to form the pattern by reactive ion etching or ion milling using a resist as a mask. A complicated pattern formation process using multilayer resist technology, such as the X-ray absorber pattern of the mask, is no longer necessary. In addition, defect correction in X-ray absorber patterns, which was almost impossible in the past, can be done without damaging the mask substrate using focused ion beam lithography technology, dramatically increasing the yield of X-ray exposure masks. I was able to improve it.
(発明の効果)
本発明は以上説明したように、必Å以上の長波長軟X線
を図形の転写媒体としているので、X線吸収体パターン
が約0.111mないし0.211mと従来のおよそ1
15ないし1110の厚みで十分なコントラストが得ら
れる。従ってX線露光マスクの作製が格段に容易になっ
たばかりでなく、パターン欠陥の検査および修正も飛躍
的に容易になった。またX線吸収体パターンの厚みの減
少に比例してX線吸収体パターンの内部応力によるマス
クの歪も低減したため、X線露光におけるマスクの位置
合わせ精度も飛躍的に向上した。更にレジストによる軟
X線の吸収効率は約50倍高められ、露光時間は約11
10以下に短縮された。(Effects of the Invention) As explained above, the present invention uses soft X-rays with long wavelengths longer than the requisite Å as a pattern transfer medium, so the X-ray absorber pattern is about 0.111 m to 0.211 m, which is about the same as the conventional one. 1
Sufficient contrast can be obtained with a thickness of 15 to 1110 mm. Therefore, not only the production of X-ray exposure masks has become much easier, but also the inspection and correction of pattern defects has become much easier. Furthermore, since the distortion of the mask due to the internal stress of the X-ray absorber pattern was reduced in proportion to the decrease in the thickness of the X-ray absorber pattern, the accuracy of mask positioning during X-ray exposure was also dramatically improved. Furthermore, the absorption efficiency of soft X-rays by the resist is increased approximately 50 times, and the exposure time is approximately 11 times longer.
It was shortened to 10 or less.
第1図は本発明のX線露光装置の一実施例を示す基本構
成図、第2図(a)〜(e)はX線露光マスクの製造プ
ロセスを示す模式断面図である。
11・・・・・電子ストレージ・リング、12・・・・
・ビーム・ライン、13・・・・・ミラー、14・・・
・・ダイヤモンド状カーボン膜窓、15・・・・・試料
室、16・・・・・X線露光マスク、17・・・・・ウ
ェハ、18・・・・・露光シャッター、21・・・・S
iウェハ、22・・・・・Si3N4.23・・・・・
ダイヤモンド状カーボン膜、24・・・・・重金属薄膜
、25・・・・レジストパターン。FIG. 1 is a basic configuration diagram showing an embodiment of the X-ray exposure apparatus of the present invention, and FIGS. 2(a) to (e) are schematic sectional views showing the manufacturing process of an X-ray exposure mask. 11...Electronic storage ring, 12...
・Beam line, 13...Mirror, 14...
...Diamond-like carbon film window, 15...Sample chamber, 16...X-ray exposure mask, 17...Wafer, 18...Exposure shutter, 21... S
i wafer, 22...Si3N4.23...
Diamond-like carbon film, 24...heavy metal thin film, 25...resist pattern.
Claims (1)
長の軟X線を減圧He雰囲気中に導き、ダイヤモンド状
カーボン膜を基板とするX線露光マスクに形成したパタ
ーンを基板表面に転写するX線露光方法。 2、電子ストレージ・リングと、この電子ストレージ・
リングの電子軌道の接線方向に軟X線を取り出すビーム
・ラインと、該ビーム・ラインの中間に軟X線を全反射
するように設けたミラーと、X線露光マスクを基板に位
置合わせするアライナーとからなるX線露光装置におい
て、該電子ストレージ・リングから放射される光の臨界
波長が20Å以上80Å以下であり且つ、前記ミラーで
全反射する軟X線の波長が20Å以上であることを特徴
とするX線露光装置。[Claims] 1. Soft X-rays with a wavelength of 44 Å or more are introduced into a reduced pressure He atmosphere through a diamond-like carbon film, and a pattern formed on an X-ray exposure mask with a diamond-like carbon film as a substrate is exposed on the substrate surface. X-ray exposure method for transferring images. 2. Electronic storage ring and this electronic storage ring.
A beam line that takes out soft X-rays in the tangential direction of the electron orbit of the ring, a mirror installed between the beam lines to totally reflect the soft X-rays, and an aligner that aligns the X-ray exposure mask with the substrate. An X-ray exposure apparatus comprising: a critical wavelength of light emitted from the electronic storage ring is 20 Å or more and 80 Å or less, and a wavelength of soft X-rays totally reflected by the mirror is 20 Å or more. X-ray exposure equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11983688A JP2712286B2 (en) | 1988-05-16 | 1988-05-16 | X-ray exposure method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11983688A JP2712286B2 (en) | 1988-05-16 | 1988-05-16 | X-ray exposure method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01289114A true JPH01289114A (en) | 1989-11-21 |
JP2712286B2 JP2712286B2 (en) | 1998-02-10 |
Family
ID=14771459
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11983688A Expired - Lifetime JP2712286B2 (en) | 1988-05-16 | 1988-05-16 | X-ray exposure method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2712286B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627930A (en) * | 1979-08-13 | 1981-03-18 | American Science & Eng Inc | Xxray lithographic system |
-
1988
- 1988-05-16 JP JP11983688A patent/JP2712286B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5627930A (en) * | 1979-08-13 | 1981-03-18 | American Science & Eng Inc | Xxray lithographic system |
Also Published As
Publication number | Publication date |
---|---|
JP2712286B2 (en) | 1998-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20090226825A1 (en) | Method for fabricating EUVL mask | |
JP3210143B2 (en) | X-ray mask structure, method for manufacturing the same, X-ray exposure method using the X-ray mask structure, and device manufacturing method using the X-ray mask structure | |
JPH01289114A (en) | Process and device of x-ray exposure | |
US5882826A (en) | Membrane and mask, and exposure apparatus using the mask, and device producing method using the mask | |
KR100211012B1 (en) | Lithographic mask structure and method of producing the same and manufacturing device | |
Randall et al. | Repair of x‐ray lithography masks using UV‐laser photodeposition | |
US4555460A (en) | Mask for the formation of patterns in lacquer layers by means of X-ray lithography and method of manufacturing same | |
Gluskin et al. | Experiments on X-ray lithography using synchrotron radiation from the VEPP-2M storage ring | |
JPS60122944A (en) | Manufacture of mask for making pattern | |
JPS6052022A (en) | Correcting method of mask pattern | |
JPS6283749A (en) | Correcting method defect for of photomask | |
JP2502595B2 (en) | Method of manufacturing mask for X-ray exposure | |
JPH03208329A (en) | X-ray mask, method of correcting x-ray mask, and x-ray exposure system | |
JPH01150139A (en) | Mask correction process for device and mask | |
JP2783973B2 (en) | Method of manufacturing mask for X-ray lithography | |
JPH01216529A (en) | Manufacture of x-ray exposure mask | |
JPS5898922A (en) | Pattern forming method | |
JPH05152195A (en) | X-ray mask and transcribing method | |
JP3219619B2 (en) | X-ray mask, manufacturing method of the mask, and device manufacturing method using the mask | |
JPH01152724A (en) | Replication of fine pattern | |
JPH04113299A (en) | X-ray irradiation device and x-ray intensity distribution correcting filter | |
JPH01162332A (en) | Mask membrane for x-ray lithography | |
JP3279181B2 (en) | Method of manufacturing mask for X-ray exposure | |
JPH07130645A (en) | Mask for x-ray exposure and x-ray aligner using same | |
Putzar et al. | Optimization of the laser-induced deposition technique for its application in X-ray mask repair |