JPH01286688A - Low frequency band replacing circuit for muse decoder - Google Patents

Low frequency band replacing circuit for muse decoder

Info

Publication number
JPH01286688A
JPH01286688A JP63116064A JP11606488A JPH01286688A JP H01286688 A JPH01286688 A JP H01286688A JP 63116064 A JP63116064 A JP 63116064A JP 11606488 A JP11606488 A JP 11606488A JP H01286688 A JPH01286688 A JP H01286688A
Authority
JP
Japan
Prior art keywords
frame
low frequency
circuit
frame memory
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63116064A
Other languages
Japanese (ja)
Other versions
JP2557466B2 (en
Inventor
Ryuichi Fujimura
隆一 藤村
Yuichi Ninomiya
佑一 二宮
Toshiro Omura
大村 俊郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
NEC Corp
Japan Broadcasting Corp
Original Assignee
NEC Home Electronics Ltd
Nippon Hoso Kyokai NHK
Nippon Electric Co Ltd
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd, Nippon Hoso Kyokai NHK, Nippon Electric Co Ltd, Japan Broadcasting Corp filed Critical NEC Home Electronics Ltd
Priority to JP63116064A priority Critical patent/JP2557466B2/en
Publication of JPH01286688A publication Critical patent/JPH01286688A/en
Application granted granted Critical
Publication of JP2557466B2 publication Critical patent/JP2557466B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To improve the picture quality of a still picture without adding an exclusive-use frame memory by diverting a frame memory for detecting the movement of a picture, which becomes unnecessary during a still display operation, to a frame memory to store the unprocessed signals of a still display picture. CONSTITUTION:When a command signal for the still display operation is given to an input terminal 12, the operation of a movement detecting circuit 5a is stopped, and a switch S1 to compose a switch 8c is switched to a lower side. Accompanying this, a movement detecting part 5 starts taking preprocessed video signals in a frame memory 5b. When the taking in of the signals is completed, preprocessed video signals for one frame taken in the memory 5b are repeatedly read in a frame cycle and supplied to a low frequency replacing device 8a. On the other hand, a loop is formed between the input and the output of a frame memory 4b of an inter-frame interpolating part 4, and the video signals for the frame taken in immediately after the command for the still display operation is generated are repeatedly read. As the result, the still picture, in which vertical resolution is improved by the replacement of the low frequency, is displayed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、MUSE方式のテレビジョン受像機内に設置
されるMUSEデコーダの低域置換回路に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a low frequency replacement circuit for a MUSE decoder installed in a MUSE television receiver.

(従来の技術) 現在、放送衛星を利用するハイビジョン(高品位)テジ
ッン方式の最有力候補であるMUSE(Multipl
e  Sub  −nyquist  Samplin
g  t!ncoding  )方式のテレビジョン放
送の実験が開始されている。
(Prior technology) Currently, MUSE (Multiple
e Sub-nyquist Sample
gt! Experiments have begun on television broadcasting using the ncoding method.

このMUSE方式では、帯域幅22 MHzの輝度信号
と帯域幅7MHzの色信号とを含むベースバンド信号を
周波数変調し、これを衛星放送の帯域幅27MHzの1
チヤンネルを用いて伝送するために、上記ベースバンド
信号が約8M11zに帯域圧縮される。この帯域圧縮は
、原映像信号から抽出した完全なサンプリング魚群を所
定の規則に従って間引(ことによって行われる。このサ
ンプリング点の間引きに際しては、画面上の斜め方向の
解像度が上下、左右方向よりも低下するという視聴者の
生理的特性を利用してフィールド間オフセット・サンプ
リングが行われる。また、動きのある領域では解像度が
多少低下してもそれほどの画質劣化を感じないという視
聴者の生理的特性も利用される。
In this MUSE method, a baseband signal containing a luminance signal with a bandwidth of 22 MHz and a chrominance signal with a bandwidth of 7 MHz is frequency modulated, and this is modulated into 1 of the 27 MHz bandwidth of satellite broadcasting.
In order to transmit using the channel, the baseband signal is band-compressed to approximately 8M11z. This band compression is performed by thinning out the complete sampled fish school extracted from the original video signal according to a predetermined rule. When thinning out the sampling points, the resolution in the diagonal direction on the screen is higher than that in the vertical and horizontal directions. Inter-field offset sampling is performed by taking advantage of the viewer's physiological characteristic that the resolution decreases.Also, the viewer's physiological characteristic that in areas of movement, even if the resolution decreases slightly, the viewer does not notice much deterioration in image quality. is also used.

すなわち、送出対象の画面が動き領域と静止領域とに分
けられ、動き領域についてはサンプリング点の間引き率
が静止領域のそれよりも増加される。
That is, the screen to be transmitted is divided into a moving area and a still area, and the sampling point thinning rate for the moving area is increased compared to that for the still area.

受信側のデコーダでは、送信側のエンコーダで間引かれ
たサンプリング点が実際に送出され受信された前後のサ
ンプリング魚群をもとに再生され、欠落個所に挿入され
る。この欠落サンプリング点の再生と挿入の処理は、内
挿処理と称される。この内挿処理には、同一フィールド
内の隣接サンプリング魚群を利用して行うフィールド内
内挿と、隣接フィールドの対応の位置のサンプリング魚
群を利用して行うフィールド間内挿とがある。この内挿
処理にあたっては、受信画面から動き領域と静止領域と
が検出され、動き領域についてはフィールド内内挿が行
われ、静止領域についてはフィールド間内挿が行われる
In the decoder on the receiving side, the sampling points thinned out by the encoder on the transmitting side are reproduced based on the sampled fish schools before and after they were actually sent and received, and inserted into the missing points. This process of reproducing and inserting missing sampling points is called interpolation process. This interpolation process includes intra-field interpolation using adjacent sampling fish schools in the same field and inter-field interpolation using sampling fish schools at corresponding positions in adjacent fields. In this interpolation process, a moving area and a still area are detected from the received screen, intra-field interpolation is performed for the moving area, and inter-field interpolation is performed for the still area.

送信側でのフィールド間オフセット・サンプリング後の
伝送信号成分は、第3図の一点鎖線で示すように、(垂
直解像度1025TV本、水平解像度OMHz)と(垂
直解像度OTV本、水平解像度24.3 MHz )の
2点間を結ぶ右下がりの直線となる。最終的に送信され
る信号成分は、上記フィールド間オフセント・サンプリ
ングの後段で行われる低域通過濾波処理、サンプリング
周波数の変換処理及びフレーム間/ライン間オフセット
・サンプリング処理の結果、OMHzから8.1 MH
zの間に帯域圧縮されると共に8.1 MH2以上の高
域成分が4Hzと8.1 MHzの間に二重に折り返さ
れたものとなる。
The transmission signal components after inter-field offset sampling on the transmitting side are (vertical resolution 1025 TV lines, horizontal resolution OMHz) and (vertical resolution OTV lines, horizontal resolution 24.3 MHz), as shown by the dashed line in Figure 3. ) is a straight line that slopes downward to the right. As a result of the low-pass filtering processing, sampling frequency conversion processing, and interframe/interline offset sampling processing performed after the interfield offset sampling, the final transmitted signal component is 8.1 MHz from OMHz. M.H.
The band is compressed between 4 Hz and 8.1 MHz, and high frequency components of 8.1 MHz or higher are folded back between 4 Hz and 8.1 MHz.

受信側のデコーダでは、第3図の一点鎖線で示す信号成
分に対し、周波数変換、濾波、内挿などによる折り返し
の復元と高周波数成分の再生によるデコードが行われる
。このデコードに際し、フィルタなど各種処理回路の簡
易化・経済化を図る目的で、低域置換の手法が適用され
る。すなわち、第3図の実線で示すように、垂直方向の
濾波特性の不十分さから生ずる高垂直解像度成分の欠落
した処理特性が許容されると共に、処理前の信号の4 
Ml(Z以下の帯域に含まれる高垂直解像度成分が切り
取られ処理済みの信号成分に重畳される。この低域置換
処理により、第4図の実線で示すようにデコードに伴う
高垂直解像度の信号成分の欠落が補われる。
In the decoder on the receiving side, the signal components indicated by the dashed line in FIG. 3 are decoded by restoring aliasing by frequency conversion, filtering, interpolation, etc., and by reproducing high frequency components. During this decoding, a low frequency permutation method is applied for the purpose of simplifying and economicalizing various processing circuits such as filters. That is, as shown by the solid line in FIG. 3, the processing characteristics in which high vertical resolution components are missing due to insufficient filtering characteristics in the vertical direction are allowed, and the
The high vertical resolution components included in the band below Ml (Z) are cut out and superimposed on the processed signal components. Through this low frequency replacement processing, the high vertical resolution signals accompanying decoding are Compensates for missing ingredients.

上記従来のMUSEデコーダでは、処理回路に必然的に
含まれるフレームメモリの入出力間にループを形成する
ことにより、表示画面を所望の時点で静止させる静止表
示機能が付加される。この静止表示画面についても上述
の低域置換による垂直解像度の改善を施そうとすれば、
静止表示画面の未処理の信号を蓄積しておいて繰り返し
読出すためのフレームメモリが必要になる。しかしなが
ら、静止表示画面の垂直解像度の改善という特殊な目的
だけで高価なフレームメモリを備えることは、経済性の
点で困難である。このため、従来は、静止表示画面に対
する低域置換による垂直解像度の改善が省略されてきた
The conventional MUSE decoder described above is provided with a still display function that freezes the display screen at a desired time by forming a loop between the input and output of the frame memory necessarily included in the processing circuit. If we try to improve the vertical resolution of this static display screen by the above-mentioned low frequency replacement,
A frame memory is required to store and repeatedly read out the unprocessed signals of the static display screen. However, it is economically difficult to provide an expensive frame memory solely for the special purpose of improving the vertical resolution of a static display screen. For this reason, conventionally, improvement of vertical resolution by low-frequency replacement for static display screens has been omitted.

(発明が解決しようとする課題) 上記従来のMUSEデコーダでは、静止表示画面に対す
る低域置換による画質の改善が経済性の点で省略されて
きた。しかしながら、静止表示画面では高垂直解像度成
分の欠落による画質の劣化(ぼけ)が通常の表示画面よ
りも目立つので、通常の場合よりもむしろ低域置換が必
要になるという問題がある。
(Problems to be Solved by the Invention) In the conventional MUSE decoder described above, improvement of image quality by low frequency replacement for a static display screen has been omitted from the viewpoint of economy. However, in a still display screen, deterioration in image quality (blurring) due to the omission of high vertical resolution components is more noticeable than in a normal display screen, so there is a problem in that low frequency replacement is required rather than in the normal case.

(課題を解決するための手段) 本発明に係わるMUSEデコーダの低域置換回路は、静
止表示動作の開始時にはフレーム間内挿処理直前の映像
処理を動き検出用のフレームメモリに取り込み、これを
繰り返し読出しつつその低域成分を用いて低域置換を行
う手段を備えている。
(Means for Solving the Problems) The low frequency replacement circuit of the MUSE decoder according to the present invention captures video processing immediately before interframe interpolation processing into a frame memory for motion detection at the start of a still display operation, and repeats this process. It is provided with means for performing low frequency replacement using the low frequency components while reading.

すなわち、本発明の低域置換回路は、MUSEデコーダ
中に必ず含まれると共に静止表示動作中は必ず不要とな
る動き検出用のフレームメモリを静止表示画面の未処理
信号を蓄積しておくフレームメモリに転用することによ
り、高価な専用のフレームメモリを追加することなく静
止表示画面の画質の改善を実現するように構成されてい
る。
That is, the low-frequency replacement circuit of the present invention replaces the frame memory for motion detection, which is always included in the MUSE decoder and is always unnecessary during the still display operation, with the frame memory that stores the unprocessed signals of the still display screen. By repurposing, it is configured to improve the image quality of static display screens without adding expensive dedicated frame memory.

以下、本発明の作用を実施例と共に詳細に説明する。Hereinafter, the operation of the present invention will be explained in detail together with examples.

(実施例) 第1図は、本発明の一実施例の低域置換回路を含むMU
SEデコーダの主要部の構成の一例を示すブロック図で
ある。
(Embodiment) FIG. 1 shows an MU including a low frequency replacement circuit according to an embodiment of the present invention.
FIG. 2 is a block diagram illustrating an example of a configuration of a main part of an SE decoder.

このMUSEデコーダにおいて、INは受信映像信号の
入力端子、1はA/D変換回路、2は前処理回路、3は
コントロール信号抽出回路、4はフレーム間内挿部、5
は動き検出部である。更に、6は輝度信号処理部、7は
色信号処理部、8は低域置換回路、9はテンポラリ・フ
ィルタ、10は線順次デコーダ、11はマトリクス回路
、12は静止表示の動作指令入力端子、0.〜0.はR
lG、B信号の出力端子である。
In this MUSE decoder, IN is an input terminal for the received video signal, 1 is an A/D conversion circuit, 2 is a preprocessing circuit, 3 is a control signal extraction circuit, 4 is an interframe interpolation unit, 5
is a motion detection section. Further, 6 is a luminance signal processing section, 7 is a chrominance signal processing section, 8 is a low frequency replacement circuit, 9 is a temporary filter, 10 is a line sequential decoder, 11 is a matrix circuit, 12 is an operation command input terminal for static display, 0. ~0. is R
This is an output terminal for lG and B signals.

入力端子INに出現するMUSE映像信号は、A/D変
換回路1において16.2  MHzのサンプリング周
波数で10ビット幅のディジタル信号に変換される。こ
のA/D変換されたディジタル映像信号に対し、前処理
回路2でノンリニア・デイエンファシスや逆ガンマ補正
などの前処理が行われる。コントロール信号抽出回路3
は、A/D変換されたディジタル映像信号から動きベク
トル信号やサブサンプル位相情報などを含むコントロー
ル信号を抽出し、フレーム間内挿部4、輝度信号処理部
6、色信号処理部7などに供給する。
The MUSE video signal appearing at the input terminal IN is converted into a 10-bit width digital signal by the A/D conversion circuit 1 at a sampling frequency of 16.2 MHz. A preprocessing circuit 2 performs preprocessing such as nonlinear de-emphasis and reverse gamma correction on this A/D converted digital video signal. Control signal extraction circuit 3
extracts a control signal including a motion vector signal, subsample phase information, etc. from the A/D converted digital video signal, and supplies it to the interframe interpolation unit 4, luminance signal processing unit 6, color signal processing unit 7, etc. do.

なお、図示は省略しているが、このMUSEデコーダに
はA/D変換されたディジタル映像信号から各種の同期
信号を抽出する同期抽出回路や、この抽出された同期信
号から16.2MHz、 32.4 MB2゜48.6
MHzのクロック信号を再生して各部に供給する回路や
、音声信号の分離・デコード回路なども設置されている
Although not shown in the figure, this MUSE decoder includes a synchronization extraction circuit that extracts various synchronization signals from the A/D-converted digital video signal, and a synchronization extraction circuit that extracts various synchronization signals from the extracted synchronization signals at 16.2 MHz and 32. 4 MB2゜48.6
Also installed are circuits that reproduce MHz clock signals and supply them to various parts, as well as audio signal separation and decoding circuits.

前処理回路2から出力された映像信号は、フレーム間内
挿回路4aとフレームメモリ4bで構成されるフレーム
間内挿部4において、抽出済みのコントロール信号に含
まれる動きベクトル信号などに基づきフレーム間内挿処
理される。動き検出回路6aとフレームメモリ6bで構
成される動き検出部6は、フレーム間内挿処理前後の映
像信号について1フレームや2フレーム前のフレーム間
差信号の大きさから画面中の動きの大きさを検出し、輝
度信号処理部6と色信号処理部7内の適応合成部6Cと
70に供給する。
The video signal output from the preprocessing circuit 2 is processed by an interframe interpolation unit 4 consisting of an interframe interpolation circuit 4a and a frame memory 4b, based on the motion vector signal included in the extracted control signal. Interpolated. The motion detection unit 6, which is composed of a motion detection circuit 6a and a frame memory 6b, determines the magnitude of motion in the screen from the magnitude of the interframe difference signal of one frame or two frames before for the video signal before and after interframe interpolation processing. is detected and supplied to adaptive synthesis units 6C and 70 in the luminance signal processing unit 6 and color signal processing unit 7.

フレーム間内挿済みの映像信号に含まれる輝度信号は、
通過帯域O〜12 MHzの低域通過濾波回路6dを経
てフィールド間内挿回路6aに供給され、フィールド間
内挿処理が施される。また、フレーム間内挿済みの映像
信号に含まれる輝度信号はフィールド内内挿回路6bに
も供給され、フィールド内内挿処理が施される。フィー
ルド間内挿済みの矧度信号とフィールド内内挿済みの輝
度信号とは、適応合成回路6Cにおいて、動き検出回路
5aで検出済みの動きの大きさに応じて適応制御される
合成比率に従って適応合成される。適応合成済みの輝度
信号は、低域置換回路8の低域置換器8aで低域置換処
理を受けたのち、テンポラリ・フィルタ9を経てマトリ
クス回路11に供給される。
The luminance signal included in the video signal that has been interpolated between frames is
The signal is supplied to an inter-field interpolation circuit 6a through a low-pass filter circuit 6d with a pass band of O to 12 MHz, and subjected to inter-field interpolation processing. Further, the luminance signal included in the video signal that has been interpolated between frames is also supplied to the intra-field interpolation circuit 6b, and subjected to intra-field interpolation processing. The inter-field interpolated graininess signal and the intra-field interpolated luminance signal are adaptively processed in the adaptive synthesis circuit 6C according to a synthesis ratio that is adaptively controlled according to the magnitude of the motion detected by the motion detection circuit 5a. be synthesized. The adaptively synthesized luminance signal undergoes low-pass replacement processing in a low-pass replacer 8a of the low-range replacement circuit 8, and then is supplied to the matrix circuit 11 via a temporary filter 9.

時間軸伸張回路7dと7eとにおいて時間軸が4倍に伸
張された色信号についても同様に、フィールド間内挿回
路7aとフィールド内内挿回路7bとで内挿処理が施さ
れる。内挿済みの各色信号は適応合成回路7Cにおいて
、動き検出回路5aで検出済みの動きの大きさに応じて
適応制御される合成比率に従って適応合成される。この
適応合成済みの色信号には、(R−Y)信号と(B−Y
)信号が1ラインおきに交互に出現するデータ圧縮が施
されている。この色信号は、線順次デコーダ10におい
て、ライン内挿によるライン連続の色信号に変換され、
マトリクス回路11に供給される。
The color signal whose time axis has been expanded by four times in the time axis expansion circuits 7d and 7e is similarly subjected to interpolation processing in the interfield interpolation circuit 7a and the intrafield interpolation circuit 7b. The interpolated color signals are adaptively synthesized in the adaptive synthesis circuit 7C according to a synthesis ratio that is adaptively controlled according to the magnitude of the motion detected by the motion detection circuit 5a. This adaptively combined color signal includes a (R-Y) signal and a (B-Y
) Data compression is applied in which signals appear alternately on every other line. This color signal is converted into a continuous line color signal by line interpolation in the line sequential decoder 10,
The signal is supplied to the matrix circuit 11.

マトリクス回路11は、供給された輝度信号Yと色信号
(R−Y)、  (B−Y)とからR,G。
The matrix circuit 11 outputs R and G from the supplied luminance signal Y and color signals (RY) and (B-Y).

B信号を生成し、出力端子0..0□、0.のそれぞれ
に供給する。
B signal is generated and the output terminal 0. .. 0□, 0. supply to each of them.

なお、図示の煩雑化を回避するため、第1図の低域通過
濾波回路6dとフィールド間内挿回路6aとの間及びフ
ィールド内内挿回路6bと輝度信号適応合成回路6Cと
の間に設置される32.4 MHzから48.6MHz
への周波数変換回路については図示が省略されている。
Note that in order to avoid complication of illustration, the filters are installed between the low-pass filter circuit 6d and the inter-field interpolation circuit 6a and between the intra-field interpolation circuit 6b and the luminance signal adaptive synthesis circuit 6C in FIG. from 32.4 MHz to 48.6 MHz
The illustration of the frequency conversion circuit is omitted.

また、第1図に示したMUSEデコーダの低域置換回路
8以外については、更に詳細な説明が必要であればNE
C技報Vo1.41No、3 /1988  に掲載さ
れたrMUSEデコーダ」と題する本発明者らの論文を
参照されたい。
If a more detailed explanation is required, please refer to the NE
Please refer to the paper by the present inventors titled "rMUSE Decoder" published in C Technical Report Vol. 1.41 No. 3/1988.

低域置換回路8のスイッチ8Cを構成するスイフチS1
と82は、通常動作時にはいずれも図中の上方の接点に
切替えられる。これに伴い、前処理回路2において前処
理が行われだけの映像信号がスイッチ8Cと遅延器8b
を経て低域置換器8aに供給される。
Swift S1 configuring switch 8C of low frequency replacement circuit 8
and 82 are both switched to the upper contacts in the figure during normal operation. Along with this, the video signal that has only been preprocessed in the preprocessing circuit 2 is transferred to the switch 8C and the delay device 8b.
The signal is then supplied to the low frequency replacer 8a.

低域置換器8aは、第2図に示すように、適応合成済み
の輝度信号を受ける入力端子11と、遅延器8bから前
処理済みの映像信号を受ける入力端子■8と、4 MH
2〜20 MHzの帯域通過フィルタ21と、4 MH
zの低域通過フィルタ22と、係数器23と、加算器2
4と、出力端子0とから構成されている。入力端子11
に出現する第3図の実線で示すような信号成分は、4 
MH2以下の低域成分のみが適宜量の減衰を受けつつ帯
域通過フィルタ21を通過か加算器24の一方の入力端
子に供給される。一方、入力端子■2に出現する第3図
の一点斜線で示すような信号成分は、4 MHz以下の
低域成分のみが抽出されつつ低域通過フィルタ22を通
過し、係数器23において帯域通過フィルタ21の減衰
量に応じた値の係数が乗ぜられつつ加算器24の他方の
入力端子に供給される。
As shown in FIG. 2, the low-pass replacer 8a has an input terminal 11 that receives the adaptively synthesized luminance signal, an input terminal 8 that receives the preprocessed video signal from the delay device 8b, and a 4 MH.
2-20 MHz bandpass filter 21 and 4 MHz bandpass filter 21
z low-pass filter 22, coefficient unit 23, and adder 2
4 and an output terminal 0. Input terminal 11
The signal component shown by the solid line in Figure 3 that appears in 4
Only the low-frequency components below MH2 pass through the bandpass filter 21 or are supplied to one input terminal of the adder 24 while receiving an appropriate amount of attenuation. On the other hand, the signal component appearing at the input terminal 2, as shown by the one-dot diagonal line in FIG. The signal is multiplied by a coefficient corresponding to the amount of attenuation of the filter 21 and then supplied to the other input terminal of the adder 24 .

加算器24は、再入力端子の濾波信号を合成することに
より、第4図の実線で示すような適宜な比率で低域置換
が施された輝度信号を生成し出力端子Oに供給する。
The adder 24 synthesizes the filtered signals of the re-input terminals to generate a luminance signal subjected to low frequency substitution at an appropriate ratio as shown by the solid line in FIG. 4, and supplies it to the output terminal O.

第1図の入力端子12に、静止表示動作の指令信号が出
現すると、動き検出回路5aの動作が停止されると共に
、スイッチ8Cを構成するスイッチSLが図中の下側に
切替えられる。これに伴い、動き検出部5のフレームメ
モリ5bへの前処理済み映像信号の取込みが開始される
。この取込みが終了すると、フレームメモリ5bに取込
まれた1フレ一ム分の前処理済み映像信号がフレーム周
期で繰り返し読出され、スイッチS3と遅延回路8bを
経て低域置換器8aに供給される。
When a command signal for static display operation appears at the input terminal 12 in FIG. 1, the operation of the motion detection circuit 5a is stopped, and the switch SL constituting the switch 8C is switched to the lower side in the figure. Along with this, loading of the preprocessed video signal into the frame memory 5b of the motion detection section 5 is started. When this capture is completed, the preprocessed video signal for one frame captured in the frame memory 5b is read out repeatedly at the frame period, and is supplied to the low-frequency replacer 8a via the switch S3 and the delay circuit 8b. .

一方、入力端子12上に出現した静止表示動作の指令信
号に基づき、フレーム間内挿部4のフレームメモリ4b
の入出力間にループが形成されて新たなフレームの映像
信号の取り込みが禁止されると共に静止表示動作の指令
発生直後に取り込まれたフレームの映像信号が繰り返し
読出される。
On the other hand, based on the command signal for static display operation that appears on the input terminal 12, the frame memory 4b of the interframe interpolation unit 4
A loop is formed between the input and output of the frame, and the capture of the video signal of a new frame is prohibited, and the video signal of the frame captured immediately after the command for static display operation is issued is repeatedly read out.

この結果、低域置換による垂直解像度の改善が施された
静止画面の表示が行われる。
As a result, a still screen is displayed whose vertical resolution has been improved by low frequency replacement.

(発明の効果) 以上詳細に説明したように、本発明の低域置換回路は、
MUSEデコーダ中に必ず含まれると共に静止表示動作
中は必ず不要となる動き検出用のフレームメモリを静止
表示画面の未処理信号を蓄積しておくフレームメモリに
転用する構成であるから、高価な専用のフレームメモリ
を追加することなく静止表示画面の画質の改善を実現で
きるという効果が奏される。
(Effects of the Invention) As explained in detail above, the low frequency replacement circuit of the present invention has the following features:
Since the frame memory for motion detection, which is always included in the MUSE decoder and is always unnecessary during static display operation, is used as a frame memory that stores unprocessed signals from the static display screen, expensive dedicated The effect is that the image quality of a still display screen can be improved without adding a frame memory.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の低域置換回路を含むMUS
Eデコーダの一構成例を示すブロック図、第2図は第1
図の低域置換器8aの構成を示すブロック図、第3図と
第4図は低域置換の概念を説明するための信号成分図で
ある。 IN・・・受信映像信号の入力端子、1・・・A/D変
換回路、2・・・前処理回路、4・・・フレーム間内挿
部、5・・・動き検出部、6・・・輝度信号処理部、7
・・・色信号処理部、8・・・低域置換回路、8a・・
・低域置換器、8b・・・遅延器、8C・・・スイッチ
、11・・・マトリクス回路。 特許出願人 日本電気ホームエレクトロニクス株式会社
  (外1名)
FIG. 1 shows an MUS including a low frequency replacement circuit according to an embodiment of the present invention.
A block diagram showing an example of the configuration of an E decoder, FIG.
3 and 4 are signal component diagrams for explaining the concept of low-frequency replacement. IN...Input terminal for received video signal, 1...A/D conversion circuit, 2...Preprocessing circuit, 4...Interframe interpolation section, 5...Motion detection section, 6...・Luminance signal processing section, 7
...Color signal processing section, 8...Low frequency replacement circuit, 8a...
-Low frequency replacer, 8b...delay device, 8C...switch, 11...matrix circuit. Patent applicant: NEC Home Electronics Co., Ltd. (1 other person)

Claims (1)

【特許請求の範囲】[Claims] 静止表示動作中以外はフレーム間内挿処理直前の映像信
号の低域成分を用いて低域置換を行い、静止表示動作の
開始時には前記フレーム間内挿処理直前の映像信号を動
き検出用のフレームメモリに取り込み、これを繰り返し
読出しつつその低域成分を用いて低域置換を行う手段を
備えたことを特徴とするMUSEデコーダの低域置換回
路。
When the static display operation is not in progress, low frequency components of the video signal immediately before the interframe interpolation process are used for low frequency replacement, and at the start of the static display operation, the video signal immediately before the interframe interpolation process is used as the frame for motion detection. 1. A low-frequency replacement circuit for a MUSE decoder, characterized in that the low-frequency replacement circuit for a MUSE decoder is provided with means for performing low-frequency replacement using the low-frequency components of a memory while repeatedly reading the same.
JP63116064A 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder Expired - Fee Related JP2557466B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63116064A JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63116064A JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Publications (2)

Publication Number Publication Date
JPH01286688A true JPH01286688A (en) 1989-11-17
JP2557466B2 JP2557466B2 (en) 1996-11-27

Family

ID=14677814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63116064A Expired - Fee Related JP2557466B2 (en) 1988-05-13 1988-05-13 Low-frequency replacement circuit for MUSE decoder

Country Status (1)

Country Link
JP (1) JP2557466B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7040422B2 (en) * 2018-11-28 2022-03-23 日本電信電話株式会社 Motion vector generator, projection image generator, motion vector generator, and program

Also Published As

Publication number Publication date
JP2557466B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US4730215A (en) Compatible wide screen television system with variable image compression/expansion
US4845562A (en) Widescreen television reception and recording system utilizing conventional equipment
JPH06113175A (en) Reduction method of video noise
JPH0372796A (en) Television signal processing unit
US5365274A (en) Video signal converting apparatus with reduced processing for aliasing interference
US5029002A (en) High definition television system
JPH02224488A (en) Picture transmission system
JPH01286688A (en) Low frequency band replacing circuit for muse decoder
JP2708848B2 (en) Television converter
JPS60217778A (en) High definition television receiver
JP2557474B2 (en) Static display control circuit of MUSE decoder
JP3081060B2 (en) Multi-screen display high-definition television receiver
JPH02285897A (en) Television system converter
JPH0256191A (en) Still indication control circuit for muse decoder
JPH048083A (en) Band compression television signal converter
JPH0440786A (en) System converting device
JPH0246071A (en) Television receiver
JPH0686310A (en) Television receiver
JPH05336498A (en) High definition television receiver
JPS62172880A (en) Simple encoding system
JPH03114392A (en) Standard/wide screen television receiver
JPH04503592A (en) High definition B-MAC television signal transmission system
JPH04196787A (en) System converter
JPH06165130A (en) Signal processing circuit
JPH06141293A (en) Dc offset elimination television signal processing circuit

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees