JPH01286319A - Vapor growth method - Google Patents

Vapor growth method

Info

Publication number
JPH01286319A
JPH01286319A JP11564388A JP11564388A JPH01286319A JP H01286319 A JPH01286319 A JP H01286319A JP 11564388 A JP11564388 A JP 11564388A JP 11564388 A JP11564388 A JP 11564388A JP H01286319 A JPH01286319 A JP H01286319A
Authority
JP
Japan
Prior art keywords
dadbs
teoa
thermal decomposition
mixed gas
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11564388A
Other languages
Japanese (ja)
Other versions
JP2663508B2 (en
Inventor
Hisaharu Kiyota
清田 久晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP11564388A priority Critical patent/JP2663508B2/en
Publication of JPH01286319A publication Critical patent/JPH01286319A/en
Application granted granted Critical
Publication of JP2663508B2 publication Critical patent/JP2663508B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/02Surface treatment of glass, not in the form of fibres or filaments, by coating with glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To make it possible to form arsenic glass excellent in step coverage by thermal-decomposing a mixed gas of diacetoxy-di-tert-butoxysilane and triethoxyarsine. CONSTITUTION:Arsenic glass is formed by thermal-decomposing mixed gas of diacetoxy-di-tert-butoxysilane(DADBS) and triethoxyarsine(TEOA). Through reactions of adsorption of mixed gas of DADBS and TEOA onto a substrate polymerization thermal decomposition, that is, by the thermal decomposition reaction of DADBS+TEOA+O2 SiO2+As2O5+C2H5OC2H5, an AsSG film is formed. Since DADBS((AcO)2Si(OtBu)2) is used in formation of SiO2, it can be thermally decomposed at about 350 deg.C-650 deg.C into SiO2. In formation of As2O5, it is executed by TEOA(As(OC2H5)3), so it is thermally decomposited at 350 deg.C-550 deg.C, i.e., at the temperature almost same as the thermal decomposition temperature of DADBS into As2O5, which vaporizes by-products such as C2 H5OC2H5, etc. Hereby, an AsSG film which is high in As concentration and uniform can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、砒素ガラス(As5G)を形成するための気
相成長方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vapor phase growth method for forming arsenic glass (As5G).

〔発明の概要〕[Summary of the invention]

本発明は、砒素ガラスの気相成長方法において、互いに
熱分解温度の近いジアセトキシ・ジターシャリイ・ブト
キシ・シラン(口ADBS )とトリエトキシアルシン
(THOA)の混合ガスを熱分解することによって、ス
テップカバレージの良い砒素ガラスを形成できるように
したものである。
In the vapor phase growth method of arsenic glass, the present invention improves step coverage by thermally decomposing a mixed gas of diacetoxy ditertiary butoxy silane (ADBS) and triethoxyarsine (THOA), which have similar thermal decomposition temperatures. This makes it possible to form good arsenic glass.

〔従来の技術〕[Conventional technology]

商集積半導体装置等において、その凹凸を有する半導体
基体にn十不純物のドーピングを行う場合には固相拡散
が一般的である。この場合、拡散源としてステップカバ
レージの良いAs5GII5t! (5i(h+AS2
06  :砒素ガラス)が求められている。
Solid phase diffusion is generally used when doping n0 impurities into a semiconductor substrate having irregularities in a commercially integrated semiconductor device or the like. In this case, As5GII5t with good step coverage is used as the diffusion source! (5i(h+AS2
06: Arsenic glass) is in demand.

従来の八5sGlpJの形成は、例えばSl)+4 +
 ASC13を用いた以下の反応により得ていた。
The conventional formation of 85sGlpJ is, for example, Sl)+4+
It was obtained by the following reaction using ASC13.

5i)14+ 02  → 5i(h + 82   
・・・(1)八sCh  +  H2=    AS)
+3  +  HCI   ・ ・ 121八SH3+
  02   −   As2O5+  H2・ ・ 
131また、5IH4+  ΔsHhを用い上記(11
、(31式でΔ5SG119!を得る方法も知られてい
る。
5i) 14+ 02 → 5i(h + 82
...(1) 8sCh + H2= AS)
+3 + HCI ・ ・ 1218 SH3+
02 - As2O5+ H2・・
131 Also, the above (11
, (A method of obtaining Δ5SG119! using Equation 31 is also known.

さらに、TEOS ((C2H50) 4 St :テ
トラエトキシシランテ及びTEOA (As (OC2
H5)] : トリエトキシアルシン)の熱分解反応T
HOS+TIA+02− SiO2+ As2Os +
 C2HI30C2Hsを用いてAs5G膜を形成する
方法も知られている。
Furthermore, TEOS ((C2H50) 4 St :tetraethoxysilante and TEOA (As (OC2
H5)]: thermal decomposition reaction T of triethoxyarsine)
HOS+TIA+02- SiO2+ As2Os +
A method of forming an As5G film using C2HI30C2Hs is also known.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上述の例えばSiH4+ 02 + AsC
h系(!IIち(11f21 +31式)で得られた^
5sGIQは、ハロゲン糸のAsChを用いている為、
反応生成物のHCIがA35G膜中に数wt%取り込ま
れやすく、Si界面で気胞を生じたり、リフロー膜に用
いた場合へl配線の信頼性を悪化しやすかった。
By the way, for example, the above-mentioned SiH4+ 02 + AsC
Obtained with h system (!IIchi (11f21 +31 formula)^
5sGIQ uses halogen thread AsCh, so
Several wt % of HCI, a reaction product, was likely to be incorporated into the A35G film, causing air bubbles at the Si interface and deteriorating the reliability of the wiring when used in a reflow film.

一方、 51114 +  ^SH3を用いて(11(
31式で得られる八5sclJは、ハロゲンのt号染が
なくなるが、 八SH3の取り扱いに注意する必要があ
り、安全面でコスト高となるものであった。
On the other hand, using 51114 + ^SH3 (11(
Although the 85sclJ obtained from Type 31 eliminates the halogen T dyeing, it is necessary to handle the 8SH3 with care, resulting in high costs from a safety standpoint.

また、上記のAs5Gは凹凸部のステップカバレージが
悪く、 5ift4+02系(7)CVDSiO2膜よ
りも悪化しやすい。従って段差部への均一なn+不純物
の拡散に不向きであり、またリフロー膜に用いた場合、
フロー時に「す」が発生しやすかった。
Furthermore, the As5G described above has poor step coverage of uneven parts, which is more likely to deteriorate than the 5ift4+02 series (7) CVDSiO2 film. Therefore, it is not suitable for uniformly diffusing n+ impurities into the stepped portion, and when used in a reflow film,
“Su” was more likely to occur during flow.

また、TI!OS+TEOA+ 02− Sio2+A
s2os +C2HG 0C2H5の反応系を用いた場
合、Th1sとTl4OAとの熱分解温度が大幅に異な
る為(第1図のTEOA(As (OC2H5)])の
熱分解ガスクロマトグラフィーテデータび第2図ノTE
O5(St (OC2H5)4 ) (7)熱分解ガス
クロマトグラフィーデータを参照) 、1’EO3の熱
分解温度でTHOAが基体に吸着する前の気相状態で熱
分解してしまうのでAS205が堆積しにくくなり、へ
s’tllt、度が高濃度に入りにくい。又、バッチ方
式の横型炉や縦型炉を用いた場合、へs濃度の制御がむ
ずかしい。
Also, TI! OS+TEOA+ 02- Sio2+A
When using the reaction system of s2os +C2HG 0C2H5, the thermal decomposition temperatures of Th1s and Tl4OA are significantly different (TEOA (As (OC2H5)) in Figure 1), so the thermal decomposition gas chromatography data and Figure 2. T.E.
O5 (St (OC2H5)4 ) (7) Refer to pyrolysis gas chromatography data), AS205 is deposited because THOA is thermally decomposed in the gas phase before adsorbing to the substrate at the thermal decomposition temperature of 1'EO3. It becomes difficult to get into high concentrations. Furthermore, when a batch-type horizontal furnace or vertical furnace is used, it is difficult to control the hesium concentration.

本発明は、上述の問題点を改善し良好なへsSG股を形
成できる気相成長方法を提供するものである。
The present invention provides a vapor phase growth method that can improve the above-mentioned problems and form a good sSG crotch.

〔課題を解決するための手段」 本発明は、砒素ガラスの気相成長方法において、ジアセ
トキシ・シターシャリイ・ブトキシ・シラン(DADB
S )とトリエトキシアルシン(ThOA)の混合ガス
を熱分解して砒素ガラスを形成することを特徴とする。
[Means for Solving the Problems] The present invention provides a vapor phase growth method for arsenic glass using diacetoxy-tertiary-butoxy-silane (DADB).
It is characterized by forming arsenic glass by thermally decomposing a mixed gas of S ) and triethoxyarsine (ThOA).

〔作用〕[Effect]

本発明によれば、0ADBS及びTEOAの混合ガスの
基体上への吸着−重合−熱分解という反応を経て、すな
わちDADBS + THOA+ Ch” 5to2 
+45205 +C2H50C2Hsの熱分解反16に
よってAs5GIQが形成される。 5102の形成で
はDADBS  (、(八Go)2si(OtBu)z
)を用いるので350℃〜650℃程度でSiO2に熱
分解できる。^5205の形成ではTHOA(八s (
0C2H5)3)で行うので350℃〜550℃(つま
りDADBSの熱分解温度とほとんど同じ温度)で八5
205に熱分解し、C2Ha 0C2Hs等の副生成物
を気化する(第1図参照)。
According to the present invention, a mixed gas of 0ADBS and TEOA is adsorbed onto a substrate through a reaction of adsorption, polymerization, and thermal decomposition, that is, DADBS + THOA + Ch" 5to2
As5GIQ is formed by pyrolysis reaction 16 of +45205 +C2H50C2Hs. In the formation of 5102, DADBS (, (8Go)2si(OtBu)z
), it can be thermally decomposed into SiO2 at about 350°C to 650°C. In the formation of ^5205, THOA (8s (
Since it is carried out at 0C2H5)3), it is heated at 350℃ to 550℃ (that is, almost the same temperature as the thermal decomposition temperature of DADBS).
205 and vaporize by-products such as C2Ha 0C2Hs (see Figure 1).

不法では0ADBSとTEOへの熱分解温度が互いに近
いのでAs4度が高濃度に入り且つ均一な八5sGIQ
が得られる。
In the illegal case, the thermal decomposition temperatures to 0ADBS and TEO are close to each other, so As4C enters a high concentration and has a uniform 85sGIQ.
is obtained.

有機金属化合物(OADBS、THOA)を用いる為、
凹凸部でも吸着−重合−熱分解の反応を経ており、得ら
れたA s S GM9!のステップカバレージは良い
。また、As濃度の制御はTEOAの吸着効率の高い温
度350℃〜550℃で行えるので制御しやすい。さら
に、塩素を用いないので、従来のようなAs5G膜のC
I汚染は生ぜず、Si界面を荒すことがない。
Because organometallic compounds (OADBS, THOA) are used,
The adsorption-polymerization-thermal decomposition reaction also occurred on the uneven parts, and the obtained A s S GM9! The step coverage is good. Furthermore, the As concentration can be easily controlled at a temperature of 350° C. to 550° C. at which TEOA adsorption efficiency is high. Furthermore, since chlorine is not used, C
No I contamination occurs and the Si interface is not roughened.

〔実施例〕〔Example〕

通常のCVD装置を用い、0ADBS  ((ACO)
2Si  (0LBLI)2 )とTEOA (As 
(0C2H5)x )のガスを制御できるガス供給系を
設置し、囲11Bsと1’ IE OAのガスを熱分解
炉に任意の分圧で導き、熱分解する。
0ADBS ((ACO)
2Si (0LBLI)2 ) and TEOA (As
A gas supply system capable of controlling the gas of (0C2H5)

特に、キャリアガスに02.N2又はAr等、或はこれ
らの組合せガスを同時に流してもよい。但し、DADB
SとTEOAのみでも可能である。トータルのガス圧力
は10〜500 Paとし、0ADBSの流量は10〜
500 SCCM、TEOへの流量は1〜5003CC
Mとすることができる。またウェーハ温度は例えは減圧
CVD方式のときには350℃〜550℃で行い、プラ
ズマCVD方式のときには100°C〜400℃で行う
を可とする。
In particular, the carrier gas has 02. Gases such as N2 or Ar, or a combination thereof may be flowed simultaneously. However, DADB
It is also possible to use only S and TEOA. The total gas pressure is 10 to 500 Pa, and the flow rate of 0ADBS is 10 to 500 Pa.
500 SCCM, flow rate to TEO is 1~5003CC
It can be M. Further, the wafer temperature may be, for example, 350° C. to 550° C. when using the low pressure CVD method, and 100° C. to 400° C. when using the plasma CVD method.

形成法は、常圧CVD、減圧CVI)、プラズマCVD
のいずれで行っても良い。但し、DADBSも、1’E
OAも液体ソースであるので、減圧CVDか、プラズマ
CVDの方がガスの蒸気圧が得られ易く、好ましい。減
圧CVD方式は、横型炉、縦型炉、等温球体炉、コール
ドウオール炉、枚葉式でも良い。
Formation methods include normal pressure CVD, low pressure CVI), plasma CVD
You can go either way. However, DADBS also has 1'E
Since OA is also a liquid source, low pressure CVD or plasma CVD is preferable because it is easier to obtain the vapor pressure of the gas. The reduced pressure CVD method may be a horizontal furnace, a vertical furnace, an isothermal spherical furnace, a cold wall furnace, or a single wafer type.

そして、上記のI)AJBSとTHOAの混合ガスの熱
分解DADBS  +TE0八+02−5i02 十 
八520s  +C2H50C2H6によってΔ5sG
IQが形成される。
And the above I) Pyrolysis of mixed gas of AJBS and THOADADBS +TE08+02-5i02
Δ5sG by 8520s +C2H50C2H6
IQ is formed.

上述のAs5GIQの形成方法によれば、互いに熱分)
W温度が近いllAl]13sとTHOAの有機金属化
合物を用いることにより、Asa度の高い且つ均一な八
5sGIIQを形成することができる。またIIADB
sとTHOAの熱分解温度が近い為、特に反応炉構造を
変更せずにるので、濃度制御がしやすく、バッチ式の減
圧CVD炉で行っても、ウェーハ間のバラツキを低く抑
えることができる。即ち各ウェーハにおいて均一なAs
5G膜を形成することができる。また、塩素系ガスを用
いないので、従来のSiH4+ 02 + AsCh系
の場合のような膜中のCI汚染がなく、Si界面を荒ら
すことがない。さらに、従来の5i)I4+Q□系では
ステップカバレージが悪く、微細パターンでは「す」が
出来やすかったが、不法ではDADBS系を用いている
為に凹凸部でも吸着−市合一熱分解という反応を経てお
り、As5G膜のステソプバレージが良くなる。従って
微細パターンでも「す」が出来ない。
According to the above-mentioned method of forming As5GIQ, mutual heat content)
By using an organometallic compound of 11Al]13s and THOA, which have similar W temperatures, it is possible to form a uniform 85sGIIQ with a high Asa degree. Also IIADB
Since the thermal decomposition temperatures of s and THOA are close, there is no need to change the reactor structure, making it easy to control the concentration, and even when using a batch-type low-pressure CVD furnace, variations between wafers can be kept low. . That is, uniform As in each wafer
A 5G film can be formed. Furthermore, since no chlorine-based gas is used, there is no CI contamination in the film unlike in the case of the conventional SiH4+ 02 + AsCh system, and there is no possibility of roughening the Si interface. Furthermore, the conventional 5i)I4+Q□ system had poor step coverage and was prone to forming "s" in fine patterns, but since the illegal DADBS system is used, the reaction of adsorption-market-thermal decomposition occurs even on uneven surfaces. As a result, the stethop coverage of the As5G film improves. Therefore, even with fine patterns, "su" cannot be formed.

〔発明の効果〕〔Effect of the invention〕

上述の本発明によれば、0ADBSと1’ E OAの
有機金属化合物を用いている為に凹凸部でもステップカ
バレージの良い^5sG19!を形成することができる
According to the present invention described above, since the organometallic compound of 0ADBS and 1'EOA is used, step coverage is good even on uneven parts^5sG19! can be formed.

しかも、0ADBSとTEO^の熱分解温度が互いに近
い温度であるのでAs4度の高い且つ均一な^sSG膜
を形成することができる。また、As′a度の制御が1
゛EO^の吸着効率の篩い温度で行えるので例えばバッ
チ式の減圧CVI)炉で行ってもウェーハ間のバラツキ
を低く抑えることができ、均一にAs2O3%を形成で
き′る。さらに、As5G膜のCI汚染がな(、Si界
面を荒すこともない。従って、本発明は凹凸を有する半
導体体上に拡散源としてのAs5G膜を形成する場合に
通用して好適ならしめるものである。
Furthermore, since the thermal decomposition temperatures of 0ADBS and TEO^ are close to each other, it is possible to form a uniform^sSG film with a high As4 degree. In addition, the control of As'a degree is 1
Since the adsorption can be carried out at a temperature that satisfies the adsorption efficiency of ``EO,'' even if it is carried out in a batch-type low-pressure CVI (CVI) furnace, for example, variations between wafers can be kept low, and As2O3% can be uniformly formed. Furthermore, there is no CI contamination of the As5G film (and the Si interface is not roughened. Therefore, the present invention is applicable and suitable for forming an As5G film as a diffusion source on a semiconductor body having unevenness. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はTEOAの熱分解ガスクロマトグラフィーデー
タを示す線図、第2図はTE01の熱分解ガスクロマト
グラフィーデータを示す線図である。
FIG. 1 is a diagram showing the pyrolysis gas chromatography data of TEOA, and FIG. 2 is a diagram showing the pyrolysis gas chromatography data of TE01.

Claims (1)

【特許請求の範囲】  砒素ガラスの気相成長方法において、 ジアセトキシ・ジターシャリイ・ブトキシ・シラン(D
ADBS)とトリエトキシアルシン(TEOA)の混合
ガスを熱分解して砒素ガラスを形成することを特徴とす
る気相成長方法。
[Claims] In the vapor phase growth method of arsenic glass, diacetoxy ditertiary butoxy silane (D
A vapor phase growth method characterized by forming arsenic glass by thermally decomposing a mixed gas of ADBS) and triethoxyarsine (TEOA).
JP11564388A 1988-05-12 1988-05-12 Vapor growth method Expired - Lifetime JP2663508B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11564388A JP2663508B2 (en) 1988-05-12 1988-05-12 Vapor growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11564388A JP2663508B2 (en) 1988-05-12 1988-05-12 Vapor growth method

Publications (2)

Publication Number Publication Date
JPH01286319A true JPH01286319A (en) 1989-11-17
JP2663508B2 JP2663508B2 (en) 1997-10-15

Family

ID=14667720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11564388A Expired - Lifetime JP2663508B2 (en) 1988-05-12 1988-05-12 Vapor growth method

Country Status (1)

Country Link
JP (1) JP2663508B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013503A (en) * 2004-06-29 2006-01-12 Internatl Business Mach Corp <Ibm> Doped nitride film, doped oxide film, and other doped films

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006013503A (en) * 2004-06-29 2006-01-12 Internatl Business Mach Corp <Ibm> Doped nitride film, doped oxide film, and other doped films

Also Published As

Publication number Publication date
JP2663508B2 (en) 1997-10-15

Similar Documents

Publication Publication Date Title
JP3055123B2 (en) Method for growing oxygen-containing silicon compound film
EP0167703A2 (en) A method of homogeneous chemical vapour deposition
JPH01162326A (en) Manufacture of beta-silicon carbide layer
EP0212691A1 (en) Low temperature chemical vapor deposition of silicon dioxide films
JPH01286319A (en) Vapor growth method
US4651673A (en) CVD apparatus
JPS5998726A (en) Formation of oxide film
US4518455A (en) CVD Process
JPH1116903A (en) Forming method of thin oxide film using wet oxidation
CN109411343A (en) A kind of SiC MOSFET gate oxide method for annealing
JPH01312833A (en) Vapor phase growth device
JPS61245541A (en) Manufacture of silicon oxide film
JPS60190566A (en) Preparation of silicon nitride
JPH04262530A (en) Chemical vapor growth apparatus
JPS60190564A (en) Preparation of silicon nitride
JPS6140034B2 (en)
JPS60144940A (en) Method of producing silicon oxide
JPH03195016A (en) Thermal cleaning method of si substrate; epitaxial growth and heat treatment apparatus
JPS62273737A (en) Formation of low stress passivation
JPH01129974A (en) Chemical vapor phase growing device
JPH01169931A (en) Forming method for borophosphorosilicate glass film
JPS6240378A (en) Production of tin nitride
JP3283095B2 (en) Method for depositing phosphorus-doped polysilicon
JPS595622A (en) Vapor growth method for semiconductor
JPS62208637A (en) Vapor growth

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term