JPH01286259A - Operation of fuel cell - Google Patents

Operation of fuel cell

Info

Publication number
JPH01286259A
JPH01286259A JP63115463A JP11546388A JPH01286259A JP H01286259 A JPH01286259 A JP H01286259A JP 63115463 A JP63115463 A JP 63115463A JP 11546388 A JP11546388 A JP 11546388A JP H01286259 A JPH01286259 A JP H01286259A
Authority
JP
Japan
Prior art keywords
load current
gas
fuel
fuel cell
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63115463A
Other languages
Japanese (ja)
Inventor
Koji Ito
幸二 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP63115463A priority Critical patent/JPH01286259A/en
Publication of JPH01286259A publication Critical patent/JPH01286259A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04388Pressure; Ambient pressure; Flow of anode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/043Processes for controlling fuel cells or fuel cell systems applied during specific periods
    • H01M8/04303Processes for controlling fuel cells or fuel cell systems applied during specific periods applied during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04223Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells
    • H01M8/04228Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids during start-up or shut-down; Depolarisation or activation, e.g. purging; Means for short-circuiting defective fuel cells during shut-down
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04537Electric variables
    • H01M8/04574Current
    • H01M8/04589Current of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04679Failure or abnormal function of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To stop the flow of a load current and avoid the local abnormal temperature rise of a unit cell by providing multiple judging circuits and issuing a command signal when the fuel gas flow quantity or the oxidizer gas flow quantity is lower than the lower limit corresponding to the load current. CONSTITUTION:Lower limits of flow quantities of the fuel gas 9 and oxidizer gas 10 corresponding to a load current I are set in the % ratio. The flow quantities of the gases 9 and 10 are detected by flow quantity sensors 11 and 12, they are inputted to judging circuits 13 and 14 as actual values. On the other hand, the gases 9 and 10 are fed to a fuel cell 1, the cell 1 feeds the load current I to a load 7. The current I is detected by a current detector 5, its value 5A is inputted to the circuits 13 and 14. The circuits 13 and 14 compare the inputted actual values of the gases 9 and 10 with the lower limit values corresponding to the load current value 5A. When the actual values are lower than the lower limit values, the circuit 13 or 14 issues a command signal to a breaker 6 to open the breaker 6, the flow of the load current I is stopped.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明方法は、シん酸型燃料電池の運転方法。[Detailed description of the invention] [Industrial application field] This invention method is a method of operating a cynic acid fuel cell.

ことに反応ガス不足による燃料電池の性能低下を防止す
るための運転方法に関する。
In particular, it relates to an operating method for preventing fuel cell performance from deteriorating due to insufficient reactant gas.

〔従来の技術〕[Conventional technology]

燃料電池発電装置においては一般に、電気的負荷の変動
に対する燃料電池の応答速度に比べて、化学プラントで
ある燃料改質系の応答速度が遅いために、例へは負荷の
急増時に燃料ガスまたは酸化剤ガスの供給が燃料電池で
の消費量に追いつかず、いわゆるガス不足という事態が
発生することがある。また改質系の故障等によってもガ
ス不足が発生する。このようなガス不足によって生ずる
燃料電池の特性劣化を防止する運転方法として、ガス不
足に伴、なって生ずる燃料電池の出方電圧の低下を検出
してその値が例えば定常流量の半分程度に低下したとき
、燃料電池の負荷電流を遮断する方法が知られている。
In fuel cell power generation systems, the response speed of the fuel reforming system, which is a chemical plant, is generally slower than the response speed of the fuel cell to changes in electrical load. The supply of agent gas cannot keep up with the amount consumed by the fuel cell, and a so-called gas shortage may occur. Gas shortages also occur due to malfunctions in the reforming system. As an operating method to prevent the deterioration of fuel cell characteristics caused by such gas shortages, the drop in output voltage of the fuel cell that occurs due to gas shortage is detected and the value drops to, for example, about half of the steady flow rate. There is a known method for cutting off the load current of the fuel cell when this happens.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

!2図は従来方法を説明するための特性線図であシ、曲
IFM21は燃料ガス流量の定格値を100%とした燃
料ガス流量の実際値曲線、曲線22け、出力電圧定格値
を100%とした出方電圧実際値曲線、曲線23は燃料
電池の燃料極温度の実際値曲線であシ、時刻1.で燃料
ガスの低下が生じた場合金的にそれぞれの経時変化を示
したものである。図において、定格値流量の燃料ガスお
よび酸化剤ガスが供給ちれて出力電圧定格値Vf保持し
て定格電流を出力していた燃料電池の供給燃料ガス流量
が時刻11から+2 にかけて定格値の50%程度に低
下した場合、燃料電池の入口側に配された流thk計と
燃料電池の電極部との間に距離がありこの間に蓄えられ
た燃料ガスが消費されるまでの間出力電圧Vは時刻t1
から+3  までの間曲線22に示すように定格値レベ
ルv6保持し、その抜出力電圧の低下がはじまる。従来
方法では出力電圧が定格値レベルの半分程度に低下する
時刻t4で負荷電流が遮断され出力電圧が零になるが、
出力電圧の低下がはじまる時刻t3において同時に単電
池温度の上昇がはじまり、負荷遮断時刻t4では燃料電
池の作動温度を数10℃超過する異常温度上昇を示す。
! Figure 2 is a characteristic diagram for explaining the conventional method. Curve IFM21 is the actual value curve of the fuel gas flow rate with the rated value of the fuel gas flow rate as 100%, and curve 22 shows the rated value of the output voltage as 100%. Curve 23 is the actual value curve of the fuel electrode temperature of the fuel cell at time 1. This figure shows the changes over time in terms of the amount of fuel gas when the fuel gas level decreases. In the figure, the supplied fuel gas flow rate of the fuel cell, which was outputting the rated current while maintaining the output voltage rated value Vf due to the supply of fuel gas and oxidizing gas at the rated value flow rate, decreased to 50% of the rated value from time 11 to +2. %, there is a distance between the flow thk meter placed on the inlet side of the fuel cell and the electrode section of the fuel cell, and the output voltage V will decrease until the fuel gas stored during this time is consumed. Time t1
As shown in curve 22, the rated value level v6 is maintained from 1 to +3, and the output voltage begins to decrease. In the conventional method, the load current is cut off and the output voltage becomes zero at time t4 when the output voltage drops to about half of the rated value level.
Simultaneously at time t3 when the output voltage begins to decrease, the cell temperature begins to rise, and at load cutoff time t4, an abnormal temperature rise exceeding the operating temperature of the fuel cell by several tens of degrees Celsius is exhibited.

第6図および第4図は燃料ガス不足が生ずる前後の単電
池の水素極光面温度の分布図であシ、第6図は時刻t1
以前の温度分布を、第4図は時刻t4 以後の破も悪い
m度分布のガを示したものであり、図中矢印で燃料ガス
9の流通方向を示す。
Figures 6 and 4 are distribution charts of the hydrogen polar surface temperature of a single cell before and after a fuel gas shortage occurs, and Figure 6 is a diagram showing the distribution of the temperature at the light surface of the hydrogen pole at time t1.
As for the previous temperature distribution, FIG. 4 shows the m degree distribution with poor breakdown after time t4, and the arrow in the figure indicates the flow direction of the fuel gas 9.

図において、燃料電池の作動温度を190℃とした場合
、第6図に示す定格運転状態では単電池表面温度は燃料
ガスの入口(+1.(1、出口側ともにほぼ等しく小さ
な温度差を保持するが、燃料ガス不足を生じた状態では
第4図に示すように燃料ガスの入口側で高い異常温度上
昇を示し、その他の部分では逆に異常に低い温度を示し
、出力電圧の低下を検出してから負荷遮断を行う従来方
法では温度異常の発生を回避できない。
In the figure, when the operating temperature of the fuel cell is 190°C, under the rated operating condition shown in Figure 6, the cell surface temperature is approximately equal to +1. However, when there is a fuel gas shortage, as shown in Figure 4, the fuel gas inlet side shows a high abnormal temperature rise, and other parts show an abnormally low temperature, and a drop in the output voltage is detected. The conventional method of load shedding after the temperature change cannot avoid the occurrence of temperature abnormalities.

上述のように局部的な異常温度上昇を生ずる理由は、燃
料ガス不足が生ずると発電が燃料ガスの入口側に局部的
に集中するためと考えられる。このような異常温度を生
ずると、異常温度上昇部分の単電池内でQん酸液の水蒸
気圧が高くなジ、水素電極および酸素電極を透過してり
ん酸液または水蒸気が燃料ガスまたは酸化剤ガス中に飛
散するいわゆる飛散現象が激しくなる。その結果、残っ
たりん酸液の濃度の上昇やりん酸液の不足に基づいて単
を池の内部抵抗が局部的に高くなシ、その後の発電性症
に支障を及ぼすばかりか、電極中のシん酸液によって保
持されている酸化剤ガス系と燃料ガス系との間のガスシ
ール性能が低下し、酸素と水素の混触の危険性が増加す
る。また、りん酸液濃度の上昇および異常温度上昇はう
ん酸液の腐食性を高め、これに基づいて電極中の白金触
媒のシンタリングが助長されるので、燃料電池の寿命特
性の低下が加速されるという不都合を生する。
The reason why the local abnormal temperature rise occurs as described above is thought to be that when a fuel gas shortage occurs, power generation is locally concentrated on the fuel gas inlet side. When such an abnormal temperature occurs, the water vapor pressure of the Q phosphoric acid liquid in the unit cell in the abnormally temperature raised part will be high, and the phosphoric acid liquid or water vapor will pass through the hydrogen electrode and the oxygen electrode and become a fuel gas or oxidizer. The so-called scattering phenomenon in which particles scatter into the gas becomes more intense. As a result, due to an increase in the concentration of the remaining phosphoric acid solution or a shortage of phosphoric acid solution, the internal resistance of the electrode becomes locally high, which not only hinders the subsequent power generation syndrome but also increases the internal resistance of the electrode. The gas sealing performance between the oxidizing gas system and the fuel gas system held by the cynic acid liquid decreases, and the risk of mixing oxygen and hydrogen increases. In addition, an increase in the concentration of phosphoric acid solution and an abnormal rise in temperature increase the corrosivity of the phosphoric acid solution, which in turn promotes sintering of the platinum catalyst in the electrode, accelerating the decline in the life characteristics of the fuel cell. This causes the inconvenience of

なお上述の説明は燃料ガス不足を例に説明したが、酸化
剤ガスとしての反応空気不足によっても同様な現象およ
び問題点が発生する。
Note that although the above explanation has been made using the example of a shortage of fuel gas, similar phenomena and problems occur also due to a shortage of reaction air as an oxidant gas.

この発明方法の目的は、燃料ガス不足または反応空気不
足を早期に検知して負荷電流を遮断することにより、単
電池の局部的な異常温度上昇を回避することにある。
The purpose of the method of the present invention is to detect a shortage of fuel gas or reaction air at an early stage and cut off the load current, thereby avoiding a local abnormal temperature rise in the unit cell.

〔課題を解決するための手段〕[Means to solve the problem]

上述の課題を解決する九めに、この発明方法によれば、
りん酸型燃料電池の反応ガス不足に基づく単電池の異常
温度上昇を回避する発電運転方法であって、燃料電池の
負荷vt流を測定して出力電圧を保持して前記負荷電流
を出力するに要する燃料ガス流量および酸化剤ガス流貸
それぞれの下限値を求め、この下限値を燃料電池のガス
入口側で計測した燃料ガス流量および酸化剤ガス流量の
それぞれの実際値と比較し、この実際値の少くともいず
れか一方が前記下限値より低いとき前記負荷電流の通流
を停止させることとする。
Ninthly, according to the method of this invention to solve the above problems,
A power generation operation method for avoiding an abnormal temperature rise in a unit cell due to a shortage of reactant gas in a phosphoric acid fuel cell, the method includes measuring the load VT current of the fuel cell, maintaining the output voltage, and outputting the load current. Determine the required lower limit values for each of the fuel gas flow rate and oxidant gas flow rate, compare these lower limit values with the actual values of the fuel gas flow rate and oxidant gas flow rate, respectively, measured at the gas inlet side of the fuel cell, and calculate the actual values. When at least one of these is lower than the lower limit value, the flow of the load current is stopped.

〔作用〕[Effect]

上記手段において、燃料ガス流量および酸化剤ガス流i
jkを燃料電池入口側に配された流量計で測定してそれ
ぞれの実際値とし、燃料電池の負荷電流を計測してこの
出力電流を所定の出力電圧を所定時間保持して出力する
に要する燃料ガス流量および酸化剤ガス流量を求めてそ
れぞれの下限値とし、それぞれの実際値のいずれか一方
でもその下限値を下廻ったとき負荷電流を遮断するよう
構成したことにより、流量計を通過し燃料電池内ガス9
間を移動中の燃料ガスおよび酸化剤が電気化学反応によ
って消費されて出力電圧低下がはじまるまでの所定時間
を負荷電流の遮断に有効に利用することが可能になシ、
シたがって出力電圧の低下に伴なって生ずる単電池の異
常温度上昇を時間的な余裕を持って回避することができ
、局部的な異常温度上昇に付随して発生する燃料電池の
特性低下および酸化剤ガスおよび燃料ガスの混触の危険
性が排除される。
In the above means, the fuel gas flow rate and the oxidant gas flow i
jk is measured with a flow meter placed on the fuel cell inlet side to obtain each actual value, the load current of the fuel cell is measured, and this output current is the fuel required to maintain and output a predetermined output voltage for a predetermined time. The gas flow rate and the oxidant gas flow rate are determined and set as their respective lower limit values, and the load current is cut off when either of the actual values falls below the lower limit value. Inner gas 9
It is possible to effectively utilize the predetermined time until the output voltage starts to drop after the fuel gas and oxidizer moving between the two are consumed by an electrochemical reaction to cut off the load current.
Therefore, it is possible to avoid the abnormal temperature rise of the single cell that occurs due to a decrease in the output voltage with plenty of time, and to prevent the characteristic deterioration of the fuel cell that occurs due to a local abnormal temperature rise. The risk of mixing oxidant gas and fuel gas is eliminated.

〔実施例〕〔Example〕

以下この発明方法を実施例に基づいて説明する。 The method of this invention will be explained below based on examples.

第1図はこの発明の実施例方法を説明するための装置の
概略構成図である。図において、1は燃料電池であシ、
りん酸液が含浸されたマトリックス3の両側に電極触媒
を担持した酸素電極4Aおよび水素電極4Fを密着配置
した単電池2をガス不透過性のセパレータを介在させて
複数層積層した積層体からなり、単電池2と図示しない
セパレータとの間には燃料ガス9および酸化剤ガスとし
ての反応空気10それぞれの供給通路が互いに直交する
方向に形成される。11は燃料ガス9の供給通路に連通
ずる供給配管に設けられた燃料ガス9の流量センサであ
り、検出された燃料ガス流量は実際値として判断回路1
3に入力δれる。また12は酸化剤ガス10の供給配管
に設けられた流量センサであシ、計測された酸化剤ガス
流量は酸化剤ガス流量の実際値として判断回路14に入
力される。また燃料電池1で水素が消費された燃料ガス
はリターンガス9Eとして図示しない改質器バーナに送
られてリターンガス9E中の可燃性ガスが吸熱反応であ
る改質反応の熱源として利用され、酸化剤ガス10のリ
ターンガス10Eも例えば酸化剤ガス10の予熱用熱源
として利用される。
FIG. 1 is a schematic diagram of an apparatus for explaining an embodiment of the method of the present invention. In the figure, 1 is a fuel cell;
It consists of a laminate in which a plurality of unit cells 2 are laminated with a gas-impermeable separator interposed, in which an oxygen electrode 4A carrying an electrode catalyst and a hydrogen electrode 4F are closely arranged on both sides of a matrix 3 impregnated with a phosphoric acid solution. , supply passages for fuel gas 9 and reaction air 10 as oxidant gas are formed in directions orthogonal to each other between the unit cell 2 and a separator (not shown). Reference numeral 11 denotes a flow rate sensor of the fuel gas 9 provided in a supply pipe communicating with the supply passage of the fuel gas 9, and the detected fuel gas flow rate is determined as an actual value by the judgment circuit 1.
3 is input δ. Reference numeral 12 denotes a flow rate sensor provided in the supply pipe for the oxidizing gas 10, and the measured oxidizing gas flow rate is inputted to the judgment circuit 14 as an actual value of the oxidizing gas flow rate. Further, the fuel gas in which hydrogen has been consumed in the fuel cell 1 is sent as a return gas 9E to a reformer burner (not shown), and the combustible gas in the return gas 9E is used as a heat source for the endothermic reforming reaction, resulting in oxidation. The return gas 10E of the oxidant gas 10 is also used, for example, as a heat source for preheating the oxidant gas 10.

一方燃料電池1の出力側には負荷7に直列に電流検出器
5および遮断器6が設けられ、電流検出器5で検出ちれ
た負荷電光重の検知信号は判断回路13および14に入
力される。判断回路13および14はそれぞれ出力電圧
Vを所定時間保持して負荷電光重を供給するに必要な燃
料ガス9および酸化剤ガス10の流量を前記検知信号に
基づいて算出するガス流量下限値の演算部と、燃料ガス
9および酸化剤ガス10それぞれの実際値と下限゛値紫
比較して実際値が下限値を下廻ったとき遮断器乙に負#
電光重の遮断を指令する信号を発する比較回路とを含む
よう構成される。なお出力電圧■の保持時間は第2図に
おいて燃料ガス(または酸化剤ガス)流量実際値の低下
が開始してから出力電圧低下がはじまるまでの時刻t1
からt、にかけての時間間隔に基づいて決めることがで
き、したがって燃料ガス流量および酸化剤ガス流量それ
ぞれの下限値としては、負荷電光重〈対応する定常ガス
流量t−10%ないし50%程度下廻る範囲に選ぶこと
ができる。
On the other hand, on the output side of the fuel cell 1, a current detector 5 and a circuit breaker 6 are provided in series with the load 7, and a detection signal of the load electric power detected by the current detector 5 is input to judgment circuits 13 and 14. Ru. Judgment circuits 13 and 14 each calculate the lower limit value of the gas flow rate, which calculates the flow rate of the fuel gas 9 and oxidizing gas 10 necessary to maintain the output voltage V for a predetermined time and supply the load electricity based on the detection signal. Compare the actual values of fuel gas 9 and oxidizing gas 10 with the lower limit value, and when the actual values are below the lower limit value, a negative
The comparison circuit is configured to include a comparison circuit that issues a signal instructing to shut off the lightning heavy. Note that the holding time of the output voltage ■ is the time t1 from when the actual value of the fuel gas (or oxidant gas) flow rate starts to decrease until the output voltage begins to decrease in Fig. 2.
It can be determined based on the time interval from t to t. Therefore, the lower limit values for each of the fuel gas flow rate and oxidant gas flow rate are as follows: You can choose from a range.

上述のように構成された燃料電池の運転方法を再び第2
図を用いて説明する。燃料ガス流量(および酸化剤ガス
流りが定格値(曲線21における100%レベル)を保
持して定格負荷電光重および定格出力電圧V(曲線22
の100%レベル)を保持して発電運転されている燃料
電池1に、供給される燃料ガス9の流量が例えば改質系
の故障により時刻t1からt2にかけて定格流量の50
%にまで減少する事態が発生した場合、燃料ガス流量の
低下は流量セン+j11によって時々刻々検出されてそ
の出力実際値1g号11Aが判断回路13に入力される
。−力定格電流■は電流検出器5で検出されてその検出
信号5Aか判断回路13の燃料ガス流tの下限値演算部
に入力され、例えば下限値信号として定格値流量を25
%下廻るレベルの信号が出力されたと仮定すると、実際
値信号11Aが下限値(fi号レベルに低下した時点で
判断回路13から負荷亀光重の遮断指令信号13Aが出
力され、この信号を受けた遮断器6が開路する。
The method of operating the fuel cell constructed as described above is repeated in the second manner.
This will be explained using figures. While the fuel gas flow rate (and the oxidant gas flow is maintained at the rated value (100% level in curve 21), the rated load light weight and the rated output voltage V (curve 22
For example, due to a failure in the reforming system, the flow rate of the fuel gas 9 supplied to the fuel cell 1, which is in power generation operation while maintaining the 100% level of
%, the decrease in the fuel gas flow rate is detected moment by moment by the flow rate sensor +j11, and its actual output value No. 1g 11A is input to the judgment circuit 13. - The force rated current ■ is detected by the current detector 5, and its detection signal 5A is inputted to the lower limit calculation section of the fuel gas flow t of the judgment circuit 13, and for example, the rated value flow rate 25 is inputted as the lower limit value signal.
%, when the actual value signal 11A falls to the lower limit value (fi level), the judgment circuit 13 outputs the load turtle light weight cutoff command signal 13A, and when this signal is received, The circuit breaker 6 is opened.

このとき、改質系の故障原因は排除されていないので、
燃料ガス流量は50%に向けて更に低下するが、負荷電
流が時刻t2前後で零になることによって燃料ガス不足
は解消し、従来時刻t3で開始される出力電圧Vの低下
、およびこれに基因する単電池m度の異常上昇を時刻t
2からt3にかけての余裕時間を有効に利用して完全に
回避することができる。
At this time, the cause of the failure of the reforming system has not been eliminated, so
Although the fuel gas flow rate further decreases toward 50%, the fuel gas shortage is resolved by the load current becoming zero around time t2, and the decrease in output voltage V that conventionally starts at time t3 and the cause of this The abnormal rise in cell battery m degree at time t
This can be completely avoided by effectively utilizing the extra time from t2 to t3.

なお、負荷電光重の遮断は電流検出器5によって検知さ
れ、下限値信号レベルも低下するので、実際値イg号が
下PJi値信号レベし金上廻ることにより、遮断指令1
6号の出力が停止する。また、遮断指令信号を燃料電池
発電装置の非常停止信号として利用できることはいうま
でもないことである。
In addition, the cutoff of the load electric light weight is detected by the current detector 5, and the lower limit value signal level also decreases, so the actual value Ig goes above the lower PJi value signal level, and the cutoff command 1
Output of No. 6 stops. It goes without saying that the cutoff command signal can also be used as an emergency stop signal for the fuel cell power generator.

上記動作説明は改質糸の故障により燃料ガス流量が低下
した場合を例に説明したが、酸化剤ガス流量が低下した
場合についても同様である。また負荷Z側の故障等によ
って負荷電光重が急増することによってもガス不足が発
生するが、この場合も前述の動作説明同様に負荷電流が
遮断される。
The above description of the operation is based on the case where the fuel gas flow rate decreases due to a failure of the reforming yarn, but the same applies to the case where the oxidant gas flow rate decreases. Gas shortage may also occur due to a sudden increase in load electric power due to a failure on the load Z side, but in this case as well, the load current is cut off in the same way as in the operation explained above.

〔発明の効果〕〔Effect of the invention〕

この発明方法は前述のように、燃料[池入口側で検出し
た燃料ガス渡世および酸化剤ガス流量の実際++fと、
負#電流測定値に対応して求められる燃料ガス流蓋およ
び酸化剤ガス流量の下限値とを比べして実際値が下限値
を下廻ったとき負荷電流の通流を停止するよう構成した
。その結果、ガス不足が発生した後出力電圧の低下およ
び単電池温度の異常上昇がはじまるまでの余裕時間を有
効に利用し、てガス不足を早期に解消することがn」能
となり11!圧低下を検知して負荷電流を遮断する従来
方法では回避できなかつ7?:単電池温度の異常上昇が
ほぼ完全に排除され、これに付随して発生する″a解液
のtI<散、ガスシール性能の低下2反応ガスの混合、
電極触媒のシンタリングなど燃料電池の性能低下や寿命
低下を防止することができる。
As mentioned above, the method of this invention is based on the actual flow rate of fuel gas and oxidizing gas detected at the inlet side of the fuel tank,
The fuel gas flow cap and the lower limit values of the oxidizing gas flow rate determined in accordance with the negative current measurement value are compared, and when the actual value falls below the lower limit value, the flow of the load current is stopped. As a result, it becomes possible to eliminate the gas shortage as early as possible by making effective use of the extra time until the output voltage drops and the cell temperature begins to rise abnormally after a gas shortage occurs. This problem cannot be avoided using the conventional method of detecting the pressure drop and cutting off the load current.7? : The abnormal rise in cell temperature is almost completely eliminated, and the accompanying "a dissolution tI < dispersion, gas sealing performance decrease, 2 reaction gas mixing,"
It is possible to prevent deterioration in performance and life of the fuel cell, such as sintering of the electrode catalyst.

【図面の簡単な説明】[Brief explanation of the drawing]

WJ1図はこの発明の実施例方法を説明するための装置
の構成図、第2図は従来方法における燃料電池の異常状
態を示す特性線図、@6図および第4図は従来方法にお
ける単電池温度の分布図である。 1・・・燃料′!Ic池、2・・・単電池、5・・・電
流検出器、6・・・遮断器、7・・・負荷、9・・・燃
料ガス、10・・・酸化剤ガス、11.12・・・流量
センサ、13.14・・・判断回路、11A・・・実際
値信号、16A・・・遮断指令信号。 第1図 賂2目 循3図           第4図
Figure WJ1 is a configuration diagram of an apparatus for explaining the embodiment method of the present invention, Figure 2 is a characteristic diagram showing an abnormal state of a fuel cell in a conventional method, and Figures @6 and 4 are a diagram of a single cell in a conventional method. It is a temperature distribution diagram. 1...Fuel'! Ic pond, 2... Cell, 5... Current detector, 6... Circuit breaker, 7... Load, 9... Fuel gas, 10... Oxidizing gas, 11.12. ...Flow rate sensor, 13.14... Judgment circuit, 11A... Actual value signal, 16A... Cutoff command signal. Figure 1: Bribe 2: Circulation Figure 3: Figure 4

Claims (1)

【特許請求の範囲】[Claims] 1)りん酸型燃料電池の反応ガス不足に基づく単電池の
異常温度上昇を回避する発電運転方法であって、燃料電
池の負荷電流を測定して出力電圧を保持して前記負荷電
流を出力するに要する燃料ガス流量および酸化剤ガス流
量それぞれの下限値を求め、この下限値を燃料電池のガ
ス入口側で計測した燃料ガス流量および酸化剤ガス流量
のそれぞれの実際値と比較し、この実際値の少くともい
ずれか一方が前記下限値より低いとき前記負荷電流の通
流を停止させることを特徴とする燃料電池の運転方法。
1) A power generation operation method that avoids an abnormal temperature rise in a single cell due to a shortage of reactive gas in a phosphoric acid fuel cell, which measures the load current of the fuel cell, maintains the output voltage, and outputs the load current. Find the lower limit values of the fuel gas flow rate and oxidant gas flow rate required for A method of operating a fuel cell, comprising: stopping the flow of the load current when at least one of the values is lower than the lower limit value.
JP63115463A 1988-05-12 1988-05-12 Operation of fuel cell Pending JPH01286259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63115463A JPH01286259A (en) 1988-05-12 1988-05-12 Operation of fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63115463A JPH01286259A (en) 1988-05-12 1988-05-12 Operation of fuel cell

Publications (1)

Publication Number Publication Date
JPH01286259A true JPH01286259A (en) 1989-11-17

Family

ID=14663164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63115463A Pending JPH01286259A (en) 1988-05-12 1988-05-12 Operation of fuel cell

Country Status (1)

Country Link
JP (1) JPH01286259A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244179A (en) * 2006-03-13 2007-09-20 Sanyo Electric Co Ltd Hybrid power system
EP2416421A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007244179A (en) * 2006-03-13 2007-09-20 Sanyo Electric Co Ltd Hybrid power system
JP4509051B2 (en) * 2006-03-13 2010-07-21 三洋電機株式会社 Hybrid power supply
EP2416421A1 (en) * 2009-03-31 2012-02-08 Toto Ltd. Solid electrolyte fuel cell
EP2416421A4 (en) * 2009-03-31 2014-05-07 Toto Ltd Solid electrolyte fuel cell
US9184457B2 (en) 2009-03-31 2015-11-10 Toto Ltd. Solid oxide fuel cell device

Similar Documents

Publication Publication Date Title
US6783879B2 (en) Dynamic fuel processor mechanization and control
JPH04315774A (en) Fuel cell power generating system
CN101764239A (en) Fuel cell hydrogen gas circulating system with pulse width modulation solenoid valve
JP2009070788A (en) Fuel supply control method and fuel cell device utilizing the method
JP2918759B2 (en) Fuel cell control device
JPH0955219A (en) Fuel cell power generating device and operation method
JPS61279071A (en) Fuel cell
CN102208667A (en) Utilization-based fuel cell monitoring and control
JPH01286259A (en) Operation of fuel cell
US20080292928A1 (en) Method for purging pem-type fuel cells
JP2005063724A (en) Fuel cell system
JP2679298B2 (en) Phosphoric acid residual amount monitor for phosphoric acid fuel cell
JPH04174975A (en) Multilayer fuel cell
JPS6191877A (en) Fuel cell power generating system
JP2819819B2 (en) Fuel cell abnormality detection device
JPH05190189A (en) Operation of fuel cell type power generation device
JPS59149664A (en) Fuel-cell system
JPH08213038A (en) Control method of fuel cell power generation device
JPS63310573A (en) Fuel line control system of fuel cell power generating facilities
JPH0282459A (en) Service control device for fuel cell
JPH09306520A (en) Abnormality judging device for fuel cell power generating device
EP4109605A1 (en) Systems and methods of using an energy storage device to assist an ejector
JPH06188016A (en) Fuel battery power generation plant
AU2017227948B2 (en) Fuel cell system with leakage detection
JPH07105964A (en) Fuel cell power generating device and method for controlling same