JPH01285879A - High frequency high voltage generating circuit - Google Patents

High frequency high voltage generating circuit

Info

Publication number
JPH01285879A
JPH01285879A JP63114741A JP11474188A JPH01285879A JP H01285879 A JPH01285879 A JP H01285879A JP 63114741 A JP63114741 A JP 63114741A JP 11474188 A JP11474188 A JP 11474188A JP H01285879 A JPH01285879 A JP H01285879A
Authority
JP
Japan
Prior art keywords
voltage
condenser
circuit
impulse voltage
voltage generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63114741A
Other languages
Japanese (ja)
Inventor
Satoshi Matsumoto
聡 松本
Kazuya Use
鵜瀬 一也
Hitoshi Okubo
仁 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63114741A priority Critical patent/JPH01285879A/en
Publication of JPH01285879A publication Critical patent/JPH01285879A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)

Abstract

PURPOSE:To reduce test expense, by a method wherein a resistor of 5kOMEGA or more is connected between an impulse voltage generator and an specimen from the impulse voltage generator and a condenser having stray capacity 10 times or more that of the body tested is connected between a charge resistor and a discharge gap. CONSTITUTION:A condenser 3 having stray capacity 10 times or more that of a gas insulating switch device 1 and earthed at one terminal thereof is connected between the gas insulating switch device 1 and the impulse voltage generator 2 connected thereto at the other terminal thereof. Further, a charge resistor 4 having a value of 5kOMEGA or more is connected between the generator 2 and the condenser 3, and a discharge gap 5 is provided between the condenser 3 and the device 1. These electric members are connected by a high voltage lead wire. A drive apparatus is mounted to the gap so that the length of the gap or the pressure of seal gas can be adjusted on a low voltage side and the resistor 4 is set to a value (e.g., 5kOMEGA or more) sufficiently large as compared with the surge impedance of a main circuit determined by the condenser 3, the stray capacity of the device 1 and the impedances 6a, 6b of the circuit.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業−1〕の利用分野) 本発明はガス絶縁開閉装置ならびにこれに関連する試験
装置を試験するための高周波高電圧発生回路に係り、と
くに断路器の開閉操作に伴っで発生するサージ性の高周
波高電圧発生回路に関する。
Detailed Description of the Invention [Objective of the Invention] (Field of Application in Industry-1) The present invention relates to a high frequency high voltage generation circuit for testing gas insulated switchgear and test equipment related thereto, and particularly relates to a high frequency high voltage generation circuit for testing gas insulated switchgear and test equipment related thereto. This invention relates to a high-frequency, high-voltage generating circuit that generates surges when opening and closing a device.

(従来の技術) 最近、 B I T、低減や急峻波領域におけるSFG
ガスの絶縁特性、あるいは金属異物存在時におけるSF
Gガスの絶縁破壊などに関してガス絶縁開閉装置の断路
器開閉時に生ずるサージ性の過電圧いわゆる断路器サー
ジが大きな話題となっている。これは断路器サージの大
きさが大きいこと、立上がり時間が短いこと、サージに
含まれる周波数成分が高いために周辺機器は勿論のこと
ガス絶縁開閉装置本体に対しても断路器サージをベース
に絶縁設計を考える必要が生じているためである。
(Prior art) Recently, SFG in BIT, reduction and steep wave areas has been developed.
SF in the presence of gas insulation properties or metallic foreign matter
With regard to dielectric breakdown of G gas, surge-like overvoltage, so-called disconnector surge, that occurs when opening and closing a disconnector in a gas-insulated switchgear has become a hot topic. This is because the magnitude of the disconnector surge is large, the rise time is short, and the frequency component included in the surge is high, so it is possible to insulate not only peripheral equipment but also the main body of the gas-insulated switchgear based on the disconnector surge. This is because it is necessary to consider the design.

断路器サージにおいては断路器の極間がアークによって
つながった瞬間に回路の共振により運転電圧の2〜4倍
程度の過電圧が発生する。従来、機器の断路器サージに
よる絶縁耐圧を確認したい場合やSF、ガスなどの放電
特性を調べる場合には短絡発電機を運転しなから断路器
を操作し断路器サージを発生させていた。
In a disconnector surge, an overvoltage of about 2 to 4 times the operating voltage is generated due to resonance of the circuit at the moment when the poles of the disconnector are connected by an arc. Conventionally, when it was desired to check the dielectric strength of a device due to a disconnector surge, or to investigate the discharge characteristics of SF, gas, etc., a disconnector was operated before a short-circuit generator was operated to generate a disconnector surge.

(発明が解決しようとする課題) しかしながら、この試験においては、 ■ 短絡発電機を運転し・なければならないため試験自
体が大掛かりにな1】、しかも試験費用が高し)。
(Problems to be Solved by the Invention) However, in this test, the test itself is large-scale because a short-circuit generator must be operated [1], and the test cost is high).

■ 発生するサージの大きさ(サージ倍数)は試験回路
が決まると自動的に決まってしまい、放電特性に影響を
与える電圧に関するパラメータ操作がやりにくい。
■ The size of the generated surge (surge multiple) is automatically determined once the test circuit is determined, making it difficult to manipulate voltage-related parameters that affect discharge characteristics.

といった欠点髪有し、でいた。She had such shortcomings and hair.

本発明はかかる欠点をなくすためになされたもので、短
絡発電機を運転することなく、かつ発生電圧のコントロ
ールが容易なサージ性高周波高電圧発生回路を提供しよ
うとするものであり、試験費用の低減、試験内容の高度
化を図るとともに、本回路を確実に動作させるための、
装置の工夫に関するものである。
The present invention has been made to eliminate such drawbacks, and aims to provide a surge-prone high-frequency high-voltage generating circuit that does not require the operation of a short-circuit generator and that allows easy control of the generated voltage, thereby reducing test costs. In order to reduce the risk of damage and improve the sophistication of the test content, as well as to ensure the operation of this circuit,
This is related to device innovation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 前記目的を達成するために本発明においては、インパル
ス電圧を発生するインパルス電圧発生器にΩ以上の抵抗
を有する充電抵抗及び放電ギヤツブの直列回路で接続し
、Mif記充電抵抗と放電ギャップ間に一端が接地さ汎
前記供試体の浮遊容量の10倍以上の容量をもつ」〉デ
ンサの他端に接続[。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, an impulse voltage generator that generates an impulse voltage is connected to a series circuit of a charging resistor and a discharging gear having a resistance of Ω or more. One end is grounded between the charging resistor and the discharging gap, and the other end is connected to the capacitor, which has a capacitance of 10 times or more than the stray capacitance of the specimen.

ている。ing.

(作 用) 本発明は、インパルス電圧発生器製用いて、−駄コンデ
ンサーを充電し、この充電電圧が所定の電圧に達した後
、放電ギャップを用いてこれを放電させるとともに、主
回路の電気的共振現象を利用することにより高周波高電
圧をガス絶縁開閉装置に発生させるものである。
(Function) The present invention uses an impulse voltage generator to charge a negative capacitor, and after the charging voltage reaches a predetermined voltage, it is discharged using a discharge gap, and the main circuit is This system generates high frequency and high voltage in gas-insulated switchgear by utilizing the physical resonance phenomenon.

(実施例) 第1図は本発明の一実施例を示す図面である。(Example) FIG. 1 is a drawing showing an embodiment of the present invention.

第1図において1は供試体であるガス絶縁開閉装置を示
し、これにインパルス電圧発生器2が接続されている。
In FIG. 1, reference numeral 1 indicates a gas insulated switchgear as a specimen, to which an impulse voltage generator 2 is connected.

ガス絶縁開閉装置1とこれに接続されるインパルス電圧
発生器2との間には、前記ガス絶縁開閉装置の浮遊容量
の10倍以を−の値を持ち、一端が接地されるコンデン
サ3の他端が接続され、インパルス電圧発生器2とコン
デンサ3との間には5kΩ以上の値を持つ充電抵抗4が
接続されている。さらにコンデンサ3とガス絶縁開閉装
置1との間には放電ギャップ5が設けられており、これ
らの機器はいずれも高電圧用のリード線にて接続されて
いる。放電ギャップ5はギャップの長さあるいは封入ガ
スの圧力が低圧側より調整できるように駆動装置が取付
けられており、放電開始電圧を低圧側よりコントロール
できるよう工夫がなされている。
Between the gas insulated switchgear 1 and the impulse voltage generator 2 connected thereto, there is provided a capacitor 3, which has a negative value of 10 times or more the stray capacitance of the gas insulated switchgear, and whose one end is grounded. A charging resistor 4 having a value of 5 kΩ or more is connected between the impulse voltage generator 2 and the capacitor 3. Furthermore, a discharge gap 5 is provided between the capacitor 3 and the gas insulated switchgear 1, and these devices are all connected by high voltage lead wires. A driving device is attached to the discharge gap 5 so that the length of the gap or the pressure of the filled gas can be adjusted from the low pressure side, and the discharge starting voltage can be controlled from the low pressure side.

また、充電抵抗4はコンデンサ3ならびにガス絶縁開閉
装置I¥1−の浮遊容量および回路のインダクタンス6
a、 6bで決まる主回路のサージインピーダンスに比
べて十分に大きな値1例えば5kΩ以上になっている。
In addition, the charging resistor 4 is the stray capacitance of the capacitor 3 and the gas insulated switchgear I\1-, and the inductance 6 of the circuit.
The value is 1, for example, 5 kΩ or more, which is sufficiently large compared to the surge impedance of the main circuit determined by a and 6b.

なお、インダクタンス6a、6bは高電圧リード線のも
つ残留インダクタンスをその−・部として利用しても何
等差支えがない。
Note that there is no problem in using the residual inductance of the high-voltage lead wire as the negative part of the inductances 6a and 6b.

本実施例によれば先ずインパルス電圧発生器2にて発生
した高電圧は充電抵抗4を介してコンデンサ3を充電す
る。この充電電圧が放電ギャップ5の放電電圧を越える
とここで放電が起こりガス絶縁開閉装置1に電圧が印加
される。この時に発生する電圧は概略ガス絶縁開閉装置
1の浮遊容量、コンデンサ3の容量ならびにインダクタ
ンス6 a +6bの大きさで決まる周波数の高電圧を
発生する。
According to this embodiment, first, the high voltage generated by the impulse voltage generator 2 charges the capacitor 3 via the charging resistor 4. When this charging voltage exceeds the discharge voltage of the discharge gap 5, discharge occurs here and a voltage is applied to the gas insulated switchgear 1. The voltage generated at this time is a high voltage with a frequency approximately determined by the stray capacitance of the gas insulated switchgear 1, the capacitance of the capacitor 3, and the magnitude of the inductance 6a + 6b.

この−例を第2図に示す。この場合の周波数は数百kH
zから数十MHzのオーダになるが、回路定数例えばイ
ンダクタンス6a、6bを可変することにより制御する
ことができる。図より矩形波パルスの立上がり部分に高
周波成分が重畳していることがわかる。
An example of this is shown in FIG. The frequency in this case is several hundred kilohertz
z on the order of several tens of MHz, but it can be controlled by varying circuit constants such as the inductances 6a and 6b. It can be seen from the figure that high frequency components are superimposed on the rising edge of the rectangular wave pulse.

なお、充電抵抗4は主回路の共振現象にインパルス電圧
発生器側の寄生振動の影響が/hさくなる様に主回路の
サージインピーダンスより十分大きな値が選ばれている
。また、コンデンサz3の値はガス絶縁開閉装置1の浮
遊容量に比べ10倍以」−とすることによりガス絶縁開
閉装置1に試験に必要な過電圧を発生させることができ
る。
The value of the charging resistor 4 is selected to be sufficiently larger than the surge impedance of the main circuit so that the influence of parasitic vibration on the impulse voltage generator side on the resonance phenomenon of the main circuit is reduced. Further, by setting the value of the capacitor z3 to be 10 times or more higher than the stray capacitance of the gas insulated switchgear 1, it is possible to generate an overvoltage necessary for the test in the gas insulated switchgear 1.

第2図より明らかな様に、インパルス電圧発4ト器を用
いて高周波高電(4,Hのサージ波形を発生させること
ができる、し、かもインパルス電圧発生器は取扱いが容
易であるので試験費用がはるかに少なくて済むという特
徴がある。1 きらに、印加する電圧はインパルス電圧発生器2の充電
電圧ならびに放電ギャップ5の放電電圧を調整すること
によ番)制御可能であり、放電に影響を与える電圧のパ
ラ5メータ操作がやり易いという特徴がある。
As is clear from Figure 2, it is possible to generate a high-frequency, high-voltage (4,H) surge waveform using an impulse voltage generator, and since the impulse voltage generator is easy to handle, it can be tested. 1) The applied voltage can be controlled by adjusting the charging voltage of the impulse voltage generator 2 as well as the discharging voltage of the discharge gap 5. It has the characteristic that it is easy to manipulate the parameters of the voltage that affects it.

第3図は本発明の他の実施例を示すものである4、本実
施例においては、前述の高周波高電圧発生回路に変圧器
12を設け、これに直列に接続された保[!v低抗値1
0ならびにコンデンサ11を介してガス絶縁開閉装置1
に接続されでいる。本構成によればEめ交流電圧をガス
絶縁開閉装置ILこ印加した状態でインパルス電圧発生
器2を1〜リガーすることにより高周波高電圧を発生さ
せることができ、短絡発電機に用いた場合と同等の波形
が得られている。この−・例を第5図に示す。この場合
トリガー位相をコントロールすることにより任意の電圧
位相に高周波高電圧を重畳することが可能である。
FIG. 3 shows another embodiment of the present invention.4 In this embodiment, a transformer 12 is provided in the above-mentioned high frequency high voltage generating circuit, and a transformer 12 is connected in series with the transformer 12. v low resistance value 1
0 and gas insulated switchgear 1 via capacitor 11
It is connected to. According to this configuration, a high frequency high voltage can be generated by rigging the impulse voltage generator 2 while applying an AC voltage to the gas insulated switchgear IL, and when used in a short circuit generator. Equivalent waveforms are obtained. An example of this is shown in FIG. In this case, by controlling the trigger phase, it is possible to superimpose a high frequency high voltage on an arbitrary voltage phase.

例えば第5図に示す様に交流電圧が負極性の時に、正極
性パルスを印加することができる。しかしながら、例え
ば交流電圧が正極性の時に正極性のパルスを印加する時
には放電ギャップ5の放電特性が悪くなる。これは放電
ギャップ5k印加される電圧の差が小さくなるためであ
り印加するパルス電圧が低いほどこの傾向が強くなり言
わゆる不整放電が生じ易い。これを改善するため例えば
第4図に示す様に、放電ギャップ5のインパルス電圧発
生器側に接続される電極9bに直径1〜5wnの孔をあ
け、このなかに絶縁された針電極8を通すとともにこの
計重j4i8を高抵抗7を介して接地する方法が考えら
れる。これによれはインパルス電圧が印加された瞬間に
針電極8と電極9bとの間でf備放電が生じ、続いて主
ギャップの電極!la、 9bltllの放電を誘発す
ることになり放電特性が改善される。この場合にも、主
ギャップの放電電圧は低圧側より制御できる様にしてお
くことは勿論である。
For example, as shown in FIG. 5, a positive pulse can be applied when the AC voltage is negative. However, for example, when a positive pulse is applied when the AC voltage is positive, the discharge characteristics of the discharge gap 5 deteriorate. This is because the difference in the voltage applied to the discharge gap 5k becomes smaller, and the lower the pulse voltage applied, the stronger this tendency becomes, and the more likely it is that so-called irregular discharge will occur. To improve this, for example, as shown in FIG. 4, a hole with a diameter of 1 to 5 wn is made in the electrode 9b connected to the impulse voltage generator side of the discharge gap 5, and the insulated needle electrode 8 is passed through the hole. In addition, a method of grounding this weight j4i8 via a high resistance 7 can be considered. This causes a discharge to occur between the needle electrode 8 and the electrode 9b at the moment the impulse voltage is applied, and then to the main gap electrode! 1a, 9bltll discharge is induced, and the discharge characteristics are improved. In this case as well, it goes without saying that the discharge voltage of the main gap can be controlled from the low voltage side.

この様にし、で得られた波形の例を第6図に示す。An example of the waveform obtained in this manner is shown in FIG.

〔発明の効果〕〔Effect of the invention〕

以にに述べた様に、本発明によれば、短絡発電機を用い
ることなく取扱いの容易なインパルス電圧発生器を用い
てガス絶縁開閉装置の断路器開閉時に発生するサージ電
圧を発生させることができる。
As described above, according to the present invention, it is possible to generate the surge voltage that occurs when opening and closing a disconnector of a gas-insulated switchgear using an easy-to-handle impulse voltage generator without using a short-circuit generator. can.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す高周波高電圧発生回路
の概略構成図、第2図は第1図に示す回路により得らオ
する電圧波形図、第3図は本発明の他の実施例を示す高
周波高電圧発生回路の概略構成図、第4図は第:(図に
示す放電ギャップの詳細図、第5図は第3図に示す回路
により得られる電圧波形図、第6図は第4図に示す放電
ギャップを用いた場合の電圧波形図である。 ■ ガス絶縁開閉装置、  2・ インパルス電圧発生
器、3・・コンデンサ、    4・・・充電抵抗、5
 放電ギャップ、   6a、 6b・インダクタンス
、7 高抵抗、       8・・針電極、−8= 9a、 9b・電極、     10−・保護抵抗、1
トコンデンサ、    12・・・変圧器。 代理人 弁理士  則 近 憲 佑 同     第子丸   健 第1図 時間 第3図
FIG. 1 is a schematic configuration diagram of a high frequency high voltage generation circuit showing one embodiment of the present invention, FIG. 2 is a voltage waveform diagram obtained by the circuit shown in FIG. 1, and FIG. 3 is a diagram of another embodiment of the present invention. A schematic configuration diagram of a high-frequency high-voltage generation circuit showing an embodiment, FIG. 4 is a detailed diagram of the discharge gap shown in the figure, FIG. 5 is a voltage waveform diagram obtained by the circuit shown in FIG. 3, and FIG. is a voltage waveform diagram when the discharge gap shown in Fig. 4 is used. ■ Gas-insulated switchgear, 2. Impulse voltage generator, 3. Capacitor, 4. Charging resistor, 5.
Discharge gap, 6a, 6b, inductance, 7, high resistance, 8, needle electrode, -8 = 9a, 9b, electrode, 10-, protective resistance, 1
12...Transformer. Agent Patent Attorney Nori Ken Yudo Daishimaru Ken Figure 1 Time Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)インパルス電圧を発生するインパルス電圧発生器
と供試体間を前記インパルス電圧発生器側より5kΩ以
上の抵抗を有する充電抵抗及び放電ギャップの直列回路
で接続し、前記充電抵抗と放電ギャップ間に一端が接地
され前記供試体の浮遊容量の10倍以上の容量をもつコ
ンデンサの他端を接続してなる高周波高電圧発生回路。
(1) An impulse voltage generator that generates an impulse voltage and the specimen are connected from the impulse voltage generator side with a series circuit of a charging resistor having a resistance of 5 kΩ or more and a discharging gap, and between the charging resistor and the discharging gap. A high frequency high voltage generation circuit comprising one end grounded and the other end connected to a capacitor having a capacitance 10 times or more the stray capacitance of the specimen.
(2)供試体に交流電源、保護抵抗及びコンデンサから
なる直列回路を接続してなる請求項1記載の高周波高電
圧発生回路。
(2) The high-frequency high-voltage generating circuit according to claim 1, wherein a series circuit comprising an AC power source, a protective resistor, and a capacitor is connected to the specimen.
JP63114741A 1988-05-13 1988-05-13 High frequency high voltage generating circuit Pending JPH01285879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114741A JPH01285879A (en) 1988-05-13 1988-05-13 High frequency high voltage generating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114741A JPH01285879A (en) 1988-05-13 1988-05-13 High frequency high voltage generating circuit

Publications (1)

Publication Number Publication Date
JPH01285879A true JPH01285879A (en) 1989-11-16

Family

ID=14645492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114741A Pending JPH01285879A (en) 1988-05-13 1988-05-13 High frequency high voltage generating circuit

Country Status (1)

Country Link
JP (1) JPH01285879A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881813A (en) * 2010-06-17 2010-11-10 国网电力科学研究院 Method for simulating GIS transformer substation to produce very fast transient overvoltage (VFTO) and test circuit
CN103149545A (en) * 2013-01-29 2013-06-12 华北电力大学 Testing method, testing device, testing equipment and testing system of very fast transient overvoltage (VFTO) sensor
CN106124979A (en) * 2016-08-05 2016-11-16 中国南方电网有限责任公司超高压输电公司检修试验中心 500kV AC filter and breaker fracture voltage measures system and method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101881813A (en) * 2010-06-17 2010-11-10 国网电力科学研究院 Method for simulating GIS transformer substation to produce very fast transient overvoltage (VFTO) and test circuit
WO2011157046A1 (en) * 2010-06-17 2011-12-22 国网电力科学研究院 Method for simulating very fast transient overvoltage generation in gas insulated switchgear (gis) transformer substation and test loop thereof
CN103149545A (en) * 2013-01-29 2013-06-12 华北电力大学 Testing method, testing device, testing equipment and testing system of very fast transient overvoltage (VFTO) sensor
CN103149545B (en) * 2013-01-29 2016-05-11 华北电力大学 The method of testing of VFTO sensor, device, equipment and system
CN106124979A (en) * 2016-08-05 2016-11-16 中国南方电网有限责任公司超高压输电公司检修试验中心 500kV AC filter and breaker fracture voltage measures system and method
CN106124979B (en) * 2016-08-05 2018-11-23 中国南方电网有限责任公司超高压输电公司检修试验中心 500kV AC filter and breaker fracture voltage measuring system and method

Similar Documents

Publication Publication Date Title
CN103308736B (en) Small-sized integrated steep pulse generating means
CN108008261B (en) On-spot lightning impulse of transformer substation and oscillating lightning impulse voltage test device
CN109490812B (en) Nanosecond impulse voltage generator and detection system for detecting overvoltage of transformer
CN105675933B (en) The firing circuit of controlled discharge ball gap in reactor turn to turn insulation test device
CN106646163B (en) For condenser type compound insulated bus system lightning impulse test circuit and method
JP2010261851A (en) Thunder impulse voltage testing apparatus and thunder impulse voltage testing method
CN106019005B (en) Test system and method for simulating transient ground potential rise
CN116500430A (en) Breaking branch small current breaking test loop and method of high-voltage direct current breaker
WO2014048340A1 (en) Device for testing response characteristic of metal oxide sample under steep-front pulse
CN107132465A (en) A kind of line parameter circuit value auxiliary test unit and method
CN112904191A (en) High-frequency oscillation test circuit based on alternating-current switch valve and test method
JPH01285879A (en) High frequency high voltage generating circuit
CN110661512A (en) Pulse generating device
CN206193140U (en) Air -core type reactor turn to turn short -circuit test circuit
CN110531257A (en) Four parameter transient recovery voltages (TRV) adjust circuit
CN110361571B (en) High-voltage pulse signal generator and circuit thereof and circuit parameter calculation method
CN109617539A (en) A kind of tesla's voltage boosting pulse source and method
CN2368041Y (en) Mixed wave-shape generator
US4454476A (en) Method of and apparatus for synthetic testing of a multi-break circuit breaker
JPH0353873B2 (en)
CN217766700U (en) Unipolar oscillation attenuation impulse voltage waveform test device
CN210518240U (en) Pulse generating device
Zhu et al. Experimental study on the influence of the disconnecting switch operation on CVTs in UHV series compensation stations
CN220829565U (en) Transient impact testing device for cable joint insulation detection
CN108037399A (en) 35kV arresters power frequency continued flow breaking capacity test device and method