JPH01285841A - Signal processing system of gas sensor - Google Patents

Signal processing system of gas sensor

Info

Publication number
JPH01285841A
JPH01285841A JP11569988A JP11569988A JPH01285841A JP H01285841 A JPH01285841 A JP H01285841A JP 11569988 A JP11569988 A JP 11569988A JP 11569988 A JP11569988 A JP 11569988A JP H01285841 A JPH01285841 A JP H01285841A
Authority
JP
Japan
Prior art keywords
point
spectrum
calculated
gas
minimum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11569988A
Other languages
Japanese (ja)
Inventor
Iwao Sugiyama
巌 杉山
Akira Sawada
亮 澤田
Shoji Doi
土肥 正二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP11569988A priority Critical patent/JPH01285841A/en
Publication of JPH01285841A publication Critical patent/JPH01285841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately detect concn. even when there is an environmental temp. change, by calculating only the max. and min. points being zero points on the basis of the largest and smallest points from 3rd order differentiation spectrum. CONSTITUTION:The outputs of infrared sensors 6, 11 are supplied to signal processing circuits 7, 12 while an initial value is set by a signal processor 20 and, next, a 3rd order differentiation spectrum is calculated on the basis of the 2nd order differentiation spectrum obtained by the hardware like processing due to the circuits 7, 12. Subsequently, the largest point Mx and the smallest point Mn are calculated to limit the range between the largest point Mx and the smallest point Mn to a max. point detection range and a point where 3rd order differentiation signal quantity becomes zero, that is, the max. point Ma is detected within said range. Further, the min. point Mi1 is detected from the calculated smallest point Mn and the min point Mi2 is detected from the continuously calculated largest point Mx. As mentioned above, the largest point Mx and the smallest point Mn are calculated from the 3rd order differentiation spectrum and the max. point Ma is calculated therebetween and the min. point Mi1 is calculated from the smallest point Mn and only the min. point Mi2 is calculated from the largest point Mx. By this method, a detection mistake is prevented.

Description

【発明の詳細な説明】 〔概要] 人気中の被測定ガスの吸収スペク1ヘルを半導体レーザ
による測定光によって測定し、この吸収スペクトルに基
づいてガス濃度の検出を行なうガスセンリに関し、 環境温度変化があっても正確に濃度を検出できることを
目的とし、 2次微分スペクトルの極大点及び極小点の人々の2数機
分信号量を検出するに際し、2次像分スペクトルの差分
スペクトル(3次像分スペクトル)を求めてその最大点
及び最小点を求め、該最大点と該最小点との間において
零点である極大点の波長を求め、該最小点及び該最大点
の夫々外側において零点である極小点の波長を求め、該
求めた極大点及び極小点の夫々の波長から2次像分スペ
クトルにおける極大点及び極小点の2数機分信号量を求
めるよう構成する。
[Detailed Description of the Invention] [Summary] Regarding the popular gas sensor, which measures the absorption spectrum 1H of the gas to be measured using measurement light from a semiconductor laser and detects the gas concentration based on this absorption spectrum, it is possible to detect changes in the environmental temperature. The purpose of this is to accurately detect the concentration even if Find the maximum point and minimum point of the spectrum, find the wavelength of the local maximum point that is a zero point between the maximum point and the minimum point, and find the local minimum point that is a zero point outside the minimum point and the maximum point, respectively. The wavelength of the point is determined, and the signal amount of two or more of the maximum point and minimum point in the secondary image spectrum is determined from the determined wavelengths of the maximum point and minimum point.

〔産業上の利用分野〕[Industrial application field]

本発明は、大気中の被測定ガスの吸収スペクトルを半導
体レーザによる測定光によって測定し、この吸収スペク
トルに基づいてガス濃度の検出を行なうガスセンサに関
する。
The present invention relates to a gas sensor that measures the absorption spectrum of a gas to be measured in the atmosphere using measurement light from a semiconductor laser, and detects the gas concentration based on this absorption spectrum.

近年、公害防止等によって有害ガスの管理が厳しく規制
されており、このような管理分野において有害ガスの濃
度を測定することが行なわれている。ガスセンサの一例
として、波長可変の赤外線レーザダイオード(半導体レ
ーザ)を用い、連続的に波長の変化するレーザ光線を被
測定ガスに投射し、そのガスに特有なレーザ光線の波長
の吸収スペクトルを得、その透過率の差を測定すること
によりガス濃度を測定するものがある。
In recent years, the management of harmful gases has been strictly regulated due to pollution prevention and the like, and the concentration of harmful gases has been measured in the field of such management. As an example of a gas sensor, a wavelength-tunable infrared laser diode (semiconductor laser) is used to project a laser beam with a continuously changing wavelength onto a gas to be measured, and obtain an absorption spectrum of the wavelength of the laser beam that is unique to that gas. Some methods measure gas concentration by measuring the difference in transmittance.

この場合、環境温度の変化によって半導体レーザ素子の
温度が変化し、後述のようにスペク]・ルが温度変化に
よってシフトしてしまい、そのスペクトルから正確な値
を求められなくなる。そこで、このような場合でも正確
な値を求めて正確な濃度検出を行なう必要がある。
In this case, the temperature of the semiconductor laser element changes due to a change in the environmental temperature, and as will be described later, the spectrum shifts due to the temperature change, making it impossible to obtain accurate values from the spectrum. Therefore, even in such cases, it is necessary to obtain accurate values and perform accurate concentration detection.

〔従来の技術〕[Conventional technology]

第4図は一般のガスセンサの構成図を示す。同図におい
て、半導体レーザ1の出射光はレンズ2にて平行光にさ
れ、ハーフミラ−3、大気中の微量な被測定ガス4を透
過してレンズ5にて赤外線センサ6に集光され、ここで
光電変換され、信号処理回路7に入力される。半導体レ
ーザ1は、レーザ電流を変化させることにより波長を連
続的に掃引でき、これにより、第5図に示すような被測
定ガスの吸収スペクトルを測定できる。信号処理回路7
において、透過率最大点と透過率最小点との差Ctが測
定され、この際Ctに比例する温度が算出される。
FIG. 4 shows a configuration diagram of a general gas sensor. In the figure, the emitted light from a semiconductor laser 1 is made into parallel light by a lens 2, passes through a half mirror 3, a small amount of gas to be measured in the atmosphere 4, and is focused by a lens 5 onto an infrared sensor 6. The signal is photoelectrically converted and input to the signal processing circuit 7. The semiconductor laser 1 can continuously sweep the wavelength by changing the laser current, thereby making it possible to measure the absorption spectrum of the gas to be measured as shown in FIG. Signal processing circuit 7
, the difference Ct between the maximum transmittance point and the minimum transmittance point is measured, and the temperature proportional to Ct is calculated.

一方、ハーフミラ−3で反射された光はミラー8で反射
され、同じ温度環境の基準ガスセル9(被測定ガス4と
同種で、予め既知の濃度のガスが封入されているカプセ
ル)を透過し、レンズ10により赤外線センサ11に集
光され、ここで光電変換され、信号処理回路7と同様の
機能を有する信号処理回路12に入力される。信号処理
回路12において、基準ガスセル9の濃度が算出される
On the other hand, the light reflected by the half mirror 3 is reflected by the mirror 8, and passes through a reference gas cell 9 (a capsule filled with the same type of gas as the gas to be measured 4 and a known concentration of gas) in the same temperature environment. The light is focused by the lens 10 onto the infrared sensor 11, photoelectrically converted there, and input to the signal processing circuit 12 having the same function as the signal processing circuit 7. In the signal processing circuit 12, the concentration of the reference gas cell 9 is calculated.

信号処理回路7,12の各出力は除算器13に供給され
、ここで、被測定ガス4側の信号の基準ガスセル9側の
信号に対する比が計算され、表示器14に濃度表示され
る。
The respective outputs of the signal processing circuits 7 and 12 are supplied to a divider 13, where the ratio of the signal on the side of the gas to be measured 4 to the signal on the side of the reference gas cell 9 is calculated, and the concentration is displayed on the display 14.

ところで、第5図に示す透過率差Ctは一般には極く小
さく、吸収スペクトルにはノイズ成分も含まれているた
めにこのままでは正確な濃度を検出し得ない。そこで、
SN比改善及び安定度向上のために、実際には第5図に
示す吸収スペクトルをハードウェア処理で2数機分した
第6図に示す2次像分スペクトルを使用し、第6図に丞
す極大点と極小点との2数機分信号量差Cd(第5図に
示す透過率差Ctに相当)を計算によって求めてここか
ら濃度を検出する。
By the way, the transmittance difference Ct shown in FIG. 5 is generally very small, and the absorption spectrum also includes noise components, so it is impossible to accurately detect the concentration as it is. Therefore,
In order to improve the S/N ratio and stability, the absorption spectrum shown in Fig. 5 is actually divided into two parts by hardware processing, and the secondary image spectrum shown in Fig. 6 is used. The signal amount difference Cd (corresponding to the transmittance difference Ct shown in FIG. 5) between the maximum point and the minimum point for two or more units is determined by calculation, and the concentration is detected from this.

第5図に示す吸収スペクトルを2数機分するとM6図に
示すような2次像分スペクトルを得ることができ、第5
図に示す透過率差Ctは2次像分曲線における1つの極
大点と2つの極小点との2次像分信号差Cdとして検出
される。この場合、半導体レーザの波長を掃引する範囲
は第6図中のΔλで示す波長掃引範囲であり、一般には
10人〜50人程度である。
If we divide the absorption spectrum shown in Figure 5 into two parts, we can obtain a secondary image spectrum as shown in Figure M6.
The transmittance difference Ct shown in the figure is detected as a secondary image signal difference Cd between one maximum point and two minimum points in the secondary image curve. In this case, the range in which the wavelength of the semiconductor laser is swept is the wavelength sweep range shown by Δλ in FIG. 6, and is generally about 10 to 50 people.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、環境温度が全く変化しなければ特に問題ない
が、一般には環境温度は変化し、これにより、半導体レ
ーザ素子の温度が変化して以下に記すような問題を生じ
る。
By the way, there is no particular problem if the environmental temperature does not change at all, but generally the environmental temperature changes, and as a result, the temperature of the semiconductor laser element changes, causing problems as described below.

第7図は第6図に示ず、波長掃引範囲△λにおける2次
微分スペクトルを拡大して示したもので、実線は温度変
化を生じる前の2次微分曲線、−点鎖線は温度変化を生
じた後の2次微分曲線である。。
Figure 7 is not shown in Figure 6, but is an enlarged view of the second-order differential spectrum in the wavelength sweep range △λ. This is the second-order differential curve after the generation. .

第7図より明らかな如く、温度変化を生じる前の場合で
は波長掃引範囲△λには1つの極大点rna及び2つの
極小点mil 、mi2が存在し、この3つの極値点か
ら2次微分信号量差を求め得る。
As is clear from FIG. 7, before a temperature change occurs, there is one maximum point rna and two minimum points mil and mi2 in the wavelength sweep range Δλ, and from these three extreme points, the second-order differential The signal amount difference can be determined.

然るに、温度変化を生じた後の場合は2次微分スペクト
ルは一定鎖線のようにシフトし、波長掃引範囲△λには
2つの極大点ma+ ’ 、ma2 ’及び2つの極小
点mi+’ 、mi2’が存在し、つまり、極大点m 
a 、! ’ が余分に存在し、この余分な極大点ma
2 ’のために信号処理回路では2次微分仁号吊差を求
めることができなくなり、これにより、正確なガス濃度
を検出できない問題点があった。
However, after a temperature change occurs, the second-order differential spectrum shifts like a constant chain line, and the wavelength sweep range Δλ has two maximum points ma+', ma2' and two minimum points mi+', mi2'. exists, that is, the maximum point m
a,! ' exists, and this extra maximum point ma
2' makes it impossible for the signal processing circuit to obtain the second-order differential difference, and as a result, there is a problem in that accurate gas concentration cannot be detected.

本発明は、環境温度変化があっても正確に濃度検出でき
るガスセンリの信号処理り式を提供することを目的とす
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a signal processing method for a gas sensor that can accurately detect concentration even when there is a change in environmental temperature.

〔課題を解決するだめの手段〕[Failure to solve the problem]

第1図は本発明の原理図を示し、同図<A)は2次微分
スペクトル、同図(B)は同図(A>に示す2次微分ス
ペクトルの差分スペクトル(3次微分スペクトル)であ
る。本発明は、同図(A)に示す2次微分スペクトルの
差分スペクトル(同図(B)に示す3次微分スペクトル
)を求めてその最大点MX及び最小点Mnを求め、最大
点MXと最小点Mnとの間において零点である極大点M
aの波長を夫々求め、最小点1yln及び最大点MXの
夫々外側において零点である極小点M11゜M i 2
の波長を夫々求め、該求めた極大点Ma及び極小点M 
i + 、 M ! 2の夫々の波長から2次微分スペ
クトルにJ5ける極大点ma及び極小点mi、、mi2
の2次微分信号量を求める構成とする。
Figure 1 shows a diagram of the principle of the present invention, in which <A> is a second-order differential spectrum, and (B) is a difference spectrum (third-order differential spectrum) of the second-order differential spectrum shown in (A>). In the present invention, the difference spectrum of the second-order differential spectrum (the third-order differential spectrum shown in FIG. 1B) shown in FIG. The maximum point M that is a zero point between and the minimum point Mn
Find the wavelengths of a and find the minimum point M11°M i 2 which is a zero point outside the minimum point 1yln and maximum point MX, respectively.
The maximum point Ma and the minimum point M obtained are determined respectively.
i+, M! Maximum point ma and minimum point mi, , mi2 at J5 in the second derivative spectrum from each wavelength of 2
The configuration is such that the second-order differential signal amount is determined.

〔作用] 本発明では、第1図<8)に示す如く、3次微分スペク
トルから最大点MX、最小点1ylnを基準にして零点
である極大点Ma、極小点M11゜M i 2を求める
のみであり、その他の零点である擬似極大点MX’ は
求めない。これにより、温度変化によって2次微分スペ
クトルがシフトして測定に無関係な極大haが波長13
引範囲に入って擬似極大点Mx’ となってしまっても
この擬似極大点Mx’ を検出していないので、検出ミ
スを起すことはない。
[Operation] In the present invention, as shown in FIG. 1<8), only the maximum point Ma and the minimum point M11°M i 2, which are zero points, are determined from the third-order differential spectrum based on the maximum point MX and the minimum point 1yln. , and the pseudo-maximal point MX', which is the other zero point, is not found. As a result, the second-order differential spectrum shifts due to temperature changes, and the maximum ha, which is irrelevant to the measurement, is at wavelength 13.
Even if the pseudo maximum point Mx' falls within the reference range, this pseudo maximum point Mx' is not detected, so no detection error will occur.

〔実施例〕〔Example〕

第2図は本発明の一実施例のブロック図を示し、同図中
、第4図と同一構成部分には同一番号を付してその説明
を省略する。第2図中、20は信号処理装置でマイクロ
コンピュータで構成されており、基準ガスセル9側の赤
外線センサ11の出力から第3図に示Jフ[l−チセ−
1・に従った動作を以て後述の3次微分スペクトル十の
極大点及び極小点における波長を求め、これと一方の被
測定ガス4側の赤外線センサ6の出力とから被測定ガス
4の濃度を検出する。又、第2図中、21はレーザコン
トローラで、信号処′!1.装@20からの制御信号に
て半導体レーザ1の波長を掃引する。なお、レーザコン
トローラ21は第4図では省略しである。
FIG. 2 shows a block diagram of an embodiment of the present invention, and in the figure, the same components as those in FIG. 4 are given the same numbers and their explanations will be omitted. In FIG. 2, reference numeral 20 denotes a signal processing device, which is composed of a microcomputer.
1. Obtain the wavelength at the maximum and minimum points of the third-order differential spectrum 10 described later, and detect the concentration of the gas to be measured 4 from this and the output of the infrared sensor 6 on one side of the gas to be measured 4. do. Also, in Fig. 2, 21 is a laser controller, which is a signal processor! 1. The wavelength of the semiconductor laser 1 is swept by a control signal from the device @20. Note that the laser controller 21 is omitted in FIG. 4.

次に、本発明の動作について説明する3、第2図におい
て、赤外線センυ6,11の出力は信号処理回路7.1
2に供給される。一方、信号処理装置20では初期値設
定が行なわれ(第3図中ステップ30)、次に、前記信
号処理回路7,12でハードウェア的に処理して得られ
る2次微分スペクトルを基にして第1図(B)に示ずよ
うな3次微分スペクトル(2次微分スペクトルの差分ス
ペクトル)を計算づる(第3図中ステップ31)。
Next, the operation of the present invention will be explained. 3. In FIG. 2, the output of the infrared sensor υ6, 11 is
2. On the other hand, initial value setting is performed in the signal processing device 20 (step 30 in FIG. 3), and then, based on the second-order differential spectrum obtained by hardware processing in the signal processing circuits 7 and 12, A third-order differential spectrum (difference spectrum of second-order differential spectrum) as shown in FIG. 1(B) is calculated (step 31 in FIG. 3).

次に、第1図(B)に示す最大点MX及び最小点Mnを
求め(第3図中ステップ32.33)、最大点MXと最
小点Mnとの間の範凹を極大点検出範囲に限定し、この
範囲内で3次微分信号量が零となる点つまり極大点Ma
を検出する(第3図中ステップ34)。最大点から最小
点の範囲を零点検出することによって極大点を検出でき
るのは、吸収スペクトルがローレンツ型に近いことによ
っている。
Next, find the maximum point MX and minimum point Mn shown in FIG. Within this range, the point where the third-order differential signal amount becomes zero, that is, the maximum point Ma
is detected (step 34 in FIG. 3). The reason why the maximum point can be detected by finding the zero point in the range from the maximum point to the minimum point is that the absorption spectrum is close to the Lorentz type.

更に、求めた最小点Mnから右側に検索して零点である
極小点Mi+を検出しく第3図中ステップ35)、続い
て、求めた最大点Mxから左側に検索して零点である極
小点Mizを検出する(第3図中ステップ36)。この
ように、本発明では、3数機分スペクトルから最大点M
X及び最小点Mnを求めてこれらの間において極大点M
aを求め、最小点Mnから右側の零点である極小点M 
i +を求め、最大点Mxから左側の零点である極小点
M i 2を求めているのみであり、その他の零点であ
る擬似極大点Mx’ は求めない。これにより、温度変
化によって2次像分スペクトルがシフトして測定に無関
係な極大点が波長掃引範囲△λに入って擬似極大点MX
’ となってしまってもこの擬似極大点MX’ を検出
していないので、第7図において説明したような検出ミ
スを起すことはない。
Furthermore, from the obtained minimum point Mn, search to the right to find the minimum point Mi+, which is a zero point (step 35 in FIG. 3), and then from the obtained maximum point Mx, search to the left to find the minimum point Miz, which is a zero point. is detected (step 36 in FIG. 3). In this way, in the present invention, the maximum point M
Find X and the minimum point Mn, and find the maximum point M between them.
Find the minimum point M, which is the zero point on the right side of the minimum point Mn.
i+, and only the minimum point M i 2, which is a zero point on the left side from the maximum point Mx, is found, and the other zero points, pseudo-maximum point Mx', are not found. As a result, the secondary image spectrum shifts due to temperature change, and the maximum point irrelevant to the measurement enters the wavelength sweep range Δλ, resulting in a pseudo maximum point MX.
Even if ', this pseudo maximum point MX' is not detected, so a detection error as explained in FIG. 7 will not occur.

このようにして第2図中の基準ガスセル9における基準
ガスの3数機分スペクトルから極大点Maの波長、極小
点Mi+ 、Mi2の波長が求められ、これらの波長か
らこれらに刻する2数機分スペクトル上の極大点及び極
小点の2数機分信号邑が求められる。一方、信号処理装
置20には被測定ガス4側の赤外線センサ6の出力も供
給されており、ここで被測定ガス4に対する2次像分ス
ペクトルが求められる。この場合、基準ガスと被測定ガ
ス4とは同種のものであるので極大点、極小点を示す波
長は同じである。
In this way, the wavelength of the maximum point Ma, the wavelength of the minimum points Mi+, and Mi2 are determined from the spectra of the reference gas in the reference gas cell 9 in FIG. Two signal peaks of the maximum and minimum points on the minute spectrum are obtained. On the other hand, the output of the infrared sensor 6 on the gas to be measured 4 side is also supplied to the signal processing device 20, and the secondary image spectrum for the gas to be measured 4 is determined here. In this case, since the reference gas and the gas to be measured 4 are of the same type, the wavelengths indicating the maximum and minimum points are the same.

そこで、基準ガスに対する極大点、極小点の夫々の信号
量と、この基準ガスの極大点、極小点と伺じ波長におけ
る被測定ガス4の極大点、極小点の夫々の信号量との比
から、基準ガス11度と被測定ガス4の濃度との比が求
められる。
Therefore, from the ratio of the signal amount at each of the maximum point and minimum point for the reference gas to the signal amount at the maximum point and minimum point of the gas to be measured 4 at the same wavelength as the maximum point and minimum point of this reference gas, , the ratio between the reference gas 11 degrees and the concentration of the gas to be measured 4 is determined.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く、本発明によれば、環境温度変化によ
る半導体レーザ素子の温度変化でスペクトルが移動して
波長掃引範囲に測定に無関係な極値点が入ってきてもこ
れを検出するというミスをなくすことができ、この場合
、i度ドリフトの許容範囲を大きくとることができ、正
確なガス濃度検出が可能になる。
As explained above, according to the present invention, even if the spectrum moves due to the temperature change of the semiconductor laser element due to the environmental temperature change, and an extreme point unrelated to the measurement enters the wavelength sweep range, it is possible to avoid the mistake of detecting this. In this case, the tolerance range for the i degree drift can be increased, and accurate gas concentration detection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は本発明の一実施例のブロック図、第3図は本発
明の動作フローヂャート、第4図は一般のガスセンサの
構成図、 第5図はガスの赤外線吸収スペクトル、第6図は第5図
に示す吸収スペクトルの2次像分スペクトル、 第7図は温度変化した場合における2次像分スペクトル
である。 −12= 図において、 1は半導体レーザ、 4は被測定ガス、 6.11は赤外線センサ、 9は基準ガスセル、 20は信号処理装置、 maは2次像分スペクトルでの極大点、mil 、mi
2は2次像分スペクトルでの極小点、Mxは3数機分ス
ペクトルでの最大点、Mnは3数機分スペクトルでの最
小点、Maは3次像分化スペクトルでの極大点、M :
 1 、 M ! 2は3次像分スペクトルでの極小点
、Mx’ 、ma2 ’ は擬似極大点 を示す。 本発明の動作フローチャート 第3図 被測定ガス レーザ波長 ガスの赤外線吸収スペクトル 第5図 第5図に示す吸収スにクトルの2次像分ス浸り)/し第
6図 −叡り刀スヤノ′yの倶筬凶
Fig. 1 is a diagram of the principle of the present invention, Fig. 2 is a block diagram of an embodiment of the present invention, Fig. 3 is an operation flowchart of the present invention, Fig. 4 is a configuration diagram of a general gas sensor, and Fig. 5 is a diagram of the gas sensor. FIG. 6 shows the second-order image spectrum of the absorption spectrum shown in FIG. 5, and FIG. 7 shows the second-order image spectrum when the temperature changes. -12= In the figure, 1 is a semiconductor laser, 4 is a gas to be measured, 6.11 is an infrared sensor, 9 is a reference gas cell, 20 is a signal processing device, ma is the maximum point in the secondary image spectrum, mil, mi
2 is the minimum point in the second-order image spectrum, Mx is the maximum point in the three-order image spectrum, Mn is the minimum point in the three-order image spectrum, Ma is the maximum point in the third-order image separation spectrum, M:
1, M! 2 indicates a minimum point in the third-order image spectrum, and Mx' and ma2' indicate pseudo-maximum points. Operation flowchart of the present invention Figure 3 Infrared absorption spectrum of gas at laser wavelength to be measured Figure 5 Secondary image of absorption spectrum shown in Figure 5 Kukokyo

Claims (1)

【特許請求の範囲】 半導体レーザによる測定光によつて大気中の被測定ガス
の吸収スペクトルを測定し、該吸収スペクトルの2次微
分スペクトルの極大点(ma)、極小点(mi_1、m
i_2)の2次微分信号量に基づいて該被測定ガスのガ
ス濃度を検出するガスセンサにおいて、 上記2次微分スペクトルの極大点(ma)及び極小点(
mi_1、mi_2)の夫々の2次微分信号量を検出す
るに際し、 上記2次微分スペクトルの差分スペクトル(3次微分ス
ペクトル)を求めて該3次微分スペクトルの最大点(M
x)及び最小点(Mn)を求め、該最大点(Mx)と該
最小点(Mn)との間において零点である極大点(Ma
)の波長を求め、該最小点(Mn)及び該最大点(Mx
)の夫々外側において零点である極小点(Mi_1、M
i_2)の波長を求め、 該求めた3次微分スペクトルの極大点(Ma)及び極小
点(Mi_1、Mi_2)の夫々の波長から上記2次微
分スペクトルにおける極大点(ma)及び極小点(mi
_l、mi_2)の2次微分信号量を求めることを特徴
とするガスセンサの信号処理方式。
[Claims] The absorption spectrum of a gas to be measured in the atmosphere is measured using measurement light from a semiconductor laser, and the maximum point (ma) and minimum point (mi_1, m
In a gas sensor that detects the gas concentration of the measured gas based on the second-order differential signal amount of i_2), the maximum point (ma) and the minimum point (
When detecting the second-order differential signal amount of each of mi_1, mi_2), the difference spectrum (third-order differential spectrum) of the second-order differential spectrum is obtained and the maximum point (M
x) and the minimum point (Mn), and find the maximum point (Ma
), and find the minimum point (Mn) and the maximum point (Mx
) are the minimum points (Mi_1, M
i_2), and from the respective wavelengths of the maximum point (Ma) and minimum points (Mi_1, Mi_2) of the obtained third-order differential spectrum, calculate the maximum point (ma) and minimum point (mi
A signal processing method for a gas sensor, characterized in that a second-order differential signal amount of _l, mi_2) is obtained.
JP11569988A 1988-05-12 1988-05-12 Signal processing system of gas sensor Pending JPH01285841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11569988A JPH01285841A (en) 1988-05-12 1988-05-12 Signal processing system of gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569988A JPH01285841A (en) 1988-05-12 1988-05-12 Signal processing system of gas sensor

Publications (1)

Publication Number Publication Date
JPH01285841A true JPH01285841A (en) 1989-11-16

Family

ID=14669042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569988A Pending JPH01285841A (en) 1988-05-12 1988-05-12 Signal processing system of gas sensor

Country Status (1)

Country Link
JP (1) JPH01285841A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464983A (en) * 1994-04-05 1995-11-07 Industrial Scientific Corporation Method and apparatus for determining the concentration of a gas
WO1999046580A1 (en) * 1998-03-11 1999-09-16 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5464983A (en) * 1994-04-05 1995-11-07 Industrial Scientific Corporation Method and apparatus for determining the concentration of a gas
WO1999046580A1 (en) * 1998-03-11 1999-09-16 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method
US6519039B1 (en) 1998-03-11 2003-02-11 Nippon Sanso Corporation Gas spectrochemical analyzer, and spectrochemical analyzing method

Similar Documents

Publication Publication Date Title
JP5226078B2 (en) Interferometer device and method of operating the same
JP5511163B2 (en) Distance measuring method and apparatus by light wave interference
JPH01285841A (en) Signal processing system of gas sensor
Stone et al. Corrections for wavelength variations in precision interferometric displacement measurements
JPS58169004A (en) Highly accurate interference length measuring method in atmosphere
JP2012103140A (en) Interference measuring method and interference measuring device
JPH04313007A (en) Film inspecting device
CN107356319B (en) A kind of dual-polarization state optical fiber vibration sensing Time-Domain Detection Method
JPS62261032A (en) Gas detector
JPS639842A (en) Gas detection device
JPS60253952A (en) Measurement system for gas concentration
JPH04110705A (en) Absolute measuring machine
CN109974577A (en) Wavefront interferometer and its bearing calibration
JPH01235834A (en) Signal processing system of laser system gas sensor
JPH0454407A (en) Optical displacement gauge
JPH06117810A (en) Absolute type length measuring equipment with correcting function of external disturbance
JPH01285840A (en) Gas sensor
JPH0273137A (en) Measurement discriminating method for laser type gas sensor
JPS639844A (en) Gas detecting device
JPS5840123B2 (en) Object position measuring device
JPH09287917A (en) Laser interference length measuring apparatus
JPS58132605A (en) Centering device for cylindrical optical element
JPH0331090Y2 (en)
JPH02143577A (en) Monitoring device of laser oscillator
JPH02272304A (en) Device for measuring movement of optical axis