JPH01285331A - Glass fiber reinforced composite body for molding airtight product - Google Patents

Glass fiber reinforced composite body for molding airtight product

Info

Publication number
JPH01285331A
JPH01285331A JP63114907A JP11490788A JPH01285331A JP H01285331 A JPH01285331 A JP H01285331A JP 63114907 A JP63114907 A JP 63114907A JP 11490788 A JP11490788 A JP 11490788A JP H01285331 A JPH01285331 A JP H01285331A
Authority
JP
Japan
Prior art keywords
glass fiber
mat
airtightness
molded product
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63114907A
Other languages
Japanese (ja)
Other versions
JP2621924B2 (en
Inventor
Toshiharu Hirai
敏治 平井
Makoto Maeda
真 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP63114907A priority Critical patent/JP2621924B2/en
Publication of JPH01285331A publication Critical patent/JPH01285331A/en
Application granted granted Critical
Publication of JP2621924B2 publication Critical patent/JP2621924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PURPOSE:To obtain a molded product having airtightness and high strength with a simple composition, by impregnating a mat-shaped glass fiber with a resin based on a crystalline ethylene/propylene random copolymer. CONSTITUTION:A mat shaped glass fiber is prepared by accumulating strands each obtained by bundling glass fibers having a filament diameter of 3-30mum in an almost non-oriented state and forming the same into a mat shape by needle punching and a glass fiber mat obtained by parallelly arranging glass fiber rovings in order to provide directionality if necessary and arranging the same on the strands to perform needle punching may be also used. As a crystalline ethylene/proplylene random copolymer to be infiltrated in the glass fiber mat, one containing 2-6wt.% of ethylene is used and, when the content of ethylene is below 2wt.%, the airtightness of a molded product is not secured and, when exceeds 5wt.%, physical properties or thermal deformation temp. are lowered. The content of the mat-shaped glass fiber is pref. 35-60wt.% and, when said content is below 35wt.%, physical properties such as bending strength or the like become insufficient and, when 60% of more, glass fibers are exposed to the surface of the molded product or the airtightness of the molded product becomes inferior.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、気密製品成形用ガラス繊維強化複合体に関し
、とりわけ通信ケーブル接続部のスリーブなど気密性が
要求される製品の圧縮成形に適したガラス繊維強化複合
体に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a glass fiber reinforced composite for molding airtight products, and is particularly suitable for compression molding of products that require airtightness, such as sleeves for communication cable connections. Relating to glass fiber reinforced composites.

(従来の技術) マット状のガラス長繊維に熱可塑性樹脂を含浸した複合
材は、機械型打ちプレス用の原板、いわゆるスタンパブ
ルシートとして使用されている。
(Prior Art) A composite material in which matte long glass fibers are impregnated with a thermoplastic resin is used as a base plate for mechanical stamping presses, a so-called stampable sheet.

この種のスタンパブルシートとして、熱可塑性樹脂にポ
リプロピレン系樹脂を使用したものは、軽量性、耐薬品
性、耐衝撃性、低価格性等の点から種々のプレス成形品
への利用が検討されている。
Stampable sheets of this type that use polypropylene resin as thermoplastic resin are being considered for use in various press-formed products due to their light weight, chemical resistance, impact resistance, and low cost. ing.

しかし、このような従来公知のポリプロピレン系複合材
は機械的強度や、耐衝撃性などの点では十分であるが、
プレス成形した後の製品を、例えば通信ケーブル接続部
のスリーブなどのように外部から密閉された状態で使用
する場合は、気密性の点で問題があった。
However, although such conventionally known polypropylene composite materials are sufficient in terms of mechanical strength and impact resistance,
When a press-molded product is used in a sealed state from the outside, such as in a sleeve for a communication cable connection, there is a problem with airtightness.

このため、ガスシール性あるいは防湿性などの性能が要
求される成形品を得る場合の原板としては、マット状の
ガラス繊維にタルクあるいはマイカを10〜20重量%
添加したもの(特開昭61−185019号)、変性ポ
リプロピレンを含むポリプロピレン樹脂を含浸したもの
(特開昭62−68823号)、あるいは成形時におい
て、成形品の表面に金属板ないしは金属箔などの非通気
性材料を貼付する方法(特開昭61−86245)など
が提案されているが、これらの原板ないしは方法にはい
ずれも以下に説明する技術的課題があった。
For this reason, when obtaining molded products that require performance such as gas sealing or moisture proofing, the base plate is matte glass fiber with 10 to 20% by weight of talc or mica.
(Japanese Unexamined Patent Publication No. 61-185019), impregnated with polypropylene resin containing modified polypropylene (Japanese Unexamined Patent Publication No. 62-68823), or a metal plate or metal foil on the surface of the molded product during molding. A method of pasting a non-breathable material (Japanese Patent Laid-Open No. 61-86245) has been proposed, but all of these original plates and methods have the following technical problems.

(発明が解決しようとする課題) すなわち、上記第1の原板によれば気密性は満足できる
が、タルクないしはマイカを15重量%程度添加するこ
とからガラス繊維の含有率が25重量%程度となって、
通常のスタンパブルシートのガラス繊維重量含有率であ
る40%のものと比較して曲げ強度や引張強度が低いと
いう欠点を有し、土中に直接埋設するケーブル用接続ス
リーブとしては強度上不満足である。一方、変性ポリプ
ロピレンを用いた第2の原板では、原板の製造工程で溶
融状態の変性ポリプロピレン樹脂が金属製の含浸加圧装
置などに付着すると、原板が含浸加圧装置に接着して操
作上のトラブルを招来するという問題があり、成形時に
おいて金属板、金属箔を貼付する第3の方法では、圧縮
成形に先立って金属板あるいは金属箔への接着層のラミ
ネート、予備圧縮成形などを要し、工程の増加あるいは
成形時に表面金属材を定位置に配置する必要から、周縁
挟持装置を要し、製造工程が複雑になるなどの問題があ
った。
(Problems to be Solved by the Invention) In other words, the first original plate has satisfactory airtightness, but since talc or mica is added to the plate in an amount of approximately 15% by weight, the glass fiber content is approximately 25% by weight. hand,
It has the disadvantage of lower bending strength and tensile strength than ordinary stampable sheets with a glass fiber weight content of 40%, and is unsatisfactory in terms of strength as a connection sleeve for cables buried directly in the soil. be. On the other hand, with the second master plate using modified polypropylene, if the molten modified polypropylene resin adheres to a metal impregnation pressure device during the manufacturing process of the master plate, the master plate will adhere to the impregnation pressure device, resulting in operational problems. The third method, in which a metal plate or metal foil is attached during molding, has the problem of causing trouble, and requires lamination of an adhesive layer to the metal plate or metal foil, preliminary compression molding, etc. prior to compression molding. However, since the number of steps is increased or the surface metal material needs to be placed in a fixed position during molding, a peripheral edge clamping device is required, which complicates the manufacturing process.

本発明は上述の問題点に鑑みてなされたものであって、
その目的は、公知のガラス繊維強化複合体と比較してよ
り単純な組成で気密性と高強度とを有する成形品を得る
ことができるガラス繊維強化複合体を提供することにあ
る。
The present invention has been made in view of the above-mentioned problems, and includes:
The purpose is to provide a glass fiber-reinforced composite that can produce a molded article having airtightness and high strength with a simpler composition compared to known glass fiber-reinforced composites.

(発明の構成) 上記目的を達成するための本発明の構成は、ガラス繊維
と合成樹脂とからなるガラス繊維強化複合体において、
全重量の35〜60重量%のマット状ガラス繊維にエチ
レン含有量が2〜6重量%の結晶性エチレン−プロピレ
ンランダムコポリマーを主成分とする樹脂を含浸せしめ
てなることを特徴とする。
(Structure of the Invention) The structure of the present invention for achieving the above object is that in a glass fiber reinforced composite made of glass fiber and synthetic resin,
It is characterized in that it is made by impregnating matte glass fibers of 35 to 60% by weight of the total weight with a resin whose main component is a crystalline ethylene-propylene random copolymer having an ethylene content of 2 to 6% by weight.

より詳細に説明するならば、本発明に使用できるマット
状ガラス繊維は、単糸径が3〜30虜ガラス繊維を集束
したストランドをほぼ無配向状に集積して、ニードルパ
ンチングによりマット状に形成したものであって、必要
に応じてガラス繊維に方向性をもたせるためにガラス繊
維ロービングを平行に引揃えて、上記ストランド上に配
置してパンチングしたガラス繊維マットであってもよい
To explain in more detail, the matted glass fiber that can be used in the present invention is formed by needle punching strands of glass fibers each having a diameter of 3 to 30 strands, which are assembled in a substantially non-oriented manner. It may also be a glass fiber mat in which glass fiber rovings are arranged in parallel and arranged on the strands and punched in order to give directionality to the glass fibers if necessary.

ガラス繊維マットに含浸させる結晶性エチレン−プロピ
レンランダムコポリマーは、プロピレンとエチレンとを
共重合したものであって、本発明ではエチレン−プロピ
レンランダムコポリマー中のエチレン含有量が2〜6重
量%の範囲のものが好適に使用される。
The crystalline ethylene-propylene random copolymer to be impregnated into the glass fiber mat is a copolymer of propylene and ethylene, and in the present invention, the ethylene content in the ethylene-propylene random copolymer is in the range of 2 to 6% by weight. are preferably used.

エチレン含有量が2重量%未満では、成形品の気密性が
確保されず、6重量%を超えると物性や熱変形温度が低
下する。
If the ethylene content is less than 2% by weight, the airtightness of the molded product cannot be ensured, and if it exceeds 6% by weight, the physical properties and heat distortion temperature will decrease.

なお、上記マット状ガラス繊維の含有量は、35〜60
重量%が好ましく、35重量%未満では曲げ強度等の物
性が不十分となり、60重量%以上では成形品の表面に
ガラス繊維が浮き出て表面不良となったり、気密性に劣
る成形品となる。
In addition, the content of the above-mentioned matte glass fiber is 35 to 60
If the amount is less than 35% by weight, physical properties such as bending strength will be insufficient, and if it is more than 60% by weight, glass fibers will stand out on the surface of the molded product, resulting in surface defects or poor airtightness.

(実施例) 以下本発明について実施例により説明する。(Example) The present invention will be explained below with reference to Examples.

・実施例1 単糸径約23μsのガラス繊維ストランドをうず巻状に
重ね合せたマットを、1c−当り約25回の割合でニー
ドルパンチングしたガラス繊維マット間に、エチレン含
有量が4重量%の結晶性エチレンープロピレンランダム
コポリマーを溶融押出機から溶融状態で供給するととも
に、ガラス繊維マットの上下には、予め成形した同じ結
晶性エチレン−プロピレンランダムコポリマーを使用し
た厚み約0.5m+sのシートをオーバーレイ材として
供給し、上下一対のスチールコンベアで、加圧下で加熱
し、該ガラス繊維マット中に樹脂を含浸した後、引続い
てこれを冷却固化して、ガラス繊維含有率が40重量%
、目付4400g/rd、厚み3゜7鰭のガラス繊維強
化複合体原板を得た。
・Example 1 A mat in which glass fiber strands with a single diameter of about 23 μs were layered in a spiral shape was needle-punched at a rate of about 25 times per 1 c. A crystalline ethylene-propylene random copolymer is supplied in a molten state from a melt extruder, and pre-formed sheets of the same crystalline ethylene-propylene random copolymer with a thickness of approximately 0.5 m+s are overlaid on the top and bottom of the glass fiber mat. The glass fiber mat is supplied as a material and heated under pressure on a pair of upper and lower steel conveyors to impregnate the resin into the glass fiber mat, which is subsequently cooled and solidified to have a glass fiber content of 40% by weight.
A glass fiber reinforced composite original plate having a basis weight of 4,400 g/rd and a thickness of 3° and 7 fins was obtained.

このガラス繊維強化複合体の原板を333X168mm
の大きさにカットしたものをブランクとして、内部の樹
脂温度が200℃に達するまで加熱し、これを3枚重ね
て、圧縮成形機に供給し、型締力120トン、型冷却時
間60秒、型温80℃で加圧成形して、長さ380mm
、外径130mm。
The original plate of this glass fiber reinforced composite is 333 x 168 mm.
The blank was cut to the size of , heated until the internal resin temperature reached 200℃, stacked 3 sheets, and fed into a compression molding machine with a mold clamping force of 120 tons and a mold cooling time of 60 seconds. Pressure molded at a mold temperature of 80℃, length 380mm
, outer diameter 130mm.

肉厚6 mmの半円筒形の両側に幅20mm、厚さ10
i+mのフランジを有する半円筒形容器を成形した。
A semi-cylindrical shape with a wall thickness of 6 mm and a width of 20 mm and a thickness of 10 mm on both sides.
A semi-cylindrical container with i+m flanges was molded.

得られた半円筒形容器の密閉性を次の方法で確認した。The airtightness of the obtained semi-cylindrical container was confirmed by the following method.

上記の半円筒形容器を2個用意し、フランジ部分をゴム
製パツキンを介在させて突き合せ、クランプにて複数個
所押えて密閉容器に組付けした。
Two of the above-mentioned semi-cylindrical containers were prepared, their flanges were butted against each other with rubber gaskets interposed therebetween, and the containers were pressed at multiple locations with clamps to assemble into a sealed container.

その内部に予め設けておいたガス供給口から1゜5 k
g / c−の空気圧を加えつつこれを水槽中に浸漬さ
せ、内部の加圧空気の漏洩の有無を半円筒形容器の表面
への気泡の付着の有無を目視検査することによって判定
したところ、テスト24時間中、気泡の付着は認められ
なかった。また、組み付けたまま、−30℃から80℃
のヒートサイクルを10回行なった後、上記と同じ条件
でテストを行ったが、上記同様気泡の付着は認められな
かった。
1゜5k from the gas supply port previously set up inside.
This was immersed in a water tank while applying an air pressure of g/c-, and the presence or absence of leakage of the internal pressurized air was determined by visually inspecting the presence or absence of air bubbles adhering to the surface of the semi-cylindrical container. No air bubbles were observed during the 24 hour test. Also, it can be heated from -30℃ to 80℃ while assembled.
After performing the heat cycle 10 times, a test was conducted under the same conditions as above, but as above, no air bubbles were observed.

一方、成形品の物性はそれぞれ次の方法で測定した。引
張強度ASTM  D638、曲げ強度ASTM  D
790、アイゾツト衝撃強度ASTMD256、熱変形
温度ASTM  D648 (荷重18.6kg) これらの方法による測定結果を第1表にまとめて示す。
On the other hand, the physical properties of the molded products were measured by the following methods. Tensile strength ASTM D638, bending strength ASTM D
790, Izod impact strength ASTM D256, heat distortion temperature ASTM D648 (load: 18.6 kg) The results of measurements by these methods are summarized in Table 1.

・比較例1 実施例1におけるガラスマットと同一のガラス繊維マッ
トを使用し、オーバーレイおよびメルトの熱可塑性樹脂
としてポリプロピレン樹脂のホモポリマーを使用して、
実施例1と同様にしてガラス繊維強化複合体(出願人源
:アズデルP11378K)を得、これを圧縮成形して
半円筒形容器を得た。
Comparative Example 1 Using the same glass fiber mat as the glass mat in Example 1, using a homopolymer of polypropylene resin as the overlay and melt thermoplastic resin,
A glass fiber reinforced composite (assigned by Asdel P11378K) was obtained in the same manner as in Example 1, and this was compression molded to obtain a semi-cylindrical container.

この半円筒形容器について実施例1と同様に、密閉性を
テストしたところ、容器の表面への気泡の付着が著しく
密閉性が要求される成形品には不適当と認められた。
When this semi-cylindrical container was tested for airtightness in the same manner as in Example 1, it was found that air bubbles were significantly attached to the surface of the container, making it unsuitable for molded products requiring airtightness.

・比較例2 ガラス繊維マットとして目付540g/dのものを2枚
使用し、これに、オーバーレイシート用樹脂として実施
例1と同じ結晶性エチレン−プロピレンランダムコポリ
マー(A)にタルクを20重量%添加したもの、メルト
樹脂として、前記(A)、トータルのエチレン含有量が
5,5重量%の結晶性エチレン−プロピレンランダム重
合ポストエチレンープロピレンブロックコボリマー(B
)にγ−メタアクリロキシプロピルトリメトキシシラン
およびt−ブチルパーオキシベンゾエートを前記(B)
100重量部に対して各々0゜5部10.25部添加し
220℃で熱処理して得た変性ポリプロピレン(C)、
およびタルク(D)をA:C:D−2:2:1で混練し
たものを使用し、オーバーレイシートとメルトの重量比
を1=2として、ガラス含有率が25重量%、タルク含
有率が15重量%の繊維強化複合体の原板を作製し、こ
の原板を使用して、実施例1と同様に圧縮成形した。こ
の比較例の成形品は第1表に示すように気密性には優れ
るが曲げ強度、引張強度、Izod衝撃強度が劣ってい
た。
Comparative Example 2 Two glass fiber mats with a basis weight of 540 g/d were used, and 20% by weight of talc was added to the same crystalline ethylene-propylene random copolymer (A) as in Example 1 as the resin for the overlay sheet. As a melt resin, the crystalline ethylene-propylene random polymerized post ethylene-propylene block copolymer (B) with a total ethylene content of 5.5% by weight was used as the melt resin.
) with γ-methacryloxypropyltrimethoxysilane and t-butylperoxybenzoate in the above (B).
Modified polypropylene (C) obtained by adding 0.5 parts and 10.25 parts of each to 100 parts by weight and heat-treating at 220°C,
and talc (D) were kneaded in A:C:D-2:2:1, and the weight ratio of overlay sheet and melt was 1=2, the glass content was 25% by weight, and the talc content was 25% by weight. An original plate of a 15% by weight fiber-reinforced composite was prepared, and compression molding was performed in the same manner as in Example 1 using this original plate. As shown in Table 1, the molded product of this comparative example had excellent airtightness, but was poor in bending strength, tensile strength, and Izod impact strength.

なお、本比較例では原板の製造工程でメルトの変性ポリ
プロピレンが原板の端部からはみ出してコンベアへの付
着トラブルがあった。
In addition, in this comparative example, there was a problem in which the modified polypropylene of the melt protruded from the edge of the original plate during the manufacturing process of the original plate and adhered to the conveyor.

通常、リブ形状を有する成形品においては、リブの高さ
(深さ)の約半分程度しかガラス繊維が充填せず、先端
部は樹脂リッチとなり、クラックの発生が問題とされる
Usually, in a molded product having a rib shape, only about half the height (depth) of the rib is filled with glass fibers, and the tip portion becomes resin-rich, causing a problem of cracking.

そこで、実施例1および比較例1の各原板を使用して、
厚み3m111幅150+am、長さ200 mmの平
板部と、その−面側の中央に幅4 amで高さ20mm
のリブを有するリブ付テストピースを作製し、これを−
30℃の雰囲気下で、先端半径2.5mmの落球を用い
て落球衝撃試験を行なったところ、500kg−(7)
のエネルギーで比較例1の原板を使用して成形したもの
は、リブの先端にクラックが発生した。これに対して実
施例1の原板によるものは、落球衝撃によるクラックの
発生はなかった。
Therefore, using each original plate of Example 1 and Comparative Example 1,
A flat plate with a thickness of 3m111, a width of 150+am, and a length of 200mm, with a width of 4am and a height of 20mm in the center of the - side.
A ribbed test piece with ribs of −
A falling ball impact test was conducted in an atmosphere of 30°C using a falling ball with a tip radius of 2.5 mm, and the result was 500 kg-(7)
In the case of molding using the original plate of Comparative Example 1 with an energy of On the other hand, in the original plate of Example 1, no cracks were generated due to the impact of the falling ball.

また、上記のリブ付テストピースで一30℃〜80℃の
ヒートサイクルテストを10回繰返したが、実施例1の
原板を使用したもののリブ部分にはクラックの発生は認
められず、充分耐寒性を有していることが確認された。
In addition, the above ribbed test piece was subjected to a heat cycle test of -30°C to 80°C 10 times, but no cracks were observed in the rib portion of the original plate of Example 1, indicating that it was sufficiently cold resistant. It was confirmed that it has.

第1表 (作用効果) エチレン含有量が2〜6重量%の結晶性エチレン−プロ
ピレンランダム共重合体を使用すると、何故気密性が向
上するか明確でないが、圧縮成形において加熱されたホ
ットブランクが圧縮成形後、型中で冷却固化されるに際
しての、該結晶性エチレン−プロピレンランダム共重合
体の結晶化速度が比較的遅くなってガラス繊維と樹脂と
の密着がよくなり、従来品のようにガラス繊維の周囲を
伝わって気体が漏出するのが防止されるためと思われる
Table 1 (effects) It is not clear why airtightness improves when a crystalline ethylene-propylene random copolymer with an ethylene content of 2 to 6% by weight is used, but hot blanks heated during compression molding After compression molding, the crystallization rate of the crystalline ethylene-propylene random copolymer when it is cooled and solidified in the mold is relatively slow, resulting in better adhesion between the glass fibers and the resin, making it less difficult to use than conventional products. This seems to be because gas is prevented from leaking around the glass fibers.

また、本発明の複合体は、タルクなどの無機充填材を添
加することなく、長繊維状のガラス繊維マットの含有量
を上げているので機械的物性が向上できるとともに、樹
脂が耐寒性、耐衝撃性を有しているので、リブ形状を有
する成形品に好適である。
In addition, the composite of the present invention has a high content of long fiber glass fiber mat without adding inorganic fillers such as talc, so it can improve mechanical properties and the resin has good cold resistance and resistance. Since it has impact resistance, it is suitable for molded products having a rib shape.

本発明の気密製品成形用ガラス繊維強化複合体は、気密
性と高強度性を要求される、通信ケーブル接続部のスリ
ーブなどの成形に用いられる極めて有用なものである。
The glass fiber reinforced composite for molding airtight products of the present invention is extremely useful for molding sleeves for communication cable connections, which require airtightness and high strength.

特許出願人      宇部日東化成株式会社代 理 
人      弁理士 −色 健 軸向     弁理
士松本雅利
Patent applicant Ube Nitto Kasei Co., Ltd. Representative
People Patent Attorney - Color Ken Axis Patent Attorney Masatoshi Matsumoto

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス繊維と合成樹脂とからなるガラス繊維強化
複合体において、全重量の35〜60重量%のマット状
ガラス繊維にエチレン含有量が2〜6重量%の結晶性エ
チレン−プロピレンランダムコポリマーを主成分とする
樹脂を含浸せしめてなることを特徴とする気密製品成形
用ガラス繊維強化複合体。
(1) In a glass fiber reinforced composite made of glass fiber and synthetic resin, a crystalline ethylene-propylene random copolymer with an ethylene content of 2 to 6% by weight is added to 35 to 60% by weight of the total weight of matted glass fibers. A glass fiber reinforced composite for molding airtight products, characterized by being impregnated with resin as the main component.
JP63114907A 1988-05-13 1988-05-13 Glass fiber reinforced composite for molding airtight products Expired - Fee Related JP2621924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63114907A JP2621924B2 (en) 1988-05-13 1988-05-13 Glass fiber reinforced composite for molding airtight products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63114907A JP2621924B2 (en) 1988-05-13 1988-05-13 Glass fiber reinforced composite for molding airtight products

Publications (2)

Publication Number Publication Date
JPH01285331A true JPH01285331A (en) 1989-11-16
JP2621924B2 JP2621924B2 (en) 1997-06-18

Family

ID=14649614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63114907A Expired - Fee Related JP2621924B2 (en) 1988-05-13 1988-05-13 Glass fiber reinforced composite for molding airtight products

Country Status (1)

Country Link
JP (1) JP2621924B2 (en)

Also Published As

Publication number Publication date
JP2621924B2 (en) 1997-06-18

Similar Documents

Publication Publication Date Title
KR920001316B1 (en) Improvements in fiber reinforced plastics sheets
US5464493A (en) Thermoplastic composite fabrics and formed article produced therefrom
JPS60159009A (en) Composite material, which can be press-machined, of olefin polymer reinforced by glass/carbon fiber mat and manufacturethereof
KR101511534B1 (en) The thermosetting resin molding product for inserted steel
JP2011194852A (en) Press-molding method and molding thereof
CN110712379A (en) Carbon fiber reinforced thermoplastic resin plate and manufacturing method thereof
KR101891824B1 (en) Method of manufacturing hybrid vehicle body part with different material
EP0088584B2 (en) Method of providing a moulded or mouldable fibre reinforced thermoplastics material
JPS5996951A (en) Tabular composite material previously manufactured
JPH01141733A (en) Heat-insulating molded form having coating
JPH01285331A (en) Glass fiber reinforced composite body for molding airtight product
JPH01281923A (en) Glass fiber reinforced composite body for molding airtight product
JP6836741B2 (en) Composite molded product and its manufacturing method
CZ288097A3 (en) Heat-insulating profiled body and process for producing thereof
JPS6134984B2 (en)
JPH0396329A (en) Fiber-reinforced thermoplastic composite material
CN114055806A (en) Composite material hybrid skin forming method
JPS58124616A (en) Manufacture of molding member from fiber reinforced laminated material
EP0568615B1 (en) Process for forming a laminated body
KR950009491B1 (en) Fiber reinforced composite resin forming sheet
JP2932431B2 (en) Polypropylene composite sheet and blow molding method using the same
JPH09234751A (en) Manufacture of fiber reinforced thermoplastic resin sheet
KR950013880B1 (en) Method for manufacturing glass fiber reinforced plate like thermoplastic composite
JPS6047104B2 (en) Sheet for stamping molding
JPH05154962A (en) Fiber reinforced thermoplastic resin laminated sheet for thermoforming, fiber reinforced thermoplastic resin laminated profile molded product and production thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees