JPH01284488A - Diffusion joining method for high alloy - Google Patents

Diffusion joining method for high alloy

Info

Publication number
JPH01284488A
JPH01284488A JP11406388A JP11406388A JPH01284488A JP H01284488 A JPH01284488 A JP H01284488A JP 11406388 A JP11406388 A JP 11406388A JP 11406388 A JP11406388 A JP 11406388A JP H01284488 A JPH01284488 A JP H01284488A
Authority
JP
Japan
Prior art keywords
bonding
joined
alloys
nitrogen
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11406388A
Other languages
Japanese (ja)
Inventor
Shigeki Azuma
茂樹 東
Takeo Kudo
赳夫 工藤
Kazuhiro Ogawa
和博 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11406388A priority Critical patent/JPH01284488A/en
Publication of JPH01284488A publication Critical patent/JPH01284488A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To prevent the deterioration in the corrosion resistance of a joint part by subjecting joint surfaces to a high nitriding treatment, then to contact heating at the time of joining the high alloys selected from an austenitic system and a two-phase high alloy contg. a specific ratio of Cr to each other. CONSTITUTION:The alloys to be applied are the austenitic system and two-phase system high alloy which contain >=15wt.% and <30wt.% Cr and are the corrosion resistant high alloys. One or both of the surfaces to be joined are subjected to the high nitriding treatment and thereafter, the surfaces to be joined are joined by contact heating. The deterioration in the corrosion resistance of the joined part is thereby prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、オーステナイト系および二相系高合金から選
んだ高合金同士を接合する場合において、被接合面に高
窒化処理を施した後に密着加熱する拡散接合方法に関す
る。
Detailed Description of the Invention (Industrial Field of Application) The present invention provides a method for bonding high alloys selected from austenitic and dual-phase high alloys after applying high nitriding treatment to the surfaces to be joined. This invention relates to a heating diffusion bonding method.

(従来の技術) 拡散接合は、金属材料の接合法のひとつとして良く知ら
れている。その機構は、■接合界面の酸化皮膜の破壊、
■接合界面での金属元素同士の接近、■金属結合の実現
と相互拡散、の三段階から成ると言われている。しかし
実際には接合界面の酸化皮膜はかなり強固な場合が多く
また接合中の新たな皮膜生成も障害となる。従うて接合
面の前処理、接合雰囲気の制御、つまり高真空化が必要
となってくる。
(Prior Art) Diffusion bonding is well known as one of the methods for bonding metal materials. The mechanism is: ■ Destruction of the oxide film at the bonding interface,
It is said to consist of three steps: ■ Approach of metal elements at the bonding interface, and ■ Achievement of metallic bonding and mutual diffusion. However, in reality, the oxide film at the bonding interface is often quite strong, and the formation of a new film during bonding also becomes an obstacle. Therefore, it becomes necessary to pre-treat the bonding surfaces and control the bonding atmosphere, that is, to create a high vacuum.

これらの点を改良する方法として、低融点共晶合金をイ
ンサート材として用い、接合時に液相化させ接合界面の
酸化皮膜の除去を促進させる接合法が提案されている。
As a method to improve these points, a joining method has been proposed in which a low-melting point eutectic alloy is used as an insert material and is turned into a liquid phase during joining to promote removal of the oxide film at the joining interface.

また低融点共晶合金を形成する元素を接合界面にコーテ
ィングすることによっても同様の効果が得られると言わ
れている(特開昭59−113170号)、この接合法
では加熱温度の上昇とともにコーティング層、例えばボ
ロン(B)富化層が溶融ξ母材との界面上の酸化皮膜を
破壊し時間の経過とともにコーティング層中の元素(こ
の場合B)が母材側に拡散する。そしである時間以上経
過するとコーティング層中のBはほとんどなくなり融点
が上昇するため固相となり接合が完了する。この方法は
、液相を利用しているため従来の拡散接合に比べ短時間
でしかも比較的簡便な雰囲気も制御、つまり低真空下で
も接合が可能となっている。
It is also said that a similar effect can be obtained by coating the bonding interface with an element that forms a low melting point eutectic alloy (Japanese Unexamined Patent Publication No. 113170/1983). In this bonding method, as the heating temperature increases, the coating The layer, for example a boron (B) enriched layer, destroys the oxide film on the interface with the molten ξ base material, and over time the element in the coating layer (B in this case) diffuses to the base material side. Then, after a certain period of time has elapsed, almost no B in the coating layer disappears, and the melting point increases, so that it becomes a solid phase and the bonding is completed. Since this method uses a liquid phase, it takes a shorter time than conventional diffusion bonding, and the atmosphere can be controlled relatively easily, that is, bonding can be performed even under low vacuum.

以上のような従来の拡散接合は共晶化合物生成元素とし
て特にBを利用した方法が実用化されている。しかし、
特に耐食性を主目的とする高合金の接合においては、接
合部に残存するBがクロム炭化物生成の核となり鋭敏化
を促進するため接合部の耐食性に悪影響を及ぼしその適
用が制限されている。
In the conventional diffusion bonding as described above, a method using B as an element for forming a eutectic compound has been put into practical use. but,
In particular, in the joining of high alloys whose main purpose is corrosion resistance, B remaining in the joint becomes a nucleus for the formation of chromium carbide and promotes sensitization, which adversely affects the corrosion resistance of the joint and limits its application.

(発明が解決しようとする課題) このように従来の拡散接合法の問題は、高合金の接合に
おいて低融点共晶を目的として添加した元素によって接
合部の耐食性が劣化するという点にある。
(Problems to be Solved by the Invention) As described above, the problem with the conventional diffusion bonding method is that the corrosion resistance of the bonded portion deteriorates due to the element added for the purpose of forming a low melting point eutectic when bonding high alloys.

ここに、本発明の目的は、耐食性が劣化せず強度など他
の性能は従来の拡散接合と同等な、高合金の拡散接合法
を提供することである。
An object of the present invention is to provide a high-alloy diffusion bonding method that does not deteriorate corrosion resistance and has other properties such as strength equivalent to conventional diffusion bonding.

(課題を解決するための手段) 従来の拡散接合法は接合すべき合金中、の主成分と低融
点共晶化合物を生成する元素、具体的にはP、B等を利
用する方法に限られていた。
(Means for solving the problem) Conventional diffusion bonding methods are limited to methods that utilize elements that form low melting point eutectic compounds with the main components of the alloy to be bonded, specifically P, B, etc. was.

そこで本発明者らは他の元素の拡散接合法への利用を図
ることに着目して種々検討したところ、窒素が拡散元素
として実用可能であることを見い出した。
Therefore, the present inventors conducted various studies focusing on the use of other elements in the diffusion bonding method, and found that nitrogen could be practically used as a diffusion element.

すなわち、高窒素化によって被接合面の表層の高温強度
が上昇し、密着加熱時に未処理面側での局部的な塑性流
動が加速され接合に有害な酸化物層の破壊が容易に起こ
る。また接合界面では窒素の拡散により他の金属元素の
移動も促進され、より高強度の接合部が得られる。窒素
は周知のとおり既存オーステナイト系、二相系高合金中
には強度、耐食性向上のため添加が許容されており、接
合部性能に対、し悪影響を与えることはない。
That is, high nitrogen content increases the high-temperature strength of the surface layer of the surfaces to be joined, and during contact heating, local plastic flow is accelerated on the untreated surface side, easily causing destruction of the oxide layer that is harmful to joining. In addition, the diffusion of nitrogen promotes the movement of other metal elements at the bonding interface, resulting in a bond with higher strength. As is well known, nitrogen is allowed to be added to existing austenitic and dual-phase high alloys to improve strength and corrosion resistance, and will not have a negative effect on joint performance.

よって本発明の要旨とするところは、Cr:15重量%
以上30重量%未満を含むオーステナイト系および二相
系高合金から選んだ高合金同士の接合方法において、被
接合面の一方あるいは両方に高窒素化処理を施し、その
後被接合面を密着加熱して接合せしめることを特徴とす
る高合金の拡散接合方法である。
Therefore, the gist of the present invention is that Cr: 15% by weight
In a method for joining high alloys selected from austenitic and duplex high alloys containing less than 30% by weight, one or both of the surfaces to be joined are subjected to high nitrogen treatment, and then the surfaces to be joined are heated in close contact. This is a high alloy diffusion bonding method characterized by bonding.

(作用) 従来の拡散接合法の欠点である接合部の耐食性劣化は、
耐食性材料としての高合金鋼に限られる現象であるので
、本発明の適用合金は耐食性高合金であるCr:15重
量%以上30重量%未満を含むオーステナイト系および
二相系高合金とする0代表例を挙げるとオーステナイト
系では5IJS 304.5uS316等があり、二相
系ではSOS 329等がある。フェライト系および3
0重量%以上のCrを含む高合金では周知のように高窒
素化による靭性劣化が著しいため本発明による拡散接合
の適用は不可能である。
(Function) Deterioration of corrosion resistance of the joint, which is a drawback of the conventional diffusion bonding method,
Since this phenomenon is limited to high-alloy steel as a corrosion-resistant material, the applicable alloys of the present invention are austenitic and dual-phase high alloys containing 15% by weight or more and less than 30% by weight of Cr, which is a high corrosion-resistant alloy. Examples include 5IJS 304.5uS316 for austenitic systems, and SOS 329 for two-phase systems. Ferritic and 3
As is well known, in high alloys containing 0% by weight or more of Cr, the toughness deteriorates significantly due to high nitrogen content, and therefore the diffusion bonding according to the present invention cannot be applied.

「高窒素化処理」を実現する手段としては、ガス窒化、
イオン注入等窒素のみを接合面に濃化せしめる方法ある
いはFe、 Cr、 Niといった基材主成分元素と窒
素との化合物を接合面に生成させるCVD、PVD等ど
ちらあ方法でもよい、かかる高窒素化は一方の被接合面
にのみ行えばよいが、両方のそれに行っても実質上の差
違はない。なお、これらの手段はすでに良く知られてお
り、その具体的条件等これ以上の説明を省略する。
Gas nitriding,
This high nitrogen concentration can be achieved by either a method such as ion implantation, in which only nitrogen is concentrated on the joint surface, or a method, such as CVD or PVD, in which a compound of nitrogen and base material main constituent elements such as Fe, Cr, or Ni is generated on the joint surface. It is sufficient to perform this on only one surface to be joined, but there is no substantial difference even if it is performed on both surfaces. Note that these means are already well known, and further explanation of their specific conditions will be omitted.

窒素濃化の程度は、特に制限されないが、一般には1〜
15−t%程度が好ましい、もとより高窒素化とした材
料の場合も含めて、窒素追加工程を別途設けて窒素を富
化するとの趣旨である。
The degree of nitrogen concentration is not particularly limited, but is generally 1 to 1.
The purpose is to provide a separate nitrogen addition step to enrich nitrogen, which is preferably about 15-t%, even in the case of materials with a high nitrogen content.

接合時の加熱温度は接合時間の短縮化のため1100℃
以上が望ましい、そして1100°C以上であれば30
分で十分である。なお、加圧力は0.5〜5 kgf/
■2程度で十分である。
The heating temperature during bonding is 1100℃ to shorten the bonding time.
or above is desirable, and if it is above 1100°C, 30
minutes is enough. In addition, the pressing force is 0.5 to 5 kgf/
■About 2 is sufficient.

実施例 第1表に示すA−Gの組成をもつ高合金から第   ・
1図に示す形状寸法の拡散接合試験片を機械加工により
製作し1記の試験を実施した。
Examples From high alloys having compositions A to G shown in Table 1,
A diffusion bonded test piece having the shape and dimensions shown in Fig. 1 was manufactured by machining, and the test described in 1 was conducted.

(試験l) 1mAの被接合面の片面および両面に第2表に示す高窒
素化処理を下記条件で施し、次いで第3表の条件で^r
雰囲気下において密着加熱して拡散接合した。
(Test 1) High nitrogen treatment shown in Table 2 was applied to one and both sides of the surfaces to be bonded at 1 mA under the following conditions, and then under the conditions shown in Table 3.
Diffusion bonding was performed by contact heating in an atmosphere.

イオン窒化;プラズマ状態の窒素イオンを300Vの電
界の下で被接合面に注入した0表面部のN含有量はg、
5 wt%であった。
Ion nitriding: Nitrogen ions in a plasma state are implanted into the surface to be bonded under an electric field of 300 V. The N content of the surface is g,
It was 5 wt%.

ガス窒化:アンモニアガス中で被接合面を550°Cに
1時間加熱した0表面部のN含有量は7wt%であった
Gas nitriding: The surfaces to be joined were heated to 550° C. for 1 hour in ammonia gas, and the N content of the surface portion was 7 wt%.

窒素イオン注入;放電により生成した窒素イオンビーム
を被接合面に照射して窒素イオンを注入した0表面部の
N含有量は15wt%であった。
Nitrogen ion implantation: The N content of the surface portion into which nitrogen ions were implanted by irradiating the surfaces to be bonded with a nitrogen ion beam generated by discharge was 15 wt%.

CVD:400℃に加熱したCr(OCtlIs)s及
びN113ガスを被接合面に案内し、表面に窒化Cr層
を形成させた3表面部のN濃度は10wt%であった。
CVD: Cr(OCtlIs)s and N113 gas heated to 400° C. were guided to the surface to be joined, and a Cr nitride layer was formed on the surface.The N concentration of the three surface portions was 10 wt%.

PVD:Nt13ガス中でステンレス鋼をターゲットと
して窒化物をスパッタ蒸着した6表層部のNfi度は8
@t%であった。
PVD: Nitride was sputter-deposited using stainless steel as a target in Nt13 gas.The Nfi degree of the 6 surface layer was 8.
It was @t%.

その後、このようにして得た接合部を含む曲げ試験片(
4m曽T X 10+*mW X 80mm L )、
引張試験片(平行部4u+eφX 50m5+ L )
 、および腐食試験片(2論mT×15−■φ)を採取
しそれぞれの試験に供した。なお、曲げ試験は密着曲げ
を行い破断するか否かを評価した。腐食試験は80℃、
3.5%塩化ナトリウム水溶液中で、試験片を掃引速度
20mV/sinにて陽分掻し局部腐食の発生状況によ
り評価した。
Thereafter, a bending test piece containing the joint thus obtained (
4msoT x 10+*mW x 80mmL),
Tensile test piece (parallel part 4u+eφX 50m5+L)
, and corrosion test pieces (2 theory mT x 15 - ■φ) were taken and subjected to each test. In the bending test, close contact bending was performed to evaluate whether or not it would break. Corrosion test at 80℃
The test piece was positively scratched in a 3.5% aqueous sodium chloride solution at a sweep rate of 20 mV/sin and evaluated based on the occurrence of local corrosion.

比較のため通常のB含有インサート材を用いた拡散接合
も行い同様の試験に供した。
For comparison, diffusion bonding using a normal B-containing insert material was also performed and subjected to the same test.

それらの結果もまとめて第2表に示す。The results are also summarized in Table 2.

第2表に見られるように従来のB含有インサート材では
、接合部で腐食が発生したが、本発明の実施例に相当す
るものでは母材部が腐食し接合部の耐食性劣化は見られ
なかった。
As shown in Table 2, in the conventional B-containing insert material, corrosion occurred at the joint, but in the material corresponding to the example of the present invention, the base material corroded and no deterioration in the corrosion resistance of the joint was observed. Ta.

(試験2) 第1表中のw4Bから鋼Gの被接合面の片面を前述と同
じ条件1イオン注入法により高窒素化した後密着加熱し
て拡散接合した。接合条件は第3表に同じ、試験1と同
様に曲げ試験、引張試験、腐食試験を行った。
(Test 2) One side of the surface to be welded of steel G from w4B in Table 1 was enriched with nitrogen by the same condition 1 ion implantation method as described above, and then closely heated and diffusion bonded. The bonding conditions were the same as shown in Table 3, and the bending test, tensile test, and corrosion test were conducted in the same manner as Test 1.

また、比較のため従来のB含有インサート材を用いた拡
散接合部も試験に供した。
For comparison, a diffusion bonded portion using a conventional B-containing insert material was also tested.

結果をまとめて第4表に示す。The results are summarized in Table 4.

第4表に見られるように供試した全ての合金においてB
含有インサート材では接合部に腐食が発生したが、本発
明の実施例に相当するものでは母材部が腐食し接合部の
耐食性劣化は見られなかった。
As shown in Table 4, B
Corrosion occurred at the joint in the insert material containing the insert material, but in the case of the insert material corresponding to the example of the present invention, the base metal part corroded and no deterioration in the corrosion resistance of the joint was observed.

(以下余白) 第3表 (発明の効果) 以上からも明らかなように、本発明はオーステナイト系
および二相系高合金から選んだ高合金同士の拡散接合に
おける接合部の耐食性劣化の防止に大きな効果を持つ、
故に従来拡散接合法の適用が不可能であった海水等の腐
食環境で使用する機器、構造材への広い適用も可能であ
りその利用価値は大きい。
(Leaving space below) Table 3 (Effects of the Invention) As is clear from the above, the present invention has a significant effect on preventing deterioration of corrosion resistance of joints in diffusion bonding of high alloys selected from austenitic and dual-phase high alloys. have an effect,
Therefore, it can be widely applied to equipment and structural materials used in corrosive environments such as seawater, to which conventional diffusion bonding methods could not be applied, and its utility value is great.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(イ)、(ロ)は、実施例における拡散接合に用
いた試験片の形状、寸法(an)を示すそれぞれ側面図
および端面図である。
FIGS. 1A and 1B are a side view and an end view, respectively, showing the shape and dimensions (an) of a test piece used for diffusion bonding in an example.

Claims (1)

【特許請求の範囲】[Claims] Cr:15重量%以上30重量%未満を含むオーステナ
イト系および二相系高合金から選んだ高合金同士の接合
方法において、被接合面の一方あるいは両方に高窒素化
処理を施し、その後被接合面を密着加熱して接合せしめ
ることを特徴とする高合金の拡散接合方法。
In a method for joining high alloys selected from austenitic and dual-phase high alloys containing Cr: 15% by weight or more and less than 30% by weight, one or both of the surfaces to be joined are subjected to high nitrogen treatment, and then the surfaces to be joined are A diffusion bonding method for high alloys, which is characterized by closely heating and bonding.
JP11406388A 1988-05-11 1988-05-11 Diffusion joining method for high alloy Pending JPH01284488A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11406388A JPH01284488A (en) 1988-05-11 1988-05-11 Diffusion joining method for high alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11406388A JPH01284488A (en) 1988-05-11 1988-05-11 Diffusion joining method for high alloy

Publications (1)

Publication Number Publication Date
JPH01284488A true JPH01284488A (en) 1989-11-15

Family

ID=14628103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11406388A Pending JPH01284488A (en) 1988-05-11 1988-05-11 Diffusion joining method for high alloy

Country Status (1)

Country Link
JP (1) JPH01284488A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222615A (en) * 2020-08-28 2021-01-15 西安交通大学 Method for improving weldability of molybdenum and molybdenum alloy through nitriding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222615A (en) * 2020-08-28 2021-01-15 西安交通大学 Method for improving weldability of molybdenum and molybdenum alloy through nitriding
CN112222615B (en) * 2020-08-28 2022-04-05 西安交通大学 Method for improving weldability of molybdenum and molybdenum alloy through nitriding

Similar Documents

Publication Publication Date Title
Willenbruch et al. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel
EP0070177B1 (en) Diffusion bonding
US3198609A (en) Brazed structure and method of brazing
JPH01284488A (en) Diffusion joining method for high alloy
JPS61108483A (en) Manufacture of titanium clad steel by hot rolling
JPH02182378A (en) Submerged arc welding procedure for high-strength cr-mo steel
US2944891A (en) Brazing alloys
JPS63119993A (en) Diffusion joining method
JPS6188984A (en) Manufacture of titanium clad material
JPS62197294A (en) Mig arc welding wire for austenitic stainless steel
KR100262211B1 (en) Method of hot roll bonding of stainless clad steel
JPH0231631B2 (en)
KR930007666B1 (en) Melting induced diffusion bonding
JPS6167761A (en) Cold worked member of austenitic stainless steel for nuclear reactor
JPH02179855A (en) Free-cutting soft-magnetic stainless steel
JPS6188985A (en) Manufacture of titanium clad material
JPS61276780A (en) Welding performance method for two phase stainless steel
JPS58164769A (en) Perfectly austenitic stainless steel with superior resistance to weld hot cracking
JPS6188997A (en) Wire for welding 9cr-1mo steel
JPH0570930A (en) Crevice corrosion resistant surface modified ti or ti base alloy member
JPS63213633A (en) Highly corrosion resistant clad steel pipe for line pipe
JPS59229414A (en) Improvement of corrosion resistance in weld zone of two-phase stainless steel
JPH0289589A (en) Bond for unlike materials having high corrosion resistance and its production
JPH02199372A (en) Connecting structure for steel and packing and manufacture thereof
JPS62254989A (en) Connection of aluminum or aluminum alloy member by solid state diffusion