JPH01283831A - Charged beam exposing method - Google Patents

Charged beam exposing method

Info

Publication number
JPH01283831A
JPH01283831A JP11317088A JP11317088A JPH01283831A JP H01283831 A JPH01283831 A JP H01283831A JP 11317088 A JP11317088 A JP 11317088A JP 11317088 A JP11317088 A JP 11317088A JP H01283831 A JPH01283831 A JP H01283831A
Authority
JP
Japan
Prior art keywords
current value
exposure
current
focus
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11317088A
Other languages
Japanese (ja)
Other versions
JP2705102B2 (en
Inventor
Yasushi Takahashi
靖 高橋
Shinji Miyagi
宮城 慎司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP63113170A priority Critical patent/JP2705102B2/en
Publication of JPH01283831A publication Critical patent/JPH01283831A/en
Application granted granted Critical
Publication of JP2705102B2 publication Critical patent/JP2705102B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately focus a beam to all exposure areas so as to enable formation of precise patterns by setting current of coil for focus adjustment, for each exposure area, to such a current value that the focus meets at the exposure area. CONSTITUTION:Since reflected electrons or secondary electrons go out of the surface of a substrate 2 even if there is a photosensitive film on a substrate 2, if the convergent point of a beam 1 accords with the surface of the substrate 2 as shown in b1, the peak value (p) of a differential waveform becomes maximum, and if the convergent point slides upward or downward as shown in b2 or b3, the peak value (p) becomes small according to its slide. Therefore, if defining the peak value (p) in current values I1-I5 as P1-P5, and taking the current value in X axis (abscissa) and the peak value (p) in Y axis (ordinate), and approximating both relations with quadratic curve Y=a(x-b)<2>+c and seeking a current value at a point that the maximum point of the quadratic curve, i.e., the peak value becomes maximum, that current value becomes current value Im. Hereby, it becomes possible to focus beams to all exposure areas and to form precise patterns.

Description

【発明の詳細な説明】 〔概 要〕 集束荷電ビームによる露光の焦点合わせを焦点調整用コ
イルの電流の加減によって行う荷電ビーム露光装置を用
いて、被露光基板表面に分布する複数の露光令π域を露
光する方法に関し、全ての露光領域に対して焦点が良く
合うようにすることを目的とし、 被露光基板表面に露光領域を外した複数の位置を設定し
て、その位置で被露光基板表面に焦点が合うときの焦点
調整用コイルの電流値を各位置毎に求め、露光領域の中
心に対する該露光領域を囲む上記位置からの補間により
、該位置の上記電流値から該露光領域に焦点が合う電流
値を各露光領域毎に求め、その電流値に焦点調整用コイ
ルの電流を合わせて該当する露光領域を露光するように
構成し、また、上記設定した位置で焦点が合うときの電
流値は、段差のあるマーク、電流値を切り替えたビーム
走査、反射または二次電子の強度の微分波形のピーク値
、及びそのピーク値に近似する二次曲線を利用して求め
るように構成する。
[Detailed Description of the Invention] [Summary] Using a charged beam exposure apparatus that focuses exposure using a focused charged beam by adjusting the current of a focusing coil, a plurality of exposure orders π distributed on the surface of a substrate to be exposed are used. Regarding the method of exposing the exposed area, in order to ensure that all exposed areas are well focused, multiple positions are set on the surface of the exposed substrate outside the exposed area, and the exposed area is exposed at those positions. The current value of the focus adjustment coil when the surface is in focus is determined for each position, and by interpolation from the above positions surrounding the exposure area to the center of the exposure area, the exposure area is brought into focus from the above current value at the position. The current value that matches the current value is determined for each exposure area, and the current value of the focus adjustment coil is adjusted to that current value to expose the corresponding exposure area. The value is determined using a mark with a step, beam scanning by switching the current value, a peak value of a differential waveform of reflected or secondary electron intensity, and a quadratic curve approximating the peak value.

〔産業上の利用分野〕[Industrial application field]

本発明は、荷電ビーム露光方法に係り、特に、集束荷電
ビームによる露光の焦点合わせを焦点調整用コイルの電
流の加減によって行う荷電ビーム露光装置を用いて、被
露光基板表面に分布する複数の露光領域を露光する方法
に関する。
The present invention relates to a charged beam exposure method, and more particularly, to a charged beam exposure method that uses a charged beam exposure apparatus that focuses exposure using a focused charged beam by adjusting the current of a focusing coil to produce a plurality of exposed beams distributed on the surface of a substrate to be exposed. Relating to a method of exposing an area.

上記荷電ビーム露光は、集束荷電ビームとして電子ビー
ムやイオンビームが用いられ、半導体装置やその製造に
用いられるホトマスクなどの微細なパターンの形成に適
している。そしてパターンの一層の微細化が進むに従い
、焦点合わせに一層の留意が必要となってきた。
The above-mentioned charged beam exposure uses an electron beam or an ion beam as a focused charged beam, and is suitable for forming fine patterns on semiconductor devices and photomasks used in their manufacture. As patterns become finer, more attention has to be paid to focusing.

〔従来の技術〕[Conventional technology]

第3図は荷電ビーム露光装置の説明図であり、(a)は
荷電ビーム光学系の一例の側面図、(b1)〜(b3)
は焦点ボケを示す側面図、(c)は装置の焦点合わせに
関する要部の構成図、である。
FIG. 3 is an explanatory diagram of a charged beam exposure apparatus, (a) is a side view of an example of a charged beam optical system, (b1) to (b3)
(c) is a side view showing out-of-focus, and (c) is a configuration diagram of main parts related to focusing of the device.

同図において、(a)の側面図は荷電ビーム光学系の一
例を示し、荷電ビーム源Sから出射した荷電ビーム1は
、アパーチャA1集束レンズし、偏向電極Eなどの作用
により集束し且つ所要に偏向して、被露光基板2の表面
を照射し露光する。
In the same figure, the side view of (a) shows an example of a charged beam optical system, in which a charged beam 1 emitted from a charged beam source S is focused by an aperture A1 focusing lens, and is focused by the action of a deflection electrode E, etc. It is deflected to irradiate and expose the surface of the substrate 2 to be exposed.

その際、(b1)に示すようにビーム1の集束点が基板
2の表面に合致すれば焦点の合った露光となるが、(b
2) (b3)に示すように基板2の表面が上または下
にずれると焦点ボケが発生する。その場合には、ビーム
1を破線のように補正して焦点を合わせる必要がある。
At that time, if the focal point of the beam 1 matches the surface of the substrate 2 as shown in (b1), the exposure will be in focus, but (b
2) As shown in (b3), if the surface of the substrate 2 shifts upward or downward, out-of-focus occurs. In that case, it is necessary to correct and focus the beam 1 as shown by the broken line.

そのため、(a)に示すように荷電ビーム光学系には焦
点調整用コイル3を設け、また、(c)に示すように装
置には、試料台上で高さの異なる二つの基準面5a、5
bと、基準面5a、5bの高さ及び試料台上の基板2の
表面高さを測定し得る例えばレーザ干渉計などの光学的
測定器6と、測定器6の信号によりコイル3の電流を設
定し得る電流制御回路を設けである。
Therefore, as shown in (a), the charged beam optical system is provided with a focusing coil 3, and as shown in (c), the apparatus has two reference planes 5a at different heights on the sample stage. 5
b, an optical measuring device 6 such as a laser interferometer capable of measuring the heights of the reference planes 5a and 5b and the surface height of the substrate 2 on the sample stage, and a current in the coil 3 based on the signal from the measuring device 6. A configurable current control circuit is provided.

なお、この電流制御回路は、多くの場合、ビームlの偏
向により生ずる焦点ボケに対して、これを補正するよう
にコイル3の電流を補正する機能をも有している。
Note that, in many cases, this current control circuit also has a function of correcting the current of the coil 3 to correct out of focus caused by deflection of the beam l.

また、(a)における4は、基板2がビームlの照射を
受けて出射する反射または二次電子を検出する電子検出
器であり、基板2の面方向の位置合わせなどに用いられ
る。
Further, 4 in (a) is an electron detector that detects reflected or secondary electrons emitted when the substrate 2 is irradiated with the beam 1, and is used for positioning the substrate 2 in the surface direction.

基板2に対する焦点合わせは、測定器6が基準面5a及
び5bの高さを測定した際の信号と、基準面5a及び5
bに焦点を合わせた際のコイル3の電流値から両者の相
関を求めておき、基板2表面の各露光領域毎にその高さ
を測定器6で測定し、その信号から各露光領域毎にコイ
ル3の電流値を設定することによって行う。
Focusing on the substrate 2 is performed using the signals obtained when the measuring device 6 measures the heights of the reference planes 5a and 5b and the reference planes 5a and 5b.
The correlation between the two is determined from the current value of the coil 3 when focusing on point b, and the height is measured for each exposure area on the surface of the substrate 2 with the measuring device 6, and from the signal, the height is determined for each exposure area. This is done by setting the current value of the coil 3.

か(して露光は、各露光領域毎に焦点合わせがなされて
、基板2の反りなどにより露光領域が上下にずれても支
障を生ずることがない。
(Thus, the exposure is focused for each exposure area, and no problem occurs even if the exposure area is shifted vertically due to warpage of the substrate 2 or the like.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記の露光方法では、焦点合わせにするコ
イル3の電流値の求めが、基準面5a、5b及び測定器
6を介して行うため間接的になって誤差を含み易く、然
も、測定r&6が光学的なものであるため、基板2上の
感光膜(レジスト膜)の存在により基板2の表面とは異
なった高さに合わせて行われるというミスを起こす問題
がある。このことは、半導体装置などにおいてパターン
の一層の微細化が進んだ際に的確なパターンの形成を困
難にさせる。
However, in the above exposure method, since the current value of the coil 3 for focusing is determined via the reference planes 5a, 5b and the measuring device 6, it is indirect and tends to include errors. Since it is an optical method, there is a problem in that the presence of a photoresist film (resist film) on the substrate 2 causes a mistake in that it is performed at a different height from the surface of the substrate 2. This makes it difficult to form accurate patterns when patterns become even finer in semiconductor devices and the like.

そこで本発明は、集束荷電ビームによる露光の焦点合ね
せを焦点調整用コイルの電流の加減によって行う荷電ビ
ーム露光装置を用いて、被露光基板表面に分布する複数
の露光領域を露光する方法において、全ての露光領域に
対して、光学的測定器で基板表面の高さを測定すること
なしに、ビームによって直接的に焦点が良く合うように
することを目的とする。
Therefore, the present invention provides a method for exposing a plurality of exposure areas distributed on the surface of a substrate to be exposed using a charged beam exposure apparatus that focuses exposure by a focused charged beam by adjusting the current of a focusing coil. , the aim is to ensure that all exposure areas are well focused directly by the beam without having to measure the height of the substrate surface with an optical measuring device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、被露光基板表面に露光領域を外した複数の
位置を設定して、その位置で被露光基板表面に焦点が合
うときの焦点調整用コイルの電流値を各位置毎に求め、
露光領域の中心に対する該露光領域を囲む上記位置から
の補間により、該位置の上記電流値から該露光領域に焦
点が合う電流値を各露光領域毎に求め、その電流値に焦
点調整用コイルの電流を合わせて該当する露光領域を露
光する本発明の荷電ビーム露光方法によって解決される
The above purpose is to set a plurality of positions on the surface of the exposed substrate outside the exposure area, and to calculate the current value of the focus adjustment coil for each position when the surface of the exposed substrate is focused at that position.
By interpolating from the above positions surrounding the exposure area to the center of the exposure area, the current value at which the exposure area is focused is determined for each exposure area from the above current value at the position, and the current value is applied to the focus adjustment coil. This problem is solved by the charged beam exposure method of the present invention, in which currents are combined to expose a corresponding exposure area.

本発明によれば、上記設定した位置で焦点が合うときの
焦点調整用コイルの電流値は、その位置に段差のあるマ
ークを設け、焦点調整用コイルの電流値を適宜の間隔で
複数回切り替えその都度マークを上記ビームで走査して
、走査の際に発生する反射または二次電子の強度の微分
波形のピーク値を各走査毎に求め、そのピーク値に近似
する対電流値の二次曲線を求めて、その曲線によるピー
ク値が最大となる点の電流値とするのが望ましい。
According to the present invention, the current value of the focus adjustment coil when the focus is adjusted at the set position is determined by providing a stepped mark at that position, and changing the current value of the focus adjustment coil multiple times at appropriate intervals. Each time the mark is scanned with the beam, the peak value of the differential waveform of the intensity of reflection or secondary electrons generated during scanning is determined for each scan, and a quadratic curve of the current value versus current value approximates the peak value. It is desirable to find the current value at the point where the peak value according to the curve is maximum.

〔作 用〕[For production]

本発明の上記方法によれば、焦点調整用コイルの電流が
、各露光領域毎にその露光領域で焦点が合うような電流
値に設定される。
According to the method of the present invention, the current of the focus adjustment coil is set for each exposure area to a current value that brings the image into focus in that exposure area.

また、その設定の基になる上記設定した位置で焦点が合
うときの電流値の求めが、露光用ビームの照射によって
行うため直接的になり、従来の場合より誤差が少なくな
る。
Further, since the current value when the current value is focused at the set position, which is the basis of the setting, is determined by irradiation with the exposure beam, it is straightforward, and errors are reduced compared to the conventional case.

かくして、全ての露光領域に対して焦点が良く合うよう
になる。そしてそれは、半導体装置などにおいてパター
ンの一層の微細化が進んでも的確なパターンの形成を可
能にさせる。
In this way, all exposure areas can be well focused. This makes it possible to form accurate patterns even when patterns become even finer in semiconductor devices and the like.

〔実施例〕〔Example〕

以下本発明による荷電ビーム露光方法の実施例について
第1図及び第2図を用いて説明する。第1図は実施例を
説明する平面図、第2図はマークに焦点が合う電流値の
求めの説明図、である。
Embodiments of the charged beam exposure method according to the present invention will be described below with reference to FIGS. 1 and 2. FIG. 1 is a plan view illustrating an embodiment, and FIG. 2 is a diagram illustrating the determination of a current value that focuses on a mark.

本発明の露光方法は、第3図で説明した露光装置を使用
するが、被露光基板2の表面に分布する複数の露光領域
に対し、各露光領域毎に焦点調整用コイル3の電流値を
ビーム1の走査の利用による直接的な方法で求める点が
従来方法と異なっている。
The exposure method of the present invention uses the exposure apparatus explained in FIG. It differs from the conventional method in that it is determined by a direct method using scanning of the beam 1.

一般に、上記露光装置における荷電ビーム1の偏向範囲
が半導体装置の1チップ分の広さより小さいことから、
露光は、基板2の移動により上記偏向範囲を基板2上に
並べて、露光の範囲が1チップ分に渡るようにし、更に
は複数チップの分に及ぶようにする。
Generally, since the deflection range of the charged beam 1 in the exposure apparatus is smaller than the width of one chip of a semiconductor device,
In the exposure, the deflection ranges are arranged on the substrate 2 by moving the substrate 2, so that the exposure range covers one chip or even a plurality of chips.

そこで、上記露光領域は、試料台上の基板2の表面高さ
の変動状況により、l偏向範囲として捕らえたり、或い
は1チップ分として捕えるといった具合に、適宜の広さ
の領域に設定すれば良い。
Therefore, the exposure area may be set to an appropriate size area, such as capturing it as one deflection range or capturing it as one chip, depending on the fluctuation situation of the surface height of the substrate 2 on the sample stage. .

そして、コイル3の各露光領域毎に更新する電流値は、
次のようにして求める。
The current value updated for each exposure area of the coil 3 is
Find it as follows.

即ち第1図(a)に示すように、基板2の表面に露光領
域7を外した複数の位置を設定し、そこに、段差のある
マーク8を設ける。マーク8を設ける位置は、例えば上
記チップの4隅の外側近傍などで良く、マーク8は、例
えば3〜10μm角で深さ1μm程度の窪みまたは突起
で良い。従って、基板2の面方向の位置合わせのために
設けられた位置合わせマークをマーク8に兼用すること
も可能である。
That is, as shown in FIG. 1(a), a plurality of positions are set on the surface of the substrate 2 outside the exposure area 7, and marks 8 with steps are provided at the positions. The mark 8 may be provided, for example, near the outside of the four corners of the chip, and the mark 8 may be, for example, a depression or protrusion of 3 to 10 μm square and about 1 μm deep. Therefore, it is also possible to use the alignment mark provided for alignment in the plane direction of the substrate 2 as the mark 8.

基板2を露光するように試料台上に配置し、第2図によ
り後述するようにしてマーク8の位置に焦点が合うとき
のコイル3の電流値を各マーク8毎に求める。
The substrate 2 is placed on a sample stage so as to be exposed, and the current value of the coil 3 when the mark 8 is in focus is determined for each mark 8 as will be described later with reference to FIG.

そして、任意の露光領域7を露光する際のコイル3の電
流値は、第1図(b)に示すように当該露光領域7の周
囲にあるマーク88〜8d (第1図(a)におけるマ
ーク8の一部)で求めた上記電流値から、補間法により
求める。
The current value of the coil 3 when exposing an arbitrary exposure area 7 is determined by the marks 88 to 8d around the exposure area 7 (marks 88 to 8d in FIG. 1(a)) as shown in FIG. 1(b). It is determined by interpolation from the above-mentioned current value determined in step 8).

その部分をより具体的に説明するならば、例えば次のよ
うである。第1図(b)において、マーク88〜8dの
配置が方形であるとして、マーク8dを原点にしたマー
ク8aの座標を(xo、0)、マーク8cの座標を(0
,Yo)、露光領域7の中心の座標を(X、 Y)とし
、また、マーク88〜8dの位置に焦点が合うときの上
記電流値をIa〜Idとすれば、当該露光領域7を露光
する際のコイル3の電流値■は、補間法により 1 = (Id (Xo −x)(Yo  Y)+Ia
X (Yo  Y)  +IbX Y+Ic (XO−
X) ) /Xo Y。
To explain this part more specifically, for example, it is as follows. In FIG. 1(b), assuming that the marks 88 to 8d are arranged in a rectangular shape, the coordinates of the mark 8a with the mark 8d as the origin are (xo, 0), and the coordinates of the mark 8c are (0,
, Yo), the coordinates of the center of the exposure area 7 are (X, Y), and the current values when the marks 88 to 8d are focused are Ia to Id, then the exposure area 7 is exposed. The current value ■ of the coil 3 when
X (Yo Y) +IbX Y+Ic (XO-
X) ) /Xo Y.

で求められる。マーク88〜8dに相当するマーク8が
3個以上で露光領域7を囲むならば、補間法を適用して
同様に求めることができる。
is required. If the exposure area 7 is surrounded by three or more marks 8 corresponding to the marks 88 to 8d, the same can be obtained by applying the interpolation method.

そしてこの電流値Iは、当該露光領域7に対して焦点を
良く合わせるものとなる。
This current value I allows the exposure region 7 to be well focused.

ところで、マーク8の位置に焦点が合うときのコイル3
の電流値Imは、第2図に示すようにして求める。同図
における(a)はマーク8の平面図、(b1)〜(b3
)はマーク8を走査するビーム1と反射または二次電子
強度の微分波形との関係図、(c)は電流値1mを求め
る方法を示す図、である。
By the way, when the focus is on the position of mark 8, the coil 3
The current value Im is determined as shown in FIG. In the figure, (a) is a plan view of mark 8, (b1) to (b3)
) is a diagram showing the relationship between the beam 1 scanning the mark 8 and the differential waveform of reflected or secondary electron intensity, and (c) is a diagram showing a method for determining the current value 1 m.

先ず、電流値Isと思われるところを挟み適宜の間隔で
5段階の電流値■1〜I5を設定し、コイル3の電流を
電流値1.〜■5に切り替えながら第2図(a)に示す
ようにマーク8上をビーム1で走査して、走査の際に発
生する反射または二次電子を電子検出器4(第3図(a
)に図示)で検出しその強度の微分波形を求める。
First, five levels of current values 1 to I5 are set at appropriate intervals around the point that is thought to be the current value Is, and the current of the coil 3 is set to the current value 1. ~ ■ 5, scan the mark 8 with the beam 1 as shown in Fig. 2 (a), and collect the reflected or secondary electrons generated during scanning with the electron detector 4 (Fig. 3 (a)
) is detected and the differential waveform of its intensity is determined.

さすれば、基板2上に怒光膜が存在しても反射または二
次電子は基板2の表面から出射するため、第2図の(b
1)に示すようにビーム1の集束点が基板2の表面に合
致すれば微分波形のピーク値pが最大になり、(b2)
 (b3)に示すようにその集束点が上または下にずれ
るとそのずれに応じてピーク値pが小さくなる。一般に
電流値■1〜■5の中の何れかでピーク値pが最大にな
ることは希である。
In this case, even if there is an angry light film on the substrate 2, the reflected or secondary electrons will be emitted from the surface of the substrate 2.
As shown in 1), if the focal point of beam 1 coincides with the surface of substrate 2, the peak value p of the differential waveform becomes maximum, and (b2)
As shown in (b3), when the focal point shifts upward or downward, the peak value p decreases in accordance with the shift. Generally, it is rare that the peak value p becomes maximum at any of the current values (1) to (5).

そこで、電流値11〜15におけるピーク値pをp、〜
p、として、電流値をX軸(横軸)にピーク値pをY軸
(縦軸)に取って、両者の関係を二次曲線 Y=a (X−b) +c で近位させ、その二次曲線の最大点(Yが最大になる点
)即ちピーク値pが最大になる点の電流値を求めれば、
その電流値が電流値■−となる。第2図(c)はその様
子を示す。
Therefore, the peak value p at current values 11 to 15 is defined as p, ~
p, the current value is taken on the X axis (horizontal axis) and the peak value p is taken on the Y axis (vertical axis), and the relationship between the two is approximated by a quadratic curve Y = a (X - b) + c, and the If we find the current value at the maximum point of the quadratic curve (the point where Y is maximum), that is, the point where the peak value p is maximum, we get:
The current value becomes the current value -. FIG. 2(c) shows this situation.

このようにして求めた電流値Isは、その位置にビーム
1を照射して求めていることから、測定器6でその位置
の高さを測定することを介して電流値を求める従来の方
法に比べて、求め方が直接的となり誤差が少ない。
Since the current value Is obtained in this way is obtained by irradiating the beam 1 to that position, the conventional method of determining the current value by measuring the height of that position with the measuring device 6 is not possible. In comparison, the method of determination is more direct and there are fewer errors.

かくして、露光領域7を露光する際のコイル3の電流値
は、各露光領域7毎に焦点が精度良く合うように求めら
れるので、全ての露光領域7に対して焦点が良く合うよ
うになる。
In this way, the current value of the coil 3 when exposing the exposure area 7 is determined so that each exposure area 7 is accurately focused, so that all the exposure areas 7 are well focused.

然も本方法では、測定器6が不要であるため露光装置を
低廉化させることが可能である利点もある。
However, this method has the advantage that the cost of the exposure apparatus can be reduced because the measuring device 6 is not required.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の構成によれば、集束荷電ビ
ームによる露光の焦点合わせを焦点調整用コイルの電流
の加減によって行う荷電ビーム露光装置を用いて、被露
光基板表面に分布する複数の露光領域を露光する方法に
おいて、焦点調整用コイルの設定電流値をビームによっ
て直接的に求めて、全ての露光領域に対して焦点が良く
合うようにすることが可能になり、半導体装置などにお
いてパターンの一層の微細化が進んでも的確なパターン
の形成を可能にさせる効果がある。
As described above, according to the configuration of the present invention, a plurality of exposed light beams distributed on the surface of a substrate to be exposed are distributed using a charged beam exposure apparatus that performs focusing of exposure by a focused charged charged beam by adjusting the current of a focusing coil. In the method of exposing a region, it is now possible to directly obtain the set current value of the focus adjustment coil using a beam to ensure that all exposed regions are well focused, making it possible to improve pattern alignment in semiconductor devices, etc. This has the effect of making it possible to form a precise pattern even if further miniaturization progresses.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例を説明する平面図、 第2図はマークGト焦点が合う電流値の求めの説明図で
、同図の(a)はマークの平面図、(b1)〜(b3)
はマークを走査するビームと反射または二次電子強度の
微分波形との関係図、(c)は電流値1mを求める補間
法を示す図、 第3図は荷電ビーム露光装置の説明図で、同図の(a)
は荷電ビーム光学系の一例の側面図、(b1)〜(b3
)は焦点ボケを示す側面図、(c)は装置の焦点合わせ
に関する要部の構成図、 である。 図において、 1は荷電ビーム、 2は被露光基板、 3は焦点調整用コイル、 4は電子検出器、 7は露光領域、 8.8a〜8dはマーク、 I、〜■う、■…は3の電流値、 ps p+〜p5は微分波形のピーク値、である。 rb) 県 1 咀 第2 区 茶3 X
Fig. 1 is a plan view for explaining the embodiment, Fig. 2 is an explanatory view for determining the current value that brings the mark G into focus, (a) is a plan view of the mark, and (b1) to (b3)
is a diagram showing the relationship between the beam scanning the mark and the differential waveform of reflected or secondary electron intensity, (c) is a diagram showing the interpolation method for determining the current value of 1 m, and Figure 3 is an explanatory diagram of the charged beam exposure device. Figure (a)
are side views of an example of a charged beam optical system, (b1) to (b3)
) is a side view showing defocus, and (c) is a configuration diagram of the main parts related to focusing of the device. In the figure, 1 is a charged beam, 2 is a substrate to be exposed, 3 is a focus adjustment coil, 4 is an electron detector, 7 is an exposure area, 8.8a to 8d are marks, I, ~■u, ■... are 3 The current value of ps p+ to p5 is the peak value of the differential waveform. rb) Prefecture 1 Tsui 2 Ward Cha 3 X

Claims (1)

【特許請求の範囲】 1)集束荷電ビームによる露光の焦点合わせを焦点調整
用コイルの電流の加減によって行う荷電ビーム露光装置
を用いて、被露光基板表面に分布する複数の露光領域を
露光するに際して、 被露光基板表面に露光領域を外した複数の位置を設定し
て、その位置で被露光基板表面に焦点が合うときの焦点
調整用コイルの電流値を各位置毎に求め、露光領域の中
心に対する該露光領域を囲む上記位置からの補間により
、該位置の上記電流値から該露光領域に焦点が合う電流
値を各露光領域毎に求め、その電流値に焦点調整用コイ
ルの電流を合わせて該当する露光領域を露光することを
特徴とする荷電ビーム露光方法。 2)上記設定した位置で焦点が合うときの焦点調整用コ
イルの電流値は、その位置に段差のあるマークを設け、
焦点調整用コイルの電流値を適宜の間隔で複数回切り替
えその都度マークを上記ビームで走査して、走査の際に
発生する反射または二次電子の強度の微分波形のピーク
値を各走査毎に求め、そのピーク値に近似する対電流値
の二次曲線を求めて、その曲線によるピーク値が最大と
なる点の電流値とすることを特徴とする請求項1記載の
荷電ビーム露光方法。
[Scope of Claims] 1) When exposing a plurality of exposure areas distributed on the surface of a substrate to be exposed using a charged beam exposure device that focuses exposure by a focused charged beam by adjusting the current of a focusing coil. , Set multiple positions on the exposed substrate surface outside the exposed area, calculate the current value of the focus adjustment coil for each position when the exposed substrate surface is in focus at that position, and then By interpolation from the position surrounding the exposure area, the current value at which the exposure area is focused is determined for each exposure area from the current value at the position, and the current of the focus adjustment coil is adjusted to that current value. A charged beam exposure method characterized by exposing a corresponding exposure area. 2) The current value of the focus adjustment coil when the focus is achieved at the above set position is determined by setting a mark with a step at that position.
The current value of the focus adjustment coil is switched multiple times at appropriate intervals, and the mark is scanned with the beam each time, and the peak value of the differential waveform of the intensity of reflections or secondary electrons generated during scanning is determined for each scan. 2. The charged beam exposure method according to claim 1, wherein the current value is determined by determining a quadratic curve of the current value versus the current value that approximates the peak value, and determining the current value at the point where the peak value of the curve is the maximum.
JP63113170A 1988-05-10 1988-05-10 Charged beam exposure method Expired - Lifetime JP2705102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63113170A JP2705102B2 (en) 1988-05-10 1988-05-10 Charged beam exposure method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63113170A JP2705102B2 (en) 1988-05-10 1988-05-10 Charged beam exposure method

Publications (2)

Publication Number Publication Date
JPH01283831A true JPH01283831A (en) 1989-11-15
JP2705102B2 JP2705102B2 (en) 1998-01-26

Family

ID=14605332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63113170A Expired - Lifetime JP2705102B2 (en) 1988-05-10 1988-05-10 Charged beam exposure method

Country Status (1)

Country Link
JP (1) JP2705102B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134936A (en) * 1984-07-26 1986-02-19 Hitachi Ltd Specimen surface height correcting process of electron beam image drawing device
JPS63178523A (en) * 1987-01-20 1988-07-22 Toshiba Corp Automatic focusing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134936A (en) * 1984-07-26 1986-02-19 Hitachi Ltd Specimen surface height correcting process of electron beam image drawing device
JPS63178523A (en) * 1987-01-20 1988-07-22 Toshiba Corp Automatic focusing method

Also Published As

Publication number Publication date
JP2705102B2 (en) 1998-01-26

Similar Documents

Publication Publication Date Title
US4860374A (en) Apparatus for detecting position of reference pattern
US6706456B2 (en) Method of determining exposure conditions, exposure method, device manufacturing method, and storage medium
US4334139A (en) Apparatus for writing patterns in a layer on a substrate by means of a beam of electrically charged particles
US6890692B2 (en) Method of focus monitoring and manufacturing method for an electronic device
JPH07111233A (en) Exposure method
CA1103813A (en) Apparatus for electron beam lithography
US5148033A (en) Electron beam exposure device and exposure method using the same
JPH11191529A (en) Charge beam exposure
JPH09320931A (en) Method for measuring imaging characteristic and transfer device by the method
EP0023810A1 (en) Method of electron beam exposure
US6818364B2 (en) Charged particle beam exposure apparatus and exposure method
US5712488A (en) Electron beam performance measurement system and method thereof
US5936252A (en) Charged particle beam performance measurement system and method thereof
JP2705102B2 (en) Charged beam exposure method
JP2001077004A (en) Aligner and electron beam aligner
JPS6258621A (en) Fine pattern forming method
JP3522045B2 (en) Charged particle beam exposure apparatus and method
TW472298B (en) Electron beam exposure apparatus, adjusting method, and block mask for adjustment
JP3450437B2 (en) Electron beam exposure method, developing method and apparatus
JP3110363B2 (en) Adjustment method of charged beam writing system
KR100221022B1 (en) Apparatus for optical lithography
JPH0346220A (en) Focus setting method for electron beam lithography and exposure device
JPH10284384A (en) Method and system for charged particle beam exposure
JPH0750665B2 (en) Charged beam drawing device
JPH11121348A (en) Charged beam exposing method