JPH0128276B2 - - Google Patents

Info

Publication number
JPH0128276B2
JPH0128276B2 JP56101609A JP10160981A JPH0128276B2 JP H0128276 B2 JPH0128276 B2 JP H0128276B2 JP 56101609 A JP56101609 A JP 56101609A JP 10160981 A JP10160981 A JP 10160981A JP H0128276 B2 JPH0128276 B2 JP H0128276B2
Authority
JP
Japan
Prior art keywords
sleeve
containment vessel
pipe
reactor
piping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56101609A
Other languages
Japanese (ja)
Other versions
JPS582792A (en
Inventor
Eiji Shiho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP56101609A priority Critical patent/JPS582792A/en
Publication of JPS582792A publication Critical patent/JPS582792A/en
Publication of JPH0128276B2 publication Critical patent/JPH0128276B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Devices For Medical Bathing And Washing (AREA)
  • Discharge Heating (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はコンクリート製の原子炉格納容器にお
ける配管貫通装置に関する。 〔従来の技術〕 従来、原子炉格納容器は耐圧性と気密性を有す
る鋼製の原子炉格納容器を設け、この周囲にコン
クリート製の遮蔽壁を設け、内部で冷却材の漏洩
等が生じた場合の放射性物質の拡散を防止すると
ともに放射線の遮蔽をおこなつていた。しかし、
このようなものでは構造が複雑となり、建設コス
トが高くなる不具合があつた。そして、このよう
な鋼製の原子炉格納容器に代つて第1図および第
2図に示す如きコンクリート製の原子炉格納容器
が開発されている。すなわち、図中1は格納容器
本体であつて、鉄筋コンクリート等で強固に形成
され、耐圧性と放射線の遮蔽能力が与えられてい
る。そして、この格納容器本体1の内面には比較
的薄い鋼板からなるライナー2が密着して設けら
れ、気密性が与えられている。そして、この原子
炉格納容器内には原子炉圧力容器3が収容され、
また下部にはサプレツシヨンチヤンバ4が形成さ
れている。また、配管たとえば主蒸気配管5は配
管貫通装置を介してこの原子炉格納容器を貫通
している。ところで、このようなコンクート製の
原子炉格納容器は構造が簡単であるとともに原子
炉格納容器自体が充分な強度、剛性を有している
ので配管等をこの原子炉格納容器に支持させるこ
とができる長所がある。そして、従来のものは第
2図に示す如く配管貫通装置を介して配管たと
えば主蒸気配管5をこの原子炉格納容器に支持し
ている。すなわち、7は貫通スリーブであつて格
納容器本体1およびライナー2を貫通して設けら
れ、アンカー8…、およびアンカープレート9に
より格納容器本体1に固定されている。そして、
この貫通スリーブ7内には主蒸気配管5が間隙を
もつて挿通されている。そして、この貫通スリー
ブ7の原子炉格納容器外側(第2図では右方)の
端部には閉塞支持部材10が設けられており、こ
の閉塞支持部材10によつて貫通スリーブ7と主
蒸気配管5との間が気密に閉塞され、またこの主
蒸気配管5が貫通スリーブ7に支持されている。
したがつて熱膨張等によつてこの主蒸気配管5に
生じる軸方向の荷重やねじれ荷重は上記閉塞支持
部材10、貫通スリーブ7を介して格納容器本体
1で支持される。 〔発明が解決しようとする課題〕 しかし、このようなものは主蒸気配管5の荷重
が貫通スリーブ7のアンカー8…やアンカープレ
ート9によつて格納容器本体1に伝えられるの
で、この格納容器本体1にはこの部分に局部的な
荷重が作用することになる。また、この主蒸気配
管5は高温の蒸気が流通されるので、その熱が閉
塞支持部材10を介して貫通スリーブ7に伝導さ
れ、また輻射、対流によつてもこの貫通スリーブ
7に伝えられる。そして、従来は、貫通スリーブ
7の外端部すなわち格納容器本体1の外面から原
子炉建屋内に突出している部分は原子炉建屋内の
低温(10〜40℃)の空気によつて冷却され、また
貫通スリーブ7の格納容器本体1を貫通している
部分は貫通スリーブ7と主蒸気配管5との間の間
〓内に流入して循環する原子炉格納容器内の気体
(窒素ガス等)によつて冷却されるが、原子炉格
納容器内の気体は57℃程度の高温であるために、
この気体による貫通スリーブ7の冷却効果はあま
り期待できず、そのため、貫通スリーブ7の格納
容器本体1を貫通している部分が主蒸気配管5か
らの熱によつて昇温して貫通スリーブ7が熱膨張
し、その応力が格納容器本体1に働いて、格納容
器本体1の配管貫通部のコンクリートに亀裂等を
発生させることがある。このため、この配管貫通
装置の近傍における格納容器本体1の建全性評
価が厳しくなり、この配管貫通装置の近傍部分
に特別の補強等を施さねばならない等の不具合が
あつた。このため、従来は主蒸気配管5と貫通ス
リーブとの間に断熱材を介在させることもなさ
れているが効果が不充分であつた。また主蒸気配
管5と貫通スリーブとの間に冷却管を設け、こ
の冷却管に冷媒を流通させて貫通スリーブ7の温
度上昇を防止することもなされているが、このよ
うなものは構造が複雑になる等の不具合があつ
た。 本発明は以上の事情にもとづいてなされたもの
で、その目的とするところはコンクリート製の原
子炉格納容器の建全性に悪影響を与えることがな
く、かつ構造が簡単な配管貫通装置を得ることに
ある。 〔課題を解決するための手段〕 本発明は上記目的を達成するために、コンクリ
ート製の原子炉格納容器を貫通して設けられた貫
通スリーブと、この貫通スリーブ内に間〓をもつ
て挿通された配管と、上記貫通スリーブと上記配
管との間の間〓を閉塞する閉塞部材とを具備し、
かつ前記閉塞部材は上記貫通スリーブの原子炉格
納容器内側の端部に設けて、上記貫通スリーブと
上記配管との間の間〓を原子炉建屋内に開放させ
たものである。 〔作用〕 すなわち、本発明は、貫通スリーブと配管との
間の間〓を閉塞する閉塞部材を上記貫通スリーブ
の原子炉格納容器内側の端部に設けて、上記貫通
スリーブと上記配管との間の間〓を原子炉建屋内
に開放させることにより、貫通スリーブと配管と
の間の間〓に原子炉建屋内の低温の空気を流入さ
せるようにしたものであり、このようにすれば、
貫通スリーブと配管との間の間〓内に流入して循
環する原子炉建屋内の低温の空気によつて貫通ス
リーブが内側から冷却されるから、配管からの熱
による貫通スリーブの温度上昇を低くおさえるこ
とができる。したがつて本発明によれば、貫通ス
リーブの原子炉格納容器に貫通されている部分が
熱膨張してその応力が格納容器本体に働くのを確
実に防ぐことができるから、コンクリート製の原
子炉格納容器の健全性に悪影響を与えることはな
いし、また貫通スリーブと配管との間に断熱材を
介在させたり冷却管を設けたりする必要もないか
ら、構造も簡単である。 〔実施例〕 以下、本発明の一実施例を第3図および第4図
を参照して説明する。図中101は原子炉格納容
器であつて、マツト102上に構築され、原子炉
建屋103内に収容されている。そして、この原
子炉格納容器101は鉄筋コンクリート製の格納
容器本体104とこの格納容器本体104の内面
に張られたライナー105とから構成されてい
る。この格納容器本体104は強固に形成され、
耐圧性と放射線の遮蔽能力を備えている。また、
上記ライナー105は比較的薄い鋼板から形成さ
れ、気密性を与えるとともに格納容器本体104
の内面に密着しており、この原子炉格納容器10
1内に圧力が上昇した場合でもこの圧力によつて
変形しないように構成されている。また、このラ
イナー105の内面には型鋼等からなる補強部材
(図示せず)が取付けられており、格納容器本体
104との熱膨張差によつてこのライナー105
に生じる荷重を受け、このライナー105の局部
的な変形等を防止している。そして、この原子炉
格納容器101内はダイヤフラムフロア106に
よつて上下に区画され、上部はドライウエル10
7、下部はサプレツシヨンチヤンバ108に形成
されている。そして、この原子炉格納容器101
の底部からはペデスタル109が立設され、この
ペデスタル109上には原子炉圧力容器110が
据付けられている。そして、各種の配管たとえば
主蒸気配管111は配管貫通装置112によつて
この原子炉格納容器101外に導出されている。
以下この配管貫通装置112の構成を説明する。
図中113は貫通スリーブであつて円筒状をなし
ている。そして、この貫通スリーブ113は格納
容器本体104内に埋め込まれ、この格納容器本
体104およびライナー105を気密をもつて貫
通している。そして、この貫通スリーブ113は
アンカー114…およびアンカープレート115
によつて格納容器本体、104に固定されてい
る。なお、116…はガセツトである。そして、
この貫通スリーブ113の原子炉格納容器内部
(第4図では左側)側の端部は所定長さだけ突出
している。そしてこの貫通スリーブ113内には
主蒸気配管111が挿通され、この主蒸気配管1
11の外周面と貫通スリーブ113の内周面との
間には冷却用間隙117が形成されている。そし
てこの貫通スリーブ113の原子炉格納容器内側
端部には閉塞支持部材118が設けられている。
この閉塞支持部材118は貫通スリーブ113の
端部および主蒸気配管111の外周面に溶接さ
れ、この主蒸気配管111に作用する軸方向、ね
じり方向の荷重を貫通スリーブ113に伝えると
ともにこの内側端部において主蒸気配管111と
貫通スリーブ113間の冷却用間隙117を気密
に閉塞している。また、上記冷却用間隙117は
貫通スリーブ113の外側端では原子炉建屋10
3内に開放されている。 以上の如く構成された本発明の一実施例は、ラ
イナー105、貫通スリーブ113および閉塞支
持部材118でこの部分の原子炉格納容器101
のバウンダリが形成され、この部分の気密性が維
持される。また、熱膨張等によつてこの主蒸気管
111に作用する軸方向の荷重やねじり荷重は閉
塞支持部材118、貫通スリーブ113を介して
格納容器本体104で受けられ、この主蒸気配管
111の変形が防止される。そして、この主蒸気
配管111の熱は貫通スリーブ113に伝わる。 しかし、この実施例のものは主蒸気配管111
と貫通スリーブ113との間を閉塞する閉塞支持
部材118が貫通スリーブ113の内側端に設け
られており、貫通スリーブ113と主蒸気配管1
11との間の冷却用間〓117は外側つまり原子
炉建屋103内に開放されているため、上記冷却
用間〓117には原子炉建屋103内の10〜40℃
の低温の空気が流入する。したがつて貫通スリー
ブ113は、上記冷却用間〓117内に流入して
循環する原子炉建屋103内の低温の空気によつ
て内側から冷却されるから、主蒸気配管111か
らの熱による貫通スリーブ113の温度上昇を低
くおさえることができる。すなわち、従来は、貫
通スリーブと主蒸気配管との間の間〓を貫通スリ
ーブの外端側において閉塞し、上記間〓を原子炉
格納容器内に開放させて、貫通スリーブの原子炉
格納容器を貫通している部分を上記間〓内に流入
して循環する原子炉格納容器内の気体によつて冷
却するようにしているが、原子炉の運転中は、原
子炉格納容器内の温度が57℃程度の高温になるた
め、上記間〓内には原子炉格納容器内の57℃程度
の高温気体が流入循環することになり、これで
は、上記気体による貫通スリーブの冷却効果はあ
まり期待できず、そのため、貫通スリーブの原子
炉格納容器本体を貫通している部分が主蒸気配管
からの熱によつて昇温して貫通スリーブが熱膨張
してしまう。しかるにこの一実施例のものは閉塞
支持部材118を貫通スリーブ113の内側端部
に設けてこの位置を原子炉格納容器101のバウ
ンダリとし、主蒸気配管111と貫通スリーブ1
13との間を冷却用間隙117として外側すなわ
ち原子炉建屋103内に開放したので、この原子
炉建屋103内の10〜40℃の低温の空気が貫通ス
リーブ113と主蒸気配管111との間の冷却用
間〓117に流入循環して、この低温の空気で貫
通スリーブ113が内側から効果的に冷却される
から、主蒸気配管111からの熱による貫通スリ
ーブ113の温度上昇を低くおさえることができ
る。したがつて上記実施例によれば、貫通スリー
ブ113の格納容器本体104に貫通されている
部分が熱膨張してその応力が格納容器本体104
に働くのを確実に防ぐことができるから、コンク
リート製の原子炉格納容器101の健全性に悪影
響を与えることはない。また上記実施例によれ
ば、貫通スリーブ113と主蒸気配管111との
間に断熱材を介在させたり冷却管を設けたりする
必要もないから、構造も簡単である。 なお、本発明は上記の一実施例には限定されな
い。 たとえば配管の支持と配管と貫通スリーブとの
間の閉塞は別々の部材でおこなつてもよく、たと
えば貫通スリーブの外側端部に配管の支持だけを
おこなう支持部材を設け、貫通スリーブの内側端
には金属ベロー等の閉塞部材を設けて配管と貫通
スリーブとの間を閉塞してもよい。ただしこの場
合には上記支持部材に空気流通用の孔を設ける必
要がある。 また、本発明は主蒸気配管の貫通装置に限ら
ず、その他一般の配管貫通装置にも適用できるこ
とはもちろんである。 〔発明の効果〕 上述の如く本発明は原子炉格納容器を貫通して
貫通スリーブを設け、この貫通スリーブ内に間隙
をもつて配管を挿通し、この貫通スリーブの原子
炉格納容器内側端部に閉塞部材を設けてこの配管
と貫通スリーブとの間を閉塞し、この貫通スリー
ブと配管との間を冷却用間隙として外側すなわち
原子炉建屋内に開放したものである。したがつ
て、本発明によれば、貫通スリーブを、貫通スリ
ーブと配管との間の間〓内に流入して循環する原
子炉建屋内の低温の空気によつて内側から冷却し
て、配管からの熱による貫通スリーブの温度上昇
を低くおさえることができ、そのために貫通スリ
ーブの原子炉格納容器に貫通されている部分が熱
膨張してその応力が格納容器本体に働くのを確実
に防ぐことができるから、コンクリート製の原子
炉格納容器の健全性に悪影響を与えることはない
し、また貫通スリーブと配管との間に断熱材を介
在させたり冷却管を設けたりする必要もないか
ら、構造も簡単である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pipe penetration device in a concrete reactor containment vessel. [Conventional technology] Conventionally, a reactor containment vessel is made of steel that has pressure resistance and airtightness, and a concrete shielding wall is provided around it, which prevents coolant from leaking inside. It was used to prevent the spread of radioactive materials and to shield radiation. but,
This type of structure had the disadvantage of having a complicated structure and increasing construction costs. In place of such a steel reactor containment vessel, a concrete reactor containment vessel as shown in FIGS. 1 and 2 has been developed. That is, numeral 1 in the figure is the main body of the containment vessel, which is strongly formed of reinforced concrete or the like and has pressure resistance and radiation shielding ability. A liner 2 made of a relatively thin steel plate is provided in close contact with the inner surface of the containment vessel body 1 to provide airtightness. A reactor pressure vessel 3 is housed within this reactor containment vessel,
Further, a suppression chamber 4 is formed in the lower part. Further, a pipe, for example, a main steam pipe 5 passes through the reactor containment vessel via a pipe penetration device 6 . By the way, such a reactor containment vessel made of concrete has a simple structure, and the reactor containment vessel itself has sufficient strength and rigidity, so piping, etc. can be supported by this reactor containment vessel. There are advantages. In the conventional reactor, a pipe, for example, a main steam pipe 5, is supported in the reactor containment vessel via a pipe penetration device 6 , as shown in FIG. That is, 7 is a penetrating sleeve that is provided to penetrate the containment vessel main body 1 and the liner 2, and is fixed to the containment vessel main body 1 by anchors 8... and anchor plates 9. and,
The main steam pipe 5 is inserted through the through sleeve 7 with a gap therebetween. A closing support member 10 is provided at the end of the penetration sleeve 7 on the outside of the reactor containment vessel (right side in FIG. 2), and this closure support member 10 connects the penetration sleeve 7 and the main steam pipe. 5 is airtightly closed, and this main steam pipe 5 is supported by a through sleeve 7.
Therefore, the axial load and torsional load generated on the main steam pipe 5 due to thermal expansion or the like are supported by the containment vessel main body 1 via the closure support member 10 and the through sleeve 7. [Problems to be Solved by the Invention] However, in such a structure, the load of the main steam pipe 5 is transmitted to the containment vessel main body 1 by the anchors 8 of the penetrating sleeve 7 and the anchor plate 9. 1, a local load will act on this part. Further, since high-temperature steam flows through the main steam pipe 5, the heat is conducted to the through sleeve 7 via the closing support member 10, and is also transmitted to the through sleeve 7 by radiation and convection. Conventionally, the outer end of the penetration sleeve 7, that is, the portion protruding into the reactor building from the outer surface of the containment vessel body 1, is cooled by the low temperature (10 to 40°C) air inside the reactor building. In addition, the portion of the penetration sleeve 7 that penetrates the containment vessel main body 1 flows into the gap between the penetration sleeve 7 and the main steam pipe 5 and is used to circulate gas (nitrogen gas, etc.) in the reactor containment vessel. However, since the gas inside the reactor containment vessel is at a high temperature of about 57℃,
This gas cannot be expected to have much of a cooling effect on the penetrating sleeve 7, and as a result, the temperature of the portion of the penetrating sleeve 7 that penetrates the containment vessel body 1 rises due to the heat from the main steam pipe 5, and the penetrating sleeve 7 Thermal expansion may occur, and the resulting stress may act on the containment vessel body 1, causing cracks or the like to occur in the concrete at the piping penetration portion of the containment vessel body 1. For this reason, the evaluation of the integrity of the containment vessel body 1 in the vicinity of the pipe penetration device 6 has become difficult, and there have been problems such as the need to provide special reinforcement or the like in the vicinity of the pipe penetration device 6 . For this reason, in the past, a heat insulating material was interposed between the main steam pipe 5 and the through sleeve 6 , but the effect was insufficient. In addition, a cooling pipe is provided between the main steam pipe 5 and the through sleeve 6 , and a refrigerant is circulated through this cooling pipe to prevent the temperature of the through sleeve 7 from rising, but such a system has a structure. There were problems such as complications. The present invention was made based on the above circumstances, and its purpose is to provide a pipe penetration device that does not adversely affect the integrity of a concrete reactor containment vessel and has a simple structure. It is in. [Means for Solving the Problems] In order to achieve the above object, the present invention includes a penetrating sleeve provided through a concrete reactor containment vessel, and a penetrating sleeve inserted with a gap in the penetrating sleeve. and a closing member that closes a gap between the through sleeve and the piping,
The closing member is provided at an end of the penetrating sleeve inside the reactor containment vessel, and opens the gap between the penetrating sleeve and the piping into the reactor building. [Function] That is, the present invention provides a closing member that closes the gap between the penetrating sleeve and the piping at the end of the penetrating sleeve inside the reactor containment vessel, so as to close the gap between the penetrating sleeve and the piping. By opening the gap into the reactor building, low-temperature air inside the reactor building can flow into the gap between the penetration sleeve and the piping.
The penetration sleeve is cooled from the inside by the low-temperature air inside the reactor building that flows in and circulates between the penetration sleeve and the piping, which reduces the temperature rise of the penetration sleeve due to heat from the piping. It can be suppressed. Therefore, according to the present invention, it is possible to reliably prevent the portion of the penetrating sleeve that is penetrated into the reactor containment vessel from thermally expanding and the resulting stress from acting on the containment vessel body. The structure is simple because it does not adversely affect the integrity of the containment vessel, and there is no need to interpose a heat insulating material or provide a cooling pipe between the penetrating sleeve and the piping. [Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 3 and 4. In the figure, 101 is a reactor containment vessel, which is constructed on a mat 102 and housed in a reactor building 103. The reactor containment vessel 101 is composed of a containment vessel main body 104 made of reinforced concrete and a liner 105 stretched on the inner surface of the containment vessel main body 104. This containment vessel main body 104 is strongly formed,
It has pressure resistance and radiation shielding ability. Also,
The liner 105 is formed from a relatively thin steel plate, and provides airtightness to the containment vessel body 104.
It is in close contact with the inner surface of the reactor containment vessel 10.
Even if pressure rises within 1, the structure is such that it will not be deformed by this pressure. A reinforcing member (not shown) made of shaped steel or the like is attached to the inner surface of the liner 105, and due to the difference in thermal expansion with the containment vessel body 104, the liner 105
This prevents local deformation of the liner 105. The inside of this reactor containment vessel 101 is divided into upper and lower parts by a diaphragm floor 106, and the upper part is divided into a dry well 10.
7. The lower part is formed into a suppression chamber 108. And this reactor containment vessel 101
A pedestal 109 is erected from the bottom of the reactor, and a reactor pressure vessel 110 is installed on the pedestal 109. Various types of piping, such as the main steam piping 111, are led out of the reactor containment vessel 101 by a piping penetration device 112 .
The configuration of this pipe penetration device 112 will be explained below.
In the figure, reference numeral 113 denotes a through sleeve, which has a cylindrical shape. The penetrating sleeve 113 is embedded in the containment vessel body 104 and passes through the containment vessel body 104 and the liner 105 in an airtight manner. This penetrating sleeve 113 has anchors 114... and anchor plates 115.
It is fixed to the containment vessel main body 104 by. Note that 116... is a gusset. and,
The end of the penetrating sleeve 113 on the inside of the reactor containment vessel (left side in FIG. 4) protrudes by a predetermined length. A main steam pipe 111 is inserted into this penetrating sleeve 113.
A cooling gap 117 is formed between the outer peripheral surface of the penetrating sleeve 11 and the inner peripheral surface of the through sleeve 113. A closing support member 118 is provided at the end of the penetrating sleeve 113 inside the reactor containment vessel.
This closing support member 118 is welded to the end of the penetrating sleeve 113 and the outer peripheral surface of the main steam pipe 111, and transmits the load in the axial direction and torsional direction acting on the main steam pipe 111 to the penetrating sleeve 113. The cooling gap 117 between the main steam pipe 111 and the through sleeve 113 is hermetically closed. Further, the cooling gap 117 is formed at the outer end of the through sleeve 113 in the reactor building 10.
It is open within 3 days. In one embodiment of the present invention configured as described above, the liner 105, the penetrating sleeve 113, and the closing support member 118 are used in this part of the reactor containment vessel 101.
A boundary is formed and the airtightness of this area is maintained. In addition, axial loads and torsional loads acting on the main steam pipe 111 due to thermal expansion etc. are received by the containment vessel main body 104 via the closure support member 118 and the penetration sleeve 113, causing deformation of the main steam pipe 111. is prevented. The heat of the main steam pipe 111 is then transmitted to the through sleeve 113. However, in this embodiment, the main steam pipe 111
A closing support member 118 is provided at the inner end of the through sleeve 113 to close the space between the through sleeve 113 and the main steam pipe 1.
Since the cooling space 117 between the reactor building 103 and the reactor building 11 is open to the outside, that is, inside the reactor building 103,
low temperature air flows in. Therefore, the penetrating sleeve 113 is cooled from the inside by the low-temperature air inside the reactor building 103 that flows into the cooling chamber 117 and circulates, so that the penetrating sleeve 113 is cooled by the heat from the main steam pipe 111. 113 temperature rise can be suppressed to a low level. That is, conventionally, the gap between the penetration sleeve and the main steam piping was closed at the outer end of the penetration sleeve, and the gap was opened into the reactor containment vessel to open the reactor containment vessel of the penetration sleeve. The penetrated part is cooled by the gas inside the reactor containment vessel that flows into the above-mentioned space and circulates, but during reactor operation, the temperature inside the reactor containment vessel is 57°C. Since the temperature will be around 30°F, high-temperature gas of around 57°C inside the reactor containment vessel will flow in and circulate within the above-mentioned interval, so the cooling effect of the through-sleeve by the above gas cannot be expected to be very high. Therefore, the temperature of the portion of the penetrating sleeve that penetrates the reactor containment vessel body increases due to the heat from the main steam piping, causing thermal expansion of the penetrating sleeve. However, in this embodiment, the closing support member 118 is provided at the inner end of the penetrating sleeve 113, and this position is used as the boundary of the reactor containment vessel 101 , and the main steam pipe 111 and the penetrating sleeve 1 are connected to each other.
13 is opened to the outside, that is, inside the reactor building 103, as a cooling gap 117, so that the air at a low temperature of 10 to 40°C in the reactor building 103 flows between the penetration sleeve 113 and the main steam pipe 111. The low-temperature air flows into and circulates through the cooling pipe 117 and effectively cools the penetrating sleeve 113 from the inside, making it possible to suppress the rise in temperature of the penetrating sleeve 113 due to heat from the main steam pipe 111. . Therefore, according to the above embodiment, the portion of the penetrating sleeve 113 that is penetrated into the containment vessel body 104 thermally expands, and the stress is transferred to the containment vessel body 104.
Therefore, the integrity of the concrete reactor containment vessel 101 is not adversely affected. Further, according to the above embodiment, there is no need to interpose a heat insulating material or provide a cooling pipe between the penetrating sleeve 113 and the main steam pipe 111, so the structure is simple. Note that the present invention is not limited to the above embodiment. For example, the support of the pipe and the closure between the pipe and the penetration sleeve may be performed by separate members, for example, a support member that only supports the pipe is provided at the outer end of the penetration sleeve, and a support member that only supports the pipe is provided at the inner end of the penetration sleeve. Alternatively, a closing member such as a metal bellow may be provided to close the space between the pipe and the penetrating sleeve. However, in this case, it is necessary to provide holes for air circulation in the support member. Furthermore, it goes without saying that the present invention is applicable not only to main steam piping penetration devices but also to other general pipe penetration devices. [Effects of the Invention] As described above, the present invention provides a penetrating sleeve that penetrates the reactor containment vessel, a pipe that is inserted into the penetrating sleeve with a gap, and a pipe that is inserted into the inner end of the reactor containment vessel of the penetrating sleeve. A closing member is provided to close the space between the pipe and the through sleeve, and the gap between the through sleeve and the pipe is opened to the outside, that is, into the reactor building, as a cooling gap. Therefore, according to the present invention, the penetration sleeve is cooled from the inside by the low-temperature air inside the reactor building that flows in and circulates between the penetration sleeve and the pipe, and the pipe is cooled from the inside. It is possible to suppress the temperature rise of the penetrating sleeve due to the heat of Because it can be used, it does not adversely affect the integrity of the concrete reactor containment vessel, and the structure is simple because there is no need to interpose insulation material or provide cooling pipes between the penetration sleeve and the piping. It is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は従来例を示し、第1図は
全体の縦断面図、第2図は配管貫通装置の縦断面
図である。第3図および第4図は本発明の一実施
例を示し、第3図は全体の縦断面図、第4図は配
管貫通装置の縦断面図である。 101……原子炉格納容器、104……格納容
器本体、105……ランナー、111……主蒸気
配管(配管)、112……配管貫通装置、113
……貫通スリーブ、117……冷却用間隙、11
8……閉塞支持部材(閉塞部材)。
1 and 2 show a conventional example, with FIG. 1 being a longitudinal cross-sectional view of the whole, and FIG. 2 being a longitudinal cross-sectional view of a pipe penetration device. 3 and 4 show an embodiment of the present invention, with FIG. 3 being a longitudinal cross-sectional view of the whole, and FIG. 4 being a longitudinal cross-sectional view of a pipe penetration device. 101 ...Reactor containment vessel, 104...Containment vessel main body, 105...Runner, 111...Main steam piping (piping), 112 ...Piping penetration device, 113
...Throughout sleeve, 117...Cooling gap, 11
8... Closure support member (closure member).

Claims (1)

【特許請求の範囲】 1 コンクリート製の原子炉格納容器を貫通して
設けられた貫通スリーブと、この貫通スリーブ内
に間〓をもつて挿通された配管と、上記貫通スリ
ーブと上記配管との間の間〓を閉塞する閉塞部材
とを具備し、かつ前記閉塞部材は上記貫通スリー
ブの原子炉格納容器内側の端部に設けて、上記貫
通スリーブと上記配管との間の間〓を原子炉建屋
内に開放させたことを特徴とする原子炉格納容器
の配管貫通装置。 2 前記閉塞部材は前記貫通スリーブと配管との
間の間〓の閉塞と前記配管の前記貫通スリーブへ
の固定とを兼用するものであることを特徴とする
特許請求の範囲第1項記載の原子炉格納容器の配
管貫通装置。
[Scope of Claims] 1. A penetrating sleeve provided to penetrate a concrete reactor containment vessel, a pipe inserted into the penetrating sleeve with a gap, and between the penetrating sleeve and the piping. and a closing member for closing the gap between the through-sleeve and the piping, and the closing member is provided at an end of the through-sleeve inside the reactor containment vessel to close the gap between the through-sleeve and the piping. A piping penetration device for a nuclear reactor containment vessel, characterized in that it is opened indoors. 2. The atom according to claim 1, wherein the closing member serves both to close the gap between the penetrating sleeve and the pipe and to fix the pipe to the penetrating sleeve. Reactor containment vessel piping penetration device.
JP56101609A 1981-06-30 1981-06-30 Pipe through device of reactor container Granted JPS582792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56101609A JPS582792A (en) 1981-06-30 1981-06-30 Pipe through device of reactor container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56101609A JPS582792A (en) 1981-06-30 1981-06-30 Pipe through device of reactor container

Publications (2)

Publication Number Publication Date
JPS582792A JPS582792A (en) 1983-01-08
JPH0128276B2 true JPH0128276B2 (en) 1989-06-01

Family

ID=14305133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56101609A Granted JPS582792A (en) 1981-06-30 1981-06-30 Pipe through device of reactor container

Country Status (1)

Country Link
JP (1) JPS582792A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008039403A (en) * 2006-08-01 2008-02-21 Hitachi Ltd Nuclear reactor containment installation and nuclear reactor building

Also Published As

Publication number Publication date
JPS582792A (en) 1983-01-08

Similar Documents

Publication Publication Date Title
US3488067A (en) Air cooled pipe penetrations in concrete walls
BR112020026852A2 (en) DEVICE FOR CONFINING THE NUCLEAR REACTOR NUCLEUS MELT
JPH05264775A (en) Reactor-steam isolating and cooling system
US5459768A (en) Safety device against overpressure failure of a nuclear reactor pressure vessel
JPH0128276B2 (en)
US4356144A (en) Closure hold-down system for a reactor vessel
US3471599A (en) Method of constructing a containment and radiation shielding system
JPH0126436B2 (en)
US4081322A (en) Device for thermal insulation of a prestressed concrete vessel which affords resistance to the pressure of a vaporizable fluid contained in said vessel
US3834452A (en) Removable head pressure vessel, especially for boiling-water reactors
JPS6339678Y2 (en)
JPS6082888A (en) Reactor containing vessel piping
US4666652A (en) Fast neutron nuclear reactor comprising a suspended sealing slab and main vessel
JPH0350480Y2 (en)
GB1579765A (en) Hot-working cast pressure vessel
JPH048397Y2 (en)
JPH0612886U (en) Structure of wall penetration of piping
JPS6134309Y2 (en)
JPS6339679Y2 (en)
JPH0568680B2 (en)
JPH018800Y2 (en)
JPH08271671A (en) Shear lag structure of reactor containment vessel
JPH0458917B2 (en)
JP2001074172A (en) Sealing structure
JPH0146391B2 (en)