JPH01282446A - Measurement of transmissivity - Google Patents

Measurement of transmissivity

Info

Publication number
JPH01282446A
JPH01282446A JP11097488A JP11097488A JPH01282446A JP H01282446 A JPH01282446 A JP H01282446A JP 11097488 A JP11097488 A JP 11097488A JP 11097488 A JP11097488 A JP 11097488A JP H01282446 A JPH01282446 A JP H01282446A
Authority
JP
Japan
Prior art keywords
sample
image data
transmittance
measuring method
transmittance measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11097488A
Other languages
Japanese (ja)
Other versions
JP2790283B2 (en
Inventor
Kazuo Watanabe
一生 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP63110974A priority Critical patent/JP2790283B2/en
Publication of JPH01282446A publication Critical patent/JPH01282446A/en
Application granted granted Critical
Publication of JP2790283B2 publication Critical patent/JP2790283B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To enable the measurement of transmissivity at a desired position in a short time, by using an image data of a lighted part photographed without any sample and an image data obtained by photography with a sample. CONSTITUTION:Using a cooled type CCD camera 1, a sample 6 is irradiated with a lighting device 7 driven by a power source 8 to make transmission light form an image through a lens 3. When an image data obtained by photography without any sample is represented by I1, an image data photographed with a sample I and an image data photographed with a shutter 4 closed I0, transmissivity T at a point on the sample can be calculated by T=I-I0/I1-I0. Here, I, I0 and I1 are image data at corresponding positions and if an image data with the shutter closed (quantity of light=0) is negligible, transmissivity can be obtained by T=I/I1. Computation is made possible by inter-screen compu tation after respective image data are stored into a frame memory with an image processor 2.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光透過性を持つ物品の光透過率やその分布、周
期開口を持つ工業製品、例えばシャドーマスク、メツシ
ュ、布等の開口率やその分布を測定する透過率測定方法
に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to the light transmittance and its distribution of light-transmitting articles, the aperture ratio and the like of industrial products with periodic apertures, such as shadow masks, meshes, cloth, etc. This invention relates to a transmittance measurement method for measuring the distribution.

〔従来の技術〕[Conventional technology]

従来、光透過性を持つ物品の光透過率やその分布、シャ
ドーマスク、メツシュ、布等の周期開口を持つ工業製品
の開口率やその分布の測定には、第5図に示すように投
光器43からの照射光を受光器41で受光するように構
成し、試料を介在させた場合と介在させない場合、また
は遮光状態での受光器出力をもとにして光透過率を測定
していた。
Conventionally, in order to measure the light transmittance and its distribution of light-transmitting articles, and the aperture ratio and its distribution of industrial products with periodic apertures such as shadow masks, meshes, and cloth, a projector 43 is used as shown in FIG. The light transmittance was measured based on the output of the light receiver with and without a sample intervening, or in a light shielded state.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、例えば第6図に示すように、ブラウン管に使
用されているシャドーマスクの透過率を測定するような
場合には、本来、ブラウン管内でのビーム方向で透過率
の測定を行う必要があるが、投受光器のセントで測定し
ようとすると、第7図に示すように投受光器を角度をつ
けてとり付ける必要があり、そのため構造が複雑になる
いう問題があった。また、従来の測定方法では、一対の
検出部と試料を相対的に移動すれば任意位置のデータを
得ることができるが、測定点が多い場合には移動を繰り
返すため測定に時間がかかり、また多数の検出器を用い
ると、測定時間は短縮できたとしても装置が高価になる
と共に、測定点が固定されるという問題があった。
By the way, as shown in Figure 6, for example, when measuring the transmittance of a shadow mask used in a cathode ray tube, it is originally necessary to measure the transmittance in the beam direction inside the cathode ray tube. When attempting to measure using the center of the light emitter and receiver, it is necessary to attach the light emitter and receiver at an angle as shown in FIG. 7, which poses a problem in that the structure becomes complicated. In addition, with conventional measurement methods, it is possible to obtain data at any position by moving a pair of detection parts and the sample relatively, but if there are many measurement points, it takes time to repeat the movement, and If a large number of detectors are used, even if the measurement time can be shortened, there are problems in that the equipment becomes expensive and the measurement points are fixed.

本発明は上記問題点を解決するためのもので、短時間に
任意の位置の透過率を測定できる透過率測定方法を提供
することを目的とする。
The present invention is intended to solve the above-mentioned problems, and an object of the present invention is to provide a transmittance measuring method that can measure transmittance at an arbitrary position in a short time.

〔課題を解決するための手段〕[Means to solve the problem]

そのために本発明の透過率測定方法は、冷却型CCDカ
メラなどを用い、試料なしで照明部を撮像した画像デー
タと、試料を置いて撮像した画像データとに基づいて試
料の透過率を測定することを特徴とする。
To this end, the transmittance measurement method of the present invention uses a cooled CCD camera or the like to measure the transmittance of a sample based on image data taken of the illumination section without the sample and image data taken with the sample placed. It is characterized by

〔作用〕[Effect]

本発明の透過率測定方法は、電子冷却方式等により冷却
して暗電流やノイズを無視できる程度まで大幅に減少さ
せ、暗い領域での長時間露光が可能で、積算光量に対す
る映像信号の直線性が良い冷却型CCDカメラやイメー
ジディセクタにより面露光により試料がある場合とない
場合の撮像画像データを得、これらの画像データの演算
により短時間に任意の位置の透過率を測定することがで
きる。
The transmittance measurement method of the present invention uses electronic cooling to significantly reduce dark current and noise to a negligible level, enables long-term exposure in dark areas, and provides linearity of the video signal with respect to the integrated light amount. By using a cooled CCD camera or image dissector, which has good surface exposure, we can obtain captured image data with and without a sample, and by calculating these image data, we can measure the transmittance at any position in a short time. .

〔実施例〕〔Example〕

以下、実施例を図面に基づき説明する。 Examples will be described below based on the drawings.

第1図は本発明の一実施例を示す図で、図中、1は冷却
型CCDカメラ、2は画像処理装置、3はレンズ、4は
シャッタ、5はシャッタ駆動装置、6は試料、7は照明
装置、8は’isである。
FIG. 1 is a diagram showing an embodiment of the present invention, in which 1 is a cooled CCD camera, 2 is an image processing device, 3 is a lens, 4 is a shutter, 5 is a shutter drive device, 6 is a sample, and 7 is a lighting device, and 8 is 'is'.

冷却型CCDカメラ1は、電子冷却方式等により冷却し
て暗電゛流やノイズを無視できる程度まで大幅に減少さ
せ、暗い領域での長時間露光が可能なCCDカメラで、
積算光量に対する映像信号の直線性が良好であることが
特徴であり、従来の高感度テレビカメラでも映し出せな
かった暗い領域を高画質で鮮明に写し出すことができ、
1画素・1秒間当たり数個オーダーの光子まで検出する
ことが可能である。
The cooled CCD camera 1 is a CCD camera that is cooled using an electronic cooling method or the like to significantly reduce dark current and noise to a negligible level, and is capable of long-time exposure in dark areas.
It is characterized by good linearity of the video signal with respect to the integrated light amount, and can clearly capture dark areas with high image quality that could not be captured even with conventional high-sensitivity TV cameras.
It is possible to detect up to several photons per pixel per second.

このようなCCDカメラ1を使用し、電源8で駆動され
る照明装置7により試料6を照射し、その透過光をレン
ズ3を介して結像させている。
Using such a CCD camera 1, a sample 6 is irradiated by an illumination device 7 driven by a power source 8, and the transmitted light is formed into an image through a lens 3.

このとき、試料なしで撮像した画像データを16、試料
を入れて撮像した画像データをI、シャッター4を閉じ
て撮像した画像データを10とすると、試料上の点の透
過率Tは、 It−1゜ として計算できる。ここで■、Io、IIは対応する位
置の画像データであり、シャッター閉(光1−0)のと
きの画像データが無視できれば、T=I/I。
At this time, if the image data taken without the sample is 16, the image data taken with the sample in is I, and the image data taken with the shutter 4 closed is 10, then the transmittance T of a point on the sample is It- It can be calculated as 1°. Here, ■, Io, and II are image data at corresponding positions, and if the image data when the shutter is closed (light 1-0) can be ignored, then T=I/I.

として透過率が得られる。この演算は画像処理装匿2に
より各画像データをフレームメモリに記憶した後、画面
間演算で行うことができる。そして、CCDカメラの画
素数が512X5+2とすれば、この演算で約25万点
の透過率データが得られることになる。
The transmittance is obtained as . This calculation can be performed by inter-screen calculation after each image data is stored in the frame memory by the image processing device 2. If the number of pixels of the CCD camera is 512×5+2, this calculation will yield transmittance data of approximately 250,000 points.

ところで、第1図の透過率測定方法では、−画素毎のデ
ータのバラツキがそのままデータに影響を与えるため高
精度の測定を行うためには測定点を中心とする小領域の
画像データ、例えば5X5piX”1OXlOp i 
xなどの平均値を演算する必要がある。測定点が限られ
ている場合には、CPUによる処理でも演算に要する時
間は少なくてすむが、測定点が多くなるとCPUによる
処理では多くの時間を要するので、その場合には透過率
データが得られたフレームメモリに画像処理の1fiI
iである平滑フィルタ処理を行った後、所定の画像デー
タを読み出すようにすれば高速化することが可能となる
By the way, in the transmittance measurement method shown in Fig. 1, - Variations in data for each pixel directly affect the data, so in order to perform high-precision measurement, image data of a small area centered around the measurement point, for example 5 x 5 pi ”1OXlOp i
It is necessary to calculate the average value of x, etc. If the number of measurement points is limited, the time required for calculation by the CPU can be reduced, but if the number of measurement points is large, the processing by the CPU will require a lot of time. 1fiI of image processing in the frame memory
If predetermined image data is read out after performing the smoothing filter process i, it is possible to increase the speed.

前述したように、冷却型CCDは積算光量に対する映像
信号の直線性が良好であることが特徴であるが、透過−
9の低い試料を測定する場合には、試ネ4なしで撮像し
た画像データ11をmaxに近い値に設定しても試料を
入れて撮像した画像データIの値が小さくなり直線性の
僅かな誤差や暗電流などが透過率偵に影響する。
As mentioned above, the cooled CCD is characterized by good linearity of the video signal with respect to the integrated light amount, but the transmission -
When measuring a sample with a low value of 9, even if the image data 11 taken without the sample 4 is set to a value close to max, the value of the image data I taken with the sample will be small, resulting in slight linearity. Errors, dark current, etc. affect transmittance.

このため、!及び■、を撮像するときに、これらの二つ
の画像データレヘルがほぼ等しく、十分な大きさを持つ
ように撮像した方が精度の高い結果が得られ、その場合
画像処理には、補正演算が必要となる。
For this reason,! When capturing images of becomes.

そのための一つの方法として11撮像時の露光時間が、
Iの時の1/Tとなる様にシャッタを動作させてIと1
.をほぼ同じ値とすることが可能である。
One way to do this is to set the exposure time during image capture in 11.
Operate the shutter so that it becomes 1/T when I and 1.
.. It is possible to have almost the same value.

しかし、メカシャフタには、動作時間のバラツキがある
ため、特にシャフタ開時間が短い場合には誤差が大きく
なる欠点があり、この誤差が無視できない場合には、シ
ャツタ開時間を測定し、その値によりデータを補正すれ
ば良い。
However, mechanical shutters have the disadvantage that the operating time varies, so the error becomes large, especially when the shutter opening time is short. If this error cannot be ignored, measure the shutter opening time and use the value. Just correct the data.

第2図はこれを実現するための本発明の一実施例を示す
図であり、第1図と同一番号は同一内容を示している。
FIG. 2 is a diagram showing an embodiment of the present invention for realizing this, and the same numbers as in FIG. 1 indicate the same contents.

なお、図中、9はハーフミラ−110は光センサ、11
は測定装置である。
In addition, in the figure, 9 is a half mirror, 110 is an optical sensor, 11
is a measuring device.

本実施例では、ハーフミラ−9により撮像時の光の一部
をセンサlOで検出し、検出信号が得られている時間を
測定装置11で測定することにより露光時間を求める。
In this embodiment, a sensor 10 detects a part of the light when an image is captured by the half mirror 9, and the exposure time is determined by measuring the time during which a detection signal is obtained using the measuring device 11.

こうして求めた露光時間によりデータを補正し、Iと1
1の二つの画像データレヘルをほぼ等しくすることがで
きる。
The data is corrected using the exposure time obtained in this way, and I and 1
The two image data levels of 1 can be made approximately equal.

また、冷却型CODの蓄積時間を変化させ、例えば試料
を入れて撮像した画像データlの方を長くしてIと11
のレベルを等しくしてもよい。この場合、時間の設定は
十分な精度で行えるが、光透過率が低い場合、It を
撮像する時間がIの時の1/T倍であるため、例えば透
過率が0.1%程度のときには1000倍の時間を必要
とすることになる。
In addition, by changing the storage time of the cooling type COD, for example, the image data l captured with the sample inserted is longer than the image data I and 11.
may have the same level. In this case, the time can be set with sufficient accuracy, but if the light transmittance is low, the time to image It is 1/T times that of I, so for example, if the transmittance is about 0.1%, This would require 1000 times more time.

またIと11の撮像時に光源の明るさを変えても同様な
結果を得ることができる。
Further, similar results can be obtained by changing the brightness of the light source when imaging I and 11.

第5図、第7図で示した従来の投受光器を用いる方法で
は、測定点が限られているため、シャドーマスクなど、
所定形状の試料の決められた位置の透過率データを求め
るためには、測定系に対して、試料を位置決めした上で
測定しなければならなかった。これに対し、本発明の方
法では透過率データが高分解能の画像データとして得ら
れるため、この画像データを処理して試料の位置や回転
などを自動的に認識して、所定位置のデータを得ること
ができ容易に自動測定化が可能である。また測定対称品
種の変更も、メカ調整なしでプログラムの変更だけで対
応できる。
In the conventional method using a light emitter/receiver shown in Figs. 5 and 7, measurement points are limited, so shadow masks, etc.
In order to obtain transmittance data at a predetermined position of a sample having a predetermined shape, the sample must be positioned with respect to the measurement system and then measured. In contrast, in the method of the present invention, transmittance data is obtained as high-resolution image data, and this image data is processed to automatically recognize the position and rotation of the sample to obtain data at a predetermined position. This allows for easy automatic measurement. In addition, changes in the product to be measured can be handled simply by changing the program without mechanical adjustment.

第3図は照明光の変動、バラツキ、ドリフト等の測定値
の変化が問題となる場合の測定方法を示す図である。
FIG. 3 is a diagram showing a measurement method when changes in measured values such as fluctuations, variations, and drifts of illumination light pose a problem.

本実施例では、試料6に対して照明装置7による視野2
1を図示するように大きくとり、撮像領域に試料によっ
て遮られない部分がある様にしてその領域に透過率が一
定の基(板22を配置し、各撮像データ毎に基!!板の
画像データを読み出すようにすれば、例えば照明光の強
さが変動ずれば基準板22の部分の露光量も同様に変動
するので、ここのデータを用いて補正を行うことにより
、照明光の変動の影響を除き、再現性を向上させること
ができる。
In this embodiment, the field of view 2 provided by the illumination device 7 for the sample 6 is
1 is made large as shown in the figure, and a substrate (plate 22) with a constant transmittance is placed in the imaging area so that there is a part that is not blocked by the sample. If the data is read out, for example, if the intensity of the illumination light fluctuates, the exposure amount of the reference plate 22 will also fluctuate, so by making corrections using this data, the fluctuations in the illumination light can be corrected. It is possible to eliminate the influence and improve reproducibility.

シャドーマスクの透過率測定は、前述したように、本来
、ブラウン管内でのビーム方向で行う必要があるが、こ
の場合の測定方法を第4図により説明する。
As mentioned above, the transmittance of the shadow mask must be measured in the beam direction within the cathode ray tube, and the measuring method in this case will be explained with reference to FIG.

第4図は本発明の他の実施例を示す図で、図中、31は
光源、32はフレネルレンズ、33はシャドーマスクで
ある。
FIG. 4 is a diagram showing another embodiment of the present invention, in which 31 is a light source, 32 is a Fresnel lens, and 33 is a shadow mask.

図において、光源31からの光でシャドーマスクを照明
露光し、このとき試料に対する距離と冷却型CCDカメ
ラの撮影領域との関係で撮影角度を選ぶことにより、ブ
ラウン管内でのシャドーマスクに対するビーム方向に近
似した角度θで測定することができる。
In the figure, a shadow mask is illuminated and exposed with light from a light source 31, and by selecting the photographing angle in relation to the distance to the sample and the photographing area of the cooled CCD camera, the beam direction relative to the shadow mask within the cathode ray tube is adjusted. Measurement can be performed using an approximate angle θ.

この場合、測定領域各点での照明光の平行度が必要な場
合には、図示するようにフルネルレンズ32を集光レン
ズとして用いることによりシャドーマスクやアパーチャ
グリルのような大面積の試料も簡単な照明装置で測定す
ることができる。
In this case, if parallelism of the illumination light at each point in the measurement area is required, the Foursnel lens 32 can be used as a condensing lens as shown in the figure to accommodate large-area samples such as shadow masks and aperture grilles. Can be measured with a simple lighting device.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、冷却型CCDカメラを用
いて面露光で画像データを得るようにしたので、従来に
比して高速、高分解能で透過率データを得ることができ
、しかも画像処理により試料の位置を認識し、試料上の
所定位置の透過率データが得られ、透過率計測や、検査
の自動化にも有効である。
As described above, according to the present invention, since image data is obtained by surface exposure using a cooled CCD camera, transmittance data can be obtained at higher speed and higher resolution than in the past. Through processing, the position of the sample can be recognized and transmittance data at a predetermined position on the sample can be obtained, and it is also effective for transmittance measurement and automation of inspection.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す図、第2図は露光時間
を測定するようにした本発明の他の実施例を示す図、第
3図は照明光の変動、測定値の変化を補正するようにし
た本発明の他の実施例を示す図、第4図は撮影角度をつ
けた本発明の他の実施例を示す図、第5図は投受光器を
用いた従来の透過率測定方法を示す図、第6図はシャド
ーマスクに対するビームの入射角度を示す図、第7図は
投受光器を試料に対して角度をつけてセントする従来の
例を示す図である。 ■・・・冷却型CCDカメラ、2・・・画像処理装置、
3・・・レンズ、4・・・シャフタ、5・・・シャッタ
駆動装置、6・・・試料、7・・・照明装置、8・・・
電源、9・・・ハーフミラ−1lO・・・光センサ、1
1・・・測定装置、31・・・31.32・・・フレネ
ルレンズ、33・・・シャドーマスク。 出  願  人  大日本印刷株式会社代理人 弁理士
  蛭 川 昌 信(外4名)第1図 →−−人一、6ド耗 第2図 第3図 22導焦曵 / 第4図 2.\    33シイドつ77り 第5図 第6図 第7図
Fig. 1 is a diagram showing one embodiment of the present invention, Fig. 2 is a diagram showing another embodiment of the present invention in which exposure time is measured, and Fig. 3 is a diagram showing fluctuations in illumination light and changes in measured values. FIG. 4 is a diagram showing another embodiment of the present invention with a shooting angle, and FIG. 5 is a diagram showing a conventional transmission method using a light emitter and receiver. FIG. 6 is a diagram showing the angle of incidence of the beam on the shadow mask, and FIG. 7 is a diagram showing a conventional example in which the projector/receiver is centered at an angle with respect to the sample. ■...Cooled CCD camera, 2...Image processing device,
3... Lens, 4... Shutter, 5... Shutter drive device, 6... Sample, 7... Illumination device, 8...
Power supply, 9...Half mirror-1lO...Light sensor, 1
1... Measuring device, 31... 31.32... Fresnel lens, 33... Shadow mask. Applicant Dai Nippon Printing Co., Ltd. Agent Patent Attorney Masanobu Hirukawa (4 others) Figure 1 - - - 6 doss Figure 2 Figure 3 22 Guidance / Figure 4 2. \ 33Side Tsu77riFigure 5Figure 6Figure 7

Claims (12)

【特許請求の範囲】[Claims] (1)撮影装置を用い、試料なしで照明部を撮像した画
像データと、試料を置いて撮像した画像データとに基づ
いて試料の透過率を測定することを特徴とする透過率測
定方法。
(1) A transmittance measurement method characterized by measuring the transmittance of a sample based on image data obtained by capturing an image of an illumination section without a sample and image data captured with a sample placed thereon using a photographing device.
(2)撮影装置は冷却型CCDカメラである請求項1記
載の透過率測定方法。
(2) The transmittance measuring method according to claim 1, wherein the photographing device is a cooled CCD camera.
(3)各画像データに平滑化処理を施して透過率を測定
するようにした請求項1記載の透過率測定方法。
(3) The transmittance measuring method according to claim 1, wherein the transmittance is measured by subjecting each image data to a smoothing process.
(4)各画像データのレベルがほぼ等しくなる様に撮像
条件を設定する請求項1記載の透過率測定方法。
(4) The transmittance measuring method according to claim 1, wherein the imaging conditions are set so that the levels of each image data are approximately equal.
(5)撮像条件の設定は、メカシャッタにより露光時間
を制御することにより行う請求項4記載の透過率測定方
法。
(5) The transmittance measuring method according to claim 4, wherein the imaging conditions are set by controlling the exposure time using a mechanical shutter.
(6)シャッタ開時間を測定して開時間のバラツキ誤差
を補正するようにした請求項5記載の透過率測定方法。
(6) The transmittance measuring method according to claim 5, wherein the shutter opening time is measured and the variation error in the opening time is corrected.
(7)撮像条件の設定は、冷却型CCDカメラの蓄積時
間の設定により行う請求項4記載の透過率測定方法。
(7) The transmittance measuring method according to claim 4, wherein the imaging conditions are set by setting the storage time of the cooled CCD camera.
(8)撮像条件の設定は、光源の明るさの設定により行
う請求項4記載の透過率測定方法。
(8) The transmittance measuring method according to claim 4, wherein the imaging conditions are set by setting the brightness of the light source.
(9)撮像した画像データから試料の位置を認識し、試
料上の所定位置の透過率データを測定する請求項1記載
の透過率測定方法。
(9) The transmittance measuring method according to claim 1, wherein the position of the sample is recognized from the captured image data and transmittance data at a predetermined position on the sample is measured.
(10)照明部の一部が試料と共に撮像領域に入る様に
撮像し、試料によって遮ぎられない部分の画像データに
より補正を行う請求項1記載の透過率測定方法。
(10) The transmittance measuring method according to claim 1, wherein the image is captured so that a part of the illumination section enters the imaging area together with the sample, and the correction is performed using image data of a part not blocked by the sample.
(11)試料がシャドーマスクまたはアパーチャグリル
であり、撮像に寄与する照明光と試料のなす角度がブラ
ウン管内で試料を通過する電子ビームとの角度に等しく
なる様な撮像条件とした請求項1記載の透過率測定方法
(11) The sample is a shadow mask or an aperture grill, and the imaging conditions are such that the angle between the illumination light contributing to imaging and the sample is equal to the angle between the electron beam passing through the sample in a cathode ray tube. Transmittance measurement method.
(12)照明部のコンデンサレンズとしてフレネルレン
ズを用いる請求項11記載の透過率測定方法。
(12) The transmittance measuring method according to claim 11, wherein a Fresnel lens is used as the condenser lens of the illumination section.
JP63110974A 1988-05-07 1988-05-07 Transmittance measurement method Expired - Fee Related JP2790283B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110974A JP2790283B2 (en) 1988-05-07 1988-05-07 Transmittance measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110974A JP2790283B2 (en) 1988-05-07 1988-05-07 Transmittance measurement method

Publications (2)

Publication Number Publication Date
JPH01282446A true JPH01282446A (en) 1989-11-14
JP2790283B2 JP2790283B2 (en) 1998-08-27

Family

ID=14549212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110974A Expired - Fee Related JP2790283B2 (en) 1988-05-07 1988-05-07 Transmittance measurement method

Country Status (1)

Country Link
JP (1) JP2790283B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369243B2 (en) 2003-05-28 2008-05-06 Fujifilm Corporation Optical measuring apparatus and optical measuring method
JP2008309805A (en) * 2008-09-26 2008-12-25 Fujifilm Corp Light measuring instrument and light measuring method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506759U (en) * 1973-05-17 1975-01-23
JPS56129845A (en) * 1980-03-14 1981-10-12 Matsushita Electronics Corp Inspecting method for color filter
JPS586435A (en) * 1981-07-06 1983-01-14 Fuji Photo Film Co Ltd Measuring method for optical characteristics of microcolor filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS506759U (en) * 1973-05-17 1975-01-23
JPS56129845A (en) * 1980-03-14 1981-10-12 Matsushita Electronics Corp Inspecting method for color filter
JPS586435A (en) * 1981-07-06 1983-01-14 Fuji Photo Film Co Ltd Measuring method for optical characteristics of microcolor filter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7369243B2 (en) 2003-05-28 2008-05-06 Fujifilm Corporation Optical measuring apparatus and optical measuring method
JP2008309805A (en) * 2008-09-26 2008-12-25 Fujifilm Corp Light measuring instrument and light measuring method

Also Published As

Publication number Publication date
JP2790283B2 (en) 1998-08-27

Similar Documents

Publication Publication Date Title
Rea et al. A new luminance and image analysis system for lighting and vision I. Equipment and calibration
JPH0481178A (en) Dc offset correction method for irccd detector
CN109525840B (en) Method for detecting weak defects on imaging chip
JP3471436B2 (en) Image quality inspection apparatus and image synthesizing method thereof
JPH0713598B2 (en) Defect inspection method for periodic patterns
JP2792517B2 (en) Sample inspection method
US3678192A (en) Method and apparatus for digital measurement with an industrial television
JPH01282446A (en) Measurement of transmissivity
JPH0814824A (en) Correction method for measurement object displacement with speckle pattern using laser beam, and device therefor
JPH051950A (en) Illuminance measuring method for vehicle light
CN115037922A (en) Uniform light source platform for camera calibration, and non-uniformity measurement and correction method
JPH08254499A (en) Displaying/appearance inspection device
JPS6080739A (en) Two-dimensional densitometer
JPH01313742A (en) Method for inspecting periodic pattern
JP2008102818A (en) Method for correcting output value of imaging means, shading correction method, defect detection method, defect detection program, and defect detection apparatus
JP2683248B2 (en) Inspection method of colored periodic pattern
TWI818715B (en) A method for visual inspection of curved objects
CN110876055B (en) External triggering linear camera detection system and image uniformity processing method thereof
CN109655005B (en) Film thickness measuring apparatus, substrate inspecting apparatus, film thickness measuring method, and substrate inspecting method
JP2601168Y2 (en) Image processing device
KR0169208B1 (en) Camera device for lcd panel picture quality inspection device
JP2655546B2 (en) Light source fluctuation correction method and device
JPH0438444A (en) Image measuring device
CN105590941A (en) Method for improving photoelectric sensor and light-sensitive material weak light detection ability
TW202411940A (en) A method for visual inspection of curved objects

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees