JPH01282124A - Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide - Google Patents

Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide

Info

Publication number
JPH01282124A
JPH01282124A JP63111786A JP11178688A JPH01282124A JP H01282124 A JPH01282124 A JP H01282124A JP 63111786 A JP63111786 A JP 63111786A JP 11178688 A JP11178688 A JP 11178688A JP H01282124 A JPH01282124 A JP H01282124A
Authority
JP
Japan
Prior art keywords
powder
oxide
superconducting
mixture
powdery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63111786A
Other languages
Japanese (ja)
Inventor
Tadashi Sugihara
杉原 忠
Takuo Takeshita
武下 拓夫
Yukihiro Ouchi
大内 幸弘
Takeshi Sakurai
健 桜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP63111786A priority Critical patent/JPH01282124A/en
Priority to KR1019890701968A priority patent/KR960011344B1/en
Priority to US07/445,629 priority patent/US5236889A/en
Priority to DE68920240T priority patent/DE68920240T2/en
Priority to PCT/JP1989/000199 priority patent/WO1989008077A1/en
Priority to EP89902822A priority patent/EP0358777B1/en
Publication of JPH01282124A publication Critical patent/JPH01282124A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02E40/64

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title superconducting oxide powder having extremely low C content and superior superconducting characteristics by mixing Tl oxide powder with a compound oxide of Ca-Ba-Cu obtd. by a primary calcination of a powder mixture consisting of Ca carbonate, Ba carbonate, and Cu oxide, and calcining the mixture secondarily. CONSTITUTION:A powder mixture of powdery CaCO3, powdery BaCO3, and powdery CuO in a specified proportion is calcined primarily at 850-1050 deg.C to obtain thus a compound oxide of Ca, Ba, and Cu. Then, a specified proportion of Tl2O3 powder is mixed with the obtd. compound oxide contg. almost no C, and the mixture is calcined at 400-720 deg.C in the form of the mixture. As a result, powdery Tl-Ca-Ba-Cu-O type superconducting oxide having extremely low carbon content is obtd. Further, a ceramic material prep. from the powder has a higher critical current Jc and critical temp. Tc since there is no decrease of superconducting characteristics due to the presence of C.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、炭素含有量が著しく低く、シたがって一段
とすぐれた超電導特性を有する超1!導セラミックス材
の表造を可能とするTt−Ca −Ba−Cu−0系超
電導酸化物粉末の製造法Kl&するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention provides super 1! This is a method for producing a Tt-Ca-Ba-Cu-0 based superconducting oxide powder that enables surface formation of conductive ceramic materials.

〔従来の技術〕[Conventional technology]

近年、’rt−Ca−Ba−Cu −0系超電導セラミ
ツクス材が提案され、これが、1ず、原料粉末としてT
t酸化物(以下Tt20.で示す)、Ca炭酸塩(以下
CaCO3で示す)、Ba炭酸塩(以下Ba CO3で
示す〕。
In recent years, 'rt-Ca-Ba-Cu-0-based superconducting ceramic materials have been proposed, which are
t oxide (hereinafter referred to as Tt20.), Ca carbonate (hereinafter referred to as CaCO3), and Ba carbonate (hereinafter referred to as BaCO3).

およびCu酸化物(以下CuOで示す)の粉末を用意し
、これら原料粉末を所定の割合に配合し、混合した後、
この混合粉末に、600〜700℃の範囲内の温度に所
定時間保持の焼成処理と粉砕を2〜3回繰り返し施して
Tt−Ca −Ba −Cu −Q系超電導酸化物粉末
とし、ついで、この超電辱酸化物粉末を原料粉末として
用いて1通常の条件で圧粉体にブレス成形した後、焼結
することによって製造されることは良く知られるところ
である。
After preparing powders of and Cu oxide (hereinafter referred to as CuO) and blending and mixing these raw material powders in a predetermined ratio,
This mixed powder is repeatedly subjected to firing treatment held at a temperature within the range of 600 to 700°C for a predetermined time and pulverization two to three times to obtain a Tt-Ca-Ba-Cu-Q-based superconducting oxide powder. It is well known that it is manufactured by using superelectrode oxide powder as a raw material powder, press-molding it into a green compact under normal conditions, and then sintering it.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、上記の従来法で製造されたTl −Ca −B
a−Cu−0系超t4酸化物粉末においては、上記のよ
うに焼成を繰シ返し行なっても炭素が残留し。
However, Tl-Ca-B produced by the above conventional method
In the a-Cu-0 type super t4 oxide powder, carbon remains even if the firing is repeated as described above.

例えば5回の焼成および粉砕を繰り返し行なっても炭素
含有量を1重−ms以下に低減することはきわめて困難
であり。このような炭素含有蓋の高いTt−Ca−Ba
−Cu −0系超電導改化物粉末を原料粉末として用い
て超!導セラミックス材を製造した場合、焼結時に残留
炭素が粒界に析出するようになって十分満足する超1!
尋特性を示さないのが現状でめる。
For example, it is extremely difficult to reduce the carbon content to less than 1 weight-ms even if firing and pulverization are repeated five times. High Tt-Ca-Ba of such a carbon-containing lid
-Cu -0 based superconducting modified powder is used as raw material powder to achieve super! When a conductive ceramic material is produced, residual carbon precipitates at the grain boundaries during sintering, which is completely satisfactory!
Currently, it does not exhibit any special characteristics.

〔課題を解決するための手段〕[Means to solve the problem]

そこで1本発明者等は、上述のような観点から。 Therefore, the inventors of the present invention, etc., from the above-mentioned viewpoint.

残留炭素含有蓋の少ないTl−Ca −Ba −Cu 
−0系超蒐導酸化物粉末を装造すべく研究を行なった結
果。
Tl-Ca-Ba-Cu with low residual carbon content
-Results of research to prepare 0-based superconducting oxide powder.

まず、原料粉末としてCa CO5初末、 BaCO3
粉末。
First, as raw material powder, CaCO5 powder, BaCO3
powder.

およびCuO粉末を用い、これら原料粉末の所定割合の
混合粉末を850〜1050℃の高温で1次焼成してC
aとBaとCuの複合酸化物(以下Ca−Ba−Cu7
0系酸化物という)とすると、このCa−Ba−Cu−
0系酸化物は、上記の通り高温焼成処理のために炭酸塩
の分解が完全に起ることから、はとんど炭素を含有せず
、含有してもわずかであり、ついで前記Ca−Ba−C
u−0系酸化物に所定割合のTt203粉末を配合し、
混合した状態で400〜120℃の温度で2次焼成する
と、炭素含有量の著しく低いTt−Ca −Ba −C
u −0系超電導酸化物粉末が得られるようになシ、こ
れを原料粉末として用いて製造した超1を尋セラミック
ス材は、炭素含有による超電導特性の低下がないので、
−段と高い臨界電流値(Jc)と臨界温風(TC) ’
に示すようになるという知見1に得たのである。
and CuO powder, a mixed powder of a predetermined ratio of these raw material powders is primarily fired at a high temperature of 850 to 1050°C, and
Composite oxide of a, Ba and Cu (hereinafter referred to as Ca-Ba-Cu7
0 series oxide), this Ca-Ba-Cu-
As mentioned above, carbonate decomposition occurs completely due to the high-temperature calcination treatment, so zero-based oxides almost never contain carbon, and even if they do contain it, it is only a small amount, and then the Ca-Ba -C
A predetermined proportion of Tt203 powder is blended with u-0 type oxide,
When the mixed state is subjected to secondary firing at a temperature of 400 to 120°C, Tt-Ca-Ba-C with extremely low carbon content is produced.
In order to obtain u-0-based superconducting oxide powder, the super-1000 ceramic material produced using this as a raw material powder has no deterioration in superconducting properties due to carbon content.
- Extremely high critical current value (Jc) and critical warm air (TC)'
We obtained the following knowledge as shown in Figure 1.

この発明は、上記知見にもとづいてなされたものであっ
て。
This invention was made based on the above findings.

(a)  原料粉末として、Tt203粉末、CaC0
3g末。
(a) As raw material powder, Tt203 powder, CaC0
3g end.

BaCO3粉末、およびCuO粉末を用意し。Prepare BaCO3 powder and CuO powder.

(b)  まず、これら原料粉末のうちのCaC0B初
末。
(b) First, the starting powder of CaC0B among these raw material powders.

BaCO3粉末、およびCll0粉末を所定割合に配合
し。
BaCO3 powder and Cll0 powder are blended in a predetermined ratio.

混合した後、850〜1050℃の範囲内の所定温度で
1次焼成して、 Ca−Ba−Cu −0系酸化物を形
成し。
After mixing, primary firing is performed at a predetermined temperature within the range of 850 to 1050°C to form a Ca-Ba-Cu-0 based oxide.

(C)  ツいで、このCa−Ba−Cu −0系酸化
物K 。
(C) This Ca-Ba-Cu-0 based oxide K.

所定割合のTt 20 、粉末を配合し、混合した後、
400〜’720℃の範囲内の所定温度で2次焼成する
ことにより炭素含有蓋の著しく低い、含鳴しても超′I
IL専特性を損なわないTt−Ca−Ba−Cu −0
系超電導酸化物粉末を製造する方法に特徴を有するもの
である。
After blending and mixing a predetermined ratio of Tt 20 and powder,
By performing secondary firing at a predetermined temperature within the range of 400 to 720 degrees Celsius, the carbon-containing lid has extremely low ringing and ultra-high I.
Tt-Ca-Ba-Cu -0 that does not impair IL-specific characteristics
This method is characterized by a method for producing superconducting oxide powder.

なお、この発明の方法において、1次焼成温度f:85
0〜1050℃と定めたのは、その温度が850℃未満
では炭酸塩の分解が不十分で1反応&相対的に多量の炭
素が残留するのが避けられず、この多量の炭素残留は最
終的に超%専セラミックス材の特性劣化の原因となるも
のであり、一方その温度が1050℃を越えるとCuO
が溶融するようになって均質なCa−Ba −Cu −
0系酸化物の形成が不可能になるという理由によるもの
であシ、また。2次焼成温度を400〜720℃と限定
したのは、その温度が400℃未満ではTt2o、とC
a −Ba−Cu−0系酸化物との反応が不十分で、超
電導酸化物粉末を形成することができず、一方その温度
が720℃を越えるとTt 20 、が溶融するように
なり1反応が不均一になって超電導酸化物粉末の形成が
できなくなるという理由にもとづくものである。
In addition, in the method of this invention, the primary firing temperature f: 85
The reason for setting the temperature range as 0 to 1050°C is that if the temperature is lower than 850°C, carbonate decomposition is insufficient and it is inevitable that one reaction will occur and a relatively large amount of carbon will remain. CuO is the cause of deterioration of the properties of super-ceramic materials, and on the other hand, when the temperature exceeds 1050℃, CuO
melts to form a homogeneous Ca-Ba-Cu-
This is because it becomes impossible to form zero-based oxides. The reason why the secondary firing temperature was limited to 400 to 720°C is that if the temperature is less than 400°C, Tt2o and C
The reaction with a-Ba-Cu-0-based oxide is insufficient and a superconducting oxide powder cannot be formed. On the other hand, when the temperature exceeds 720°C, Tt 20 begins to melt and one reaction occurs. This is based on the reason that the superconducting oxide powder becomes non-uniform and it becomes impossible to form a superconducting oxide powder.

〔実施例〕〔Example〕

つぎに、この発明の方法を実施例によシ具体的に説明す
る。
Next, the method of the present invention will be specifically explained using examples.

原料粉末として、いずれも6μ鼠の平均粒径を有し、か
つ純g:99.9%のCa CO5粉末、 BaCO5
粉末、 CuO粉末、およびTt2o、粉末を用意し、
まず、これら原料粉末のうちのCa CO3粉末、 B
aCO3粉末、およびCuO粉末を用い、これら原料粉
末を第1表に示される配合組成に配合し、ボールミルに
て6時間湿式混合し、乾燥した後、アルミナ容器に入れ
。大気中、第1表に示される温度に5時間保持の条件で
1次焼成を行なってCa−Ba −Cu −0系酸化物
を形成し、ついで、このca−Ba−Cu−0系酸化物
に、同じく第1表に示される割合(全体で100重量嘩
)の’rz2o3粉末を配合し、ボールミルにて5時間
湿式混合し、乾燥した後、大気中、第1表に示される温
度に10時間保持の条件で2次焼結を行なうことによシ
本発明法1〜8および比較法ト4をそれぞれ実施し、同
じく第1表に示される炭素含有量のTt −Ca −B
a−Cu −0系超電導酸化物粉末(以下超電導酸化物
粉末という)を製造した。
As raw material powders, CaCO5 powder and BaCO5 each have an average particle size of 6 μm and have a purity of 99.9%.
Prepare powder, CuO powder, and Tt2o powder,
First, among these raw material powders, Ca CO3 powder, B
Using aCO3 powder and CuO powder, these raw material powders were blended into the composition shown in Table 1, wet mixed in a ball mill for 6 hours, dried, and then placed in an alumina container. Primary calcination is performed in the atmosphere at the temperature shown in Table 1 for 5 hours to form a Ca-Ba-Cu-0 based oxide, and then this ca-Ba-Cu-0 based oxide is was mixed with 'rz2o3 powder in the proportions shown in Table 1 (100% by weight in total), wet-mixed in a ball mill for 5 hours, dried, and then heated in the air at the temperature shown in Table 1 for 10 minutes. Methods 1 to 8 of the present invention and comparative method 4 were carried out by performing secondary sintering under the conditions of time holding, and Tt-Ca-B with the carbon content shown in Table 1 was obtained.
A-Cu-0-based superconducting oxide powder (hereinafter referred to as superconducting oxide powder) was manufactured.

なお、比較法1〜4は、いずれも1次ま九は2次焼成温
度がこの発明の範囲から外れた条件で行なったものであ
る。
It should be noted that Comparative Methods 1 to 4 were all conducted under conditions in which the primary and secondary firing temperatures were outside the range of the present invention.

また、比較の目的で、上記の原料粉末を用い。In addition, for the purpose of comparison, the above raw material powder was used.

これら原料粉末を、ム負囁で、b  CaC0,: l
 5.5 %、BaCO3: 30.6 %、 CuO
: l B−5s、Tt2COs:35.4%の割合で
配合し、5時間の混合を行なった後、乾燥し、ついで大
気中、温度:680℃に10時間保持後、粉砕を1サイ
クルとし、これを5サイクル繰り返し行なうことによシ
従来法全実施し、同じく第1表に示される炭素含南童の
起電導酸化物粉末を製造した。
These raw material powders are mixed into b CaC0,: l
5.5%, BaCO3: 30.6%, CuO
: l B-5s, Tt2COs: Blended at a ratio of 35.4%, mixed for 5 hours, dried, then held in the air at a temperature of 680°C for 10 hours, and pulverized for one cycle. By repeating this for 5 cycles, all the conventional methods were carried out, and carbon-containing electromotive conductive oxide powders shown in Table 1 were also produced.

ついで、この結果得られた各種の超を導酸化物粉末を原
料粉末として用い、 2 ton/m2の圧力で圧粉体
にプレス成形し、ついでこの圧粉体を、大気中、温度二
890℃に10時間保持の条件で焼結することによシ断
面:5mX5m、長さ:lO鵡の寸法を有する超1!導
セラミックス材を製造した。
Next, the various superstructures obtained as a result were press-molded into a compact at a pressure of 2 tons/m2 using conductive oxide powder as a raw material powder, and then the compact was heated at a temperature of 2,890°C in the atmosphere. By sintering under the condition of holding for 10 hours, it is made into a super 1 piece with dimensions: 5m x 5m, length: 100mm. A conductive ceramic material was manufactured.

また、これらの起電導セラミックス材の臨界電流値(J
c)と臨界温度t−#J定した。この測定結果も第1表
に示した。
In addition, the critical current value (J
c) and the critical temperature t-#J were determined. The measurement results are also shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

iL表に示される結果から5本発明法1〜8で製造され
た炭素含有量の低い超電4#L化物粉末を用いた場合、
いずれも従来法で製造されたFX素含有魚の尚i超II
L尋酸化物粉末を用いた場合に比して、−段とすぐれた
超電導特性を有する超電導セラミックス材を製造するこ
とができ、一方、比較法1〜4に見られるようIc、1
次または2次焼成温度のいずれでも、この発明の範囲か
ら外れると。
From the results shown in the iL table, when using superelectric 4#L compound powder with low carbon content produced by methods 1 to 8 of the present invention,
Both are FX element-containing fish produced using conventional methods.
It is possible to produce a superconducting ceramic material with superior superconducting properties compared to the case of using L oxide powder, and on the other hand, as seen in Comparative Methods 1 to 4, Ic,
Any subsequent or secondary firing temperature is outside the scope of this invention.

超電導酸化物粉末中に相当量の炭素が残留したり。A considerable amount of carbon remains in the superconducting oxide powder.

あるいは原料粉末としてのCuO粉末やTt203粉末
が溶融して均質な超電導酸化物粉末が得られないことか
ら、これより製造される超電導セラミックス材にすぐれ
た超tS特性を期待することができないことが明らかで
ある。
Alternatively, since CuO powder and Tt203 powder as raw material powders are melted and a homogeneous superconducting oxide powder cannot be obtained, it is clear that superior superconducting ceramic materials cannot be expected to have excellent super-tS properties. It is.

上述のように、この発明の方法によれば、炭素含有量の
きわめて低い超電導酸化物粉末を製造することができ、
したがってこれよシ製造された超電導セラミックス材は
すぐれた超電導特性を具備するようになるのである。
As described above, according to the method of the present invention, superconducting oxide powder with extremely low carbon content can be produced,
Therefore, the superconducting ceramic material thus produced has excellent superconducting properties.

Claims (1)

【特許請求の範囲】[Claims] (1)原料粉末として、Tl酸化物、Ca炭酸塩、Ba
炭酸塩、およびCu酸化物の粉末を用意し、まず、これ
ら原料粉末のうちのCa炭酸塩、Ba炭酸塩、およびC
u酸化物の粉末を所定割合に混合した後、850〜10
50℃の範囲内の所定温度で1次焼成して、CaとBa
とCuの複合酸化物を形成し、ついで、このCaとBa
とCuの複合酸化物に、所定割合いのTl酸化物粉末を
配合し、混合した後、400〜720℃の範囲内の所定
温度で2次焼成して、Tl−Ca−Ba−Cu−O系超
電導酸化物を形成することを特徴とするTl−Ca−B
a−Cu−O系超電導酸化物粉末の製造法。
(1) Raw material powders include Tl oxide, Ca carbonate, Ba
Carbonate and Cu oxide powders are prepared, and first, Ca carbonate, Ba carbonate, and C of these raw material powders are prepared.
After mixing the U oxide powder in a predetermined ratio, 850 to 10
Ca and Ba are first fired at a predetermined temperature within the range of 50°C.
A composite oxide of Ca and Cu is formed, and then this Ca and Ba
A predetermined proportion of Tl oxide powder is blended into a composite oxide of Tl-Ca-B characterized by forming a superconducting oxide
Method for producing a-Cu-O-based superconducting oxide powder.
JP63111786A 1988-02-26 1988-05-09 Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide Pending JPH01282124A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63111786A JPH01282124A (en) 1988-05-09 1988-05-09 Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide
KR1019890701968A KR960011344B1 (en) 1988-02-26 1989-02-27 Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
US07/445,629 US5236889A (en) 1988-02-26 1989-02-27 Process for producing bi-ca-sr-cu-o, tl-ca-sr-cu-o and tl-ba-ca-cu-o superconducting ceramics
DE68920240T DE68920240T2 (en) 1988-02-26 1989-02-27 METHOD FOR PRODUCING CERAMIC SUPRALITERS BASED ON Bi-Ca-Sr-Cu-O, Tl-Ca-Sr-Cu-O AND Tl-Ba-Ca-Cu-O.
PCT/JP1989/000199 WO1989008077A1 (en) 1988-02-26 1989-02-27 PROCESS FOR PRODUCING SUPERCONDUCTING (Bi, Tl)-Ca-(Sr, Ba)-Cu-O CERAMIC
EP89902822A EP0358777B1 (en) 1988-02-26 1989-02-27 PROCESS FOR PRODUCING Bi-Ca-Sr-Cu-O, Tl-Ca-Sr-Cu-O AND Tl-Ba-Ca-Cu-O SUPERCONDUCTING CERAMICS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63111786A JPH01282124A (en) 1988-05-09 1988-05-09 Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide

Publications (1)

Publication Number Publication Date
JPH01282124A true JPH01282124A (en) 1989-11-14

Family

ID=14570124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63111786A Pending JPH01282124A (en) 1988-02-26 1988-05-09 Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide

Country Status (1)

Country Link
JP (1) JPH01282124A (en)

Similar Documents

Publication Publication Date Title
KR960011344B1 (en) Process for producing superconducting(bi,ti)-ca(sr,ba)cu-o ceramic
JPH01282124A (en) Production of powder of tinfinity-ca-ba-cu-o type superconducting oxide
JPH0234516A (en) Production of tl-ba-ca-cu-o type superconducting ceramics
JP3389298B2 (en) Method for producing colored mullite sintered body
JPH01219022A (en) Production of bi-ca-sr-cu-o superconducting oxide powder
JPH01261261A (en) Production of bi-ca-sr-cu-o superconducting ceramics
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JPH04220905A (en) Manufacture of sintered body for high frequency dielectric substance
JP3157183B2 (en) Manufacturing method of oxide superconductor
JPH01252529A (en) Production of tl-ca-sr-cu-o superconducting oxide powder
JP2866484B2 (en) Manufacturing method of oxide superconductor
JPH0345514A (en) Bi-based superconducting oxide powder and production of sintered compact using the same powder
JPH0193460A (en) Production of superconducting substance
JPH01294559A (en) Production of dielectric ceramic material for high-frequency use
JPH03265561A (en) Production of high-density oxide superconductor
JPH02145470A (en) Production of tlbacacuo superconductor
JPH03197348A (en) Production of oxide superconductor having high density and high orientation
JPH11268915A (en) Raw material for oxide superconductor and production of oxide superconductor
JPH04175225A (en) Production of oxide superconducting material
JPH05279036A (en) Production of oxide superconductor
JPH06260036A (en) Dielectric ceramic composition
JPH0360457A (en) Production of y-ba-cu-based oxide superconductor
JPH01141871A (en) Production of superconducting material
JPH01131048A (en) Superconducting porcelain composition
JPH0193459A (en) Production of superconducting substance