JPH01281072A - Cell culture method and unit therefor - Google Patents

Cell culture method and unit therefor

Info

Publication number
JPH01281072A
JPH01281072A JP10902888A JP10902888A JPH01281072A JP H01281072 A JPH01281072 A JP H01281072A JP 10902888 A JP10902888 A JP 10902888A JP 10902888 A JP10902888 A JP 10902888A JP H01281072 A JPH01281072 A JP H01281072A
Authority
JP
Japan
Prior art keywords
culture
culture solution
membrane
cells
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10902888A
Other languages
Japanese (ja)
Other versions
JPH0728723B2 (en
Inventor
Ryoichi Haga
良一 芳賀
Masahiko Ishida
昌彦 石田
Yusaku Nishimura
勇作 西村
Setsuo Saito
斉藤 節雄
Harumi Matsuzaki
松崎 晴美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP10902888A priority Critical patent/JPH0728723B2/en
Priority to EP88907809A priority patent/EP0336966B1/en
Priority to DE3850652T priority patent/DE3850652T2/en
Priority to PCT/JP1988/000890 priority patent/WO1989002458A1/en
Priority to US07/347,219 priority patent/US5162204A/en
Priority to KR1019890006018A priority patent/KR900018366A/en
Priority to DE68909997T priority patent/DE68909997T2/en
Priority to EP89108110A priority patent/EP0340783B1/en
Publication of JPH01281072A publication Critical patent/JPH01281072A/en
Publication of JPH0728723B2 publication Critical patent/JPH0728723B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the title unit designed so that a hydrophobic filtration membrane is used as a filtration membrane for a culture solution where cells are being put to liquid culture, and the membrane is intermittently backwashed with fresh culture solution to protect the cells from damage along with preventing the membrane from clogging. CONSTITUTION:Part of a culture solution where cells are being put to liquid culture is taken, and a hydrophobic filtration membrane is used as a filtration membrane for separating the cells from the liquid. Also this membrane is intermittently backwashed with fresh culture solution. Preferably, the membrane is a precoated one with a hydrophobic filtration medium layer on the surface of the hydrophobic filtration membrane. Furthermore, the hydrophobic membrane is pref. a hollow fiber membrane.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、生物細胞の培養方法に係り、特に、生物細胞
を液体培地中で通気培養し、副生物質の除去を効率良く
行なう、大規模かつ高濃度な細胞培養方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for cultivating biological cells, and in particular, a method for cultivating biological cells in a liquid medium with aeration and efficiently removing byproducts. Concerning large-scale and high-density cell culture methods.

〔従来の技術〕[Conventional technology]

最近、従来の微生物細胞すなわち菌体の培養に加え、動
物細胞の培養によりインターフェロン等の医薬品の生産
が行われはじめた。
Recently, in addition to the conventional culture of microbial cells, that is, bacterial cells, the production of pharmaceuticals such as interferon has begun to be carried out by culturing animal cells.

こうした医薬品を工業的に生産するためには大規模かつ
高濃度で長期間安定した培養法が必要となる。このため
、 ■生物紐胞と培養液とを分離し、新鮮な培養液を供給す
る技術、 ■生物細胞の生育に必要な酸素を供給する技術。
In order to industrially produce such pharmaceuticals, a large-scale, high-concentration, long-term stable culture method is required. For this reason, two technologies were developed: ■Technology to separate biological cells and culture fluid and supply fresh culture fluid; and ■Technology to supply oxygen necessary for the growth of biological cells.

を具備した細胞培養方法の開発が望まれている。It is desired to develop a cell culture method that has the following features.

上記■の要件を達成するには、培養液中に浮遊している
細胞を無菌的に分離濃縮する必要がある。
In order to achieve the above requirement (2), it is necessary to aseptically separate and concentrate the cells floating in the culture solution.

培養液を交換せずに細胞を培養した場合、多くの細胞系
においては、2 X 10’個/mQ前後の細胞濃度が
最大値である。これに対し、培養液中の細胞を分離濃縮
し、新鮮培養液で培養を継続した場合には107個/ 
m 0以上に細胞濃度を上げることができ、培養槽の小
型化及び培養時間の短縮を図ることができる。
When cells are cultured without replacing the culture medium, most cell lines have a maximum cell concentration of around 2 x 10' cells/mQ. On the other hand, if the cells in the culture solution were separated and concentrated and the culture was continued in fresh culture solution, 107 cells/
The cell concentration can be increased to more than m 0, and the size of the culture tank and culture time can be reduced.

細胞の分離濃縮に対しては、少量試験用には一般に遠心
分離法が用いられるが、大規模にこれを無菌的に行なう
ことは、培養液の交換に要する時間とプロセスの複雑さ
から内薄である。そこで、培養槽内への新鮮培養液の供
給と細胞が副生ずる老廃物の除去を、細胞の分離濃縮操
作と時間をおかずに行う方法が提案されている。例えば
特公昭55−16635号及び特開昭62−265号記
載の方法は。
Centrifugation is generally used to separate and concentrate cells for small-scale tests, but performing this aseptically on a large scale is difficult due to the time required to exchange the culture medium and the complexity of the process. It is. Therefore, a method has been proposed in which the supply of a fresh culture solution into a culture tank and the removal of waste products produced by cells can be performed without taking the time required to separate and concentrate cells. For example, the methods described in Japanese Patent Publication No. 55-16635 and Japanese Patent Application Laid-open No. 62-265.

培養槽内に細胞の沈降ゾーンを設け、沈降ゾーンの上澄
液を排出しながら新鮮培養液を供給する。
A cell sedimentation zone is provided in the culture tank, and fresh culture medium is supplied while draining the supernatant liquid from the sedimentation zone.

また、特開昭61−257181号、特公昭62−12
989号および特公昭62−12990号記載の方法は
、培養槽内に培養液は透過するが細胞は透過しない壁膜
を有する中空糸膜を設け、これを介して新鮮培養液の供
給と副生物質の除去を行う。
Also, JP-A No. 61-257181, JP-A No. 62-12
989 and Japanese Patent Publication No. 62-12990, a hollow fiber membrane having a wall membrane through which the culture solution permeates but not the cells is provided in the culture tank, and fresh culture solution is supplied and by-products are supplied through the hollow fiber membrane. Perform material removal.

また前記■の酸素供給技術については、従来、微生物等
の培養においては培養液中に直接空気もしくは酸素富化
空気を通気する手段がとられてきた。しかし、これらの
細胞を培養する際に用いる液体培地又は細胞を含む培養
液は発泡性のものが多い。特に血清を添加して行う動物
細胞の培養の場合には、血清中に含まれる生体高分子類
及び培養中に分泌される生体高分子類に起因する培養液
の発泡が著しい。これは放置したり、機械的に剪断力を
与えても破泡しにくく、泡が培養槽気相部を満たし、や
がて系外に溢流してしまう。
Regarding the oxygen supply technique (2) above, in the cultivation of microorganisms and the like, conventional methods have been used to aerate air or oxygen-enriched air directly into the culture solution. However, the liquid medium or culture solution containing the cells used when culturing these cells is often foamy. Particularly in the case of culturing animal cells with the addition of serum, foaming of the culture solution is significant due to biopolymers contained in the serum and biopolymers secreted during the culture. These bubbles are difficult to burst even if left alone or mechanically subjected to shearing force, and the bubbles fill the gas phase of the culture tank and eventually overflow to the outside of the system.

これらの発泡性の培養液では、液中に酸素を供給する方
式として、気泡を立てずに液中に酸素を溶解させるか、
液中通気により発生する気泡を消泡する必要がある。
In these foaming culture solutions, oxygen is supplied into the solution by dissolving the oxygen in the solution without creating bubbles, or by dissolving oxygen in the solution without creating bubbles.
It is necessary to eliminate bubbles generated by aeration in the liquid.

従来は前者の方法が主として指向されてきた。Conventionally, the former method has been mainly oriented.

具体的には、培養槽気相部に通気し、液面から酸素を溶
解させる方法であり、通常、酸素との接触を良くするた
め液を撹拌したり1通気量を多くして液面との接触を増
加させている。
Specifically, this is a method of dissolving oxygen from the liquid surface by aerating the gas phase of the culture tank. Usually, in order to improve contact with oxygen, the liquid is stirred or the amount of ventilation is increased to lower the liquid level. increasing contact.

上記については、特開昭61−74574号公報、特開
昭61−36915号公報、特開昭60−259179
号公報に記載されている。
Regarding the above, JP-A-61-74574, JP-A-61-36915, JP-A-60-259179
It is stated in the No.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の細胞を培養液より分離濃縮する技術のうち、細胞
を沈殿させて分離濃縮を行う方法では、細胞の沈降速度
が遅いため必然的に培養槽内に占める沈殿槽の容積を大
きくしなければならなかった。振動や温度差により培養
液が対流を起こすと。
Among the conventional techniques for separating and concentrating cells from a culture solution, in the method of separating and concentrating cells by sedimentation, the sedimentation rate of cells is slow, so it is necessary to increase the volume of the sedimentation tank in the culture tank. did not become. When the culture medium causes convection due to vibration or temperature difference.

上澄液に細胞が混入し分離効率が低下すると云う問題が
ある。
There is a problem in that cells are mixed into the supernatant, reducing separation efficiency.

また中空糸膜やフィルタにより細胞の分離濃縮を行う方
法では、膜やフィルタ上への細胞の付着を完全には防止
できないために、培養中に膜やフィルタが目づまりを起
こす、この状態で強制的に加圧し分離濃縮を行うと、細
胞が損傷する等の問題がある。
In addition, methods that separate and concentrate cells using hollow fiber membranes or filters cannot completely prevent cells from adhering to the membranes or filters, which can lead to clogging of the membranes or filters during culture. If pressure is applied to separate and concentrate the cells, there are problems such as damage to the cells.

一方、液面通気方式による酸素供給法は、液の撹拌を強
くすると細胞が破砕されるため、動物細胞では実質的に
50rp−以下に限定されるし、通気量も1 cys 
/ seeが上限である。上記の通気量を保持するには
培養設備に大容積の無菌空気調整設備が必要であり、ま
た、長期の培養においてはガスに伴って散逸する培養液
の損失も大きい。
On the other hand, in the oxygen supply method using the liquid level aeration method, if the liquid is strongly agitated, the cells will be crushed, so for animal cells, the oxygen supply method is practically limited to 50 rp- or less, and the aeration amount is also 1 cys.
/see is the upper limit. In order to maintain the above-mentioned aeration amount, a large volume of sterile air conditioning equipment is required in the culture equipment, and in addition, in long-term culture, there is a large loss of culture solution that is dissipated along with the gas.

他方、液中通気力−式による酸素供給法は、効果的な消
泡技術がない。細胞壁が強固でかつ増殖速度の大きい一
部の微生物を対象とした培養法において、気泡を高速回
転翼で機械的に破壊する方式%式% 108号公報)されているにすぎない。この方法は、槽
内に高速駆動部を設けなければならないため。
On the other hand, the oxygen supply method using the submerged aeration force method does not have an effective defoaming technology. In culture methods targeting some microorganisms with strong cell walls and high growth rates, only a method (% Formula % Publication No. 108) is used in which air bubbles are mechanically destroyed using high-speed rotary blades. This method requires a high-speed drive unit to be installed inside the tank.

構造が複雑となる。動物細胞はこのような剪断力には極
めて弱いため、この方法は適用できない。
The structure becomes complicated. This method cannot be applied to animal cells because they are extremely weak against such shearing forces.

本発明の目的は。The purpose of the present invention is to:

■細胞の損傷やフィルタの目詰りを防止し、かつ細胞の
分離濃縮と培養液の交換を無菌的に効率良く行う、 ■細胞を分離した培養液に溶解している老廃成分を除去
し、これを再び細胞の培養に供する、(■細胞の増殖を
害することなく、かつ高い酸素供給能を備えた大容量、
高濃度の細胞培養方法並びに装置を提供するにある。
■Prevents cell damage and filter clogging, and performs cell separation and concentration and culture medium exchange aseptically and efficiently;■Removes waste components dissolved in the culture medium from which cells have been separated; (■ Large capacity with high oxygen supply capacity without harming cell growth,
An object of the present invention is to provide a method and apparatus for culturing cells at high concentration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は下記によって達成することができる。 The above objective can be achieved by:

(1)生物の細胞を液体培養しながら培養液の一部を濾
過膜を用いて濾過して取り出し、新しい培養液を補給す
る細胞培養方法において、上記濾過膜が疎水性濾過膜で
あり、該濾過膜は間欠的に新しい培養液で逆洗すること
を特徴とする細胞培養方法。
(1) In a cell culture method in which cells of an organism are cultured in liquid, a part of the culture solution is filtered out using a filtration membrane, and a new culture solution is replenished, wherein the filtration membrane is a hydrophobic filtration membrane; A cell culture method characterized by intermittently backwashing the filtration membrane with fresh culture solution.

(2)生物の細胞を液体培養しながら培養液の一部を濾
過膜を用いて濾過して取り出し、新しい培養液を補給す
る細胞培養方法において、上記濾過膜が疎水性濾過膜の
表面に親水性濾過助材層を有するプレコート膜であり、
該濾過膜は間欠的に新しい培養液で逆洗することを特徴
とする細胞培養方法。
(2) In a cell culture method in which biological cells are cultured in liquid, a part of the culture solution is filtered out using a filtration membrane, and new culture solution is replenished, in which the filtration membrane is hydrophilic to the surface of the hydrophobic filtration membrane. It is a pre-coated membrane having a filtration aid layer,
A cell culture method characterized in that the filtration membrane is intermittently backwashed with fresh culture solution.

(3)前項1または2において、疎水性濾過膜が1本以
上の中空糸膜であることを特徴とする細胞培養方法。
(3) The cell culture method according to item 1 or 2 above, wherein the hydrophobic filtration membrane is one or more hollow fiber membranes.

(4)前項1または2において、疎水性濾過膜が培養液
の液滴との接触角が80度以上の素材で形成されている
ことを特徴とする細胞培養方法。
(4) The cell culture method according to item 1 or 2 above, characterized in that the hydrophobic filtration membrane is formed of a material having a contact angle with the droplets of the culture solution of 80 degrees or more.

(5)前項1または2において、疎水性濾過膜の濾過孔
を培養液で充填してから濾過を行うことを特徴とする細
胞培養方法。
(5) The cell culture method according to item 1 or 2, characterized in that filtration is performed after filling the filtration pores of the hydrophobic filtration membrane with a culture solution.

(6)前項1または2において、疎水性濾過膜の限界圧
以上で逆洗することを特徴とする細胞培養方法。
(6) The cell culture method according to the preceding item 1 or 2, characterized in that backwashing is carried out at a pressure higher than the critical pressure of the hydrophobic filtration membrane.

(7)前項1または2において、疎水性濾過膜を逆洗す
る培養液が、濾過した培養液から老廃成分を除去した培
養液であることを特徴とする細胞培養方法。
(7) The cell culture method according to item 1 or 2, wherein the culture solution for backwashing the hydrophobic filtration membrane is a culture solution obtained by removing waste components from a filtered culture solution.

(8)前項1または2において、濾過した培養液中の老
廃成分を老廃成分除去手段により除去し、該老廃成分除
去液を疎水性濾過膜の逆洗用液の一部または全部として
用いることを特徴とする細胞培養方法。
(8) In the preceding item 1 or 2, waste components in the filtered culture solution are removed by a waste component removal means, and the waste component removal liquid is used as part or all of the backwashing liquid for the hydrophobic filtration membrane. Characteristic cell culture method.

(9)前項8において、老廃成分除去手段が拡散透析法
、限外濾過法または精密濾過法であることを特徴とする
細胞培養方法。
(9) The cell culture method according to item 8 above, wherein the means for removing waste components is a diffusion dialysis method, an ultrafiltration method, or a microfiltration method.

(10)前項1または2において、培養液中に撹拌翼を
設け、該攪拌翼の回転面の周囲に疎水性濾過膜を設けた
ことを特徴とする細胞培養方法。
(10) The cell culture method according to item 1 or 2 above, characterized in that a stirring blade is provided in the culture solution, and a hydrophobic filtration membrane is provided around the rotating surface of the stirring blade.

(11)前項1または2において、培養により生成する
培養液の泡沫を、液面上に配置した撥水性材料で構成す
る消泡層を設け、これと接触させることにより、該泡沫
を破泡しながら培養を行うことを特徴とする細胞培養方
法。
(11) In the preceding item 1 or 2, the foam of the culture solution generated by the culture is broken by providing an anti-foaming layer made of a water-repellent material placed on the liquid surface and bringing the foam into contact with this. A cell culture method characterized by culturing while

(12)前項10において、消泡層が、粘度が1×1×
104センチポイズ以上の撥水剤を基材に塗布または含
浸されたものであることを特徴とする細胞培養方法。
(12) In the previous item 10, the antifoaming layer has a viscosity of 1×1×
A cell culture method characterized in that a base material is coated or impregnated with a water repellent of 104 centipoise or more.

また、上記混水材から成る破泡層を設けたことにより1
発生する泡沫の破泡が効率的にでき、注入ガス量を多く
でき高効率の細胞培養を可能とする。
In addition, by providing a foam-breaking layer made of the above-mentioned water-mixed material,
The generated foam can be efficiently broken, increasing the amount of gas injected, and enabling highly efficient cell culture.

(13)前項2において、親水性濾過助材が細胞の沈降
速度より大なる沈降速度を有することを特徴とする細胞
培養方法。
(13) The cell culture method according to item 2, wherein the hydrophilic filter aid has a sedimentation rate higher than that of the cells.

(14)前項2において、濾過膜を収納する濾過器を培
養槽と配管で連結して培養槽の外部に設け、疎水性濾過
膜を濾過器内の上部に配置し、密度が培養液の密度より
も小さい親水性濾過助材を用いることを特徴とする細胞
培養方法。
(14) In the preceding item 2, the filter containing the filtration membrane is connected to the culture tank with piping and installed outside the culture tank, and the hydrophobic filtration membrane is placed in the upper part of the filter, so that the density is the same as that of the culture solution. A cell culture method characterized by using a hydrophilic filter aid smaller than .

(15)培養開胸に対する有用ガスの供給手段、培養液
の供給手段、老廃培養液の排出手段を有する生物細胞の
液体培養装置において、上記老廃培養液の排出手段が疎
水性濾過膜からなる培養液濾過手段を介して設けられ、
かつ、該疎水性濾過膜が培養液により逆洗できる手段を
有する生物細胞の液体培養装置。
(15) A liquid culture device for biological cells having a means for supplying a useful gas to a thoracotomy, a means for supplying a culture solution, and a means for discharging a waste culture solution, wherein the means for discharging the waste culture solution is a hydrophobic filtration membrane. provided via liquid filtration means;
and a liquid culture device for biological cells, comprising means for backwashing the hydrophobic filtration membrane with a culture solution.

(16)前項15において、培養液濾過手段が疎水性中
空糸膜の表面に親水性濾過助材層を有するプレコート膜
から成ることを特徴とする生物細胞の液体培養装置。
(16) The liquid culture device for biological cells according to item 15, characterized in that the culture solution filtration means comprises a precoated membrane having a hydrophilic filter aid layer on the surface of a hydrophobic hollow fiber membrane.

(16)疎水性中空糸膜の両端に、外径が中空糸膜の内
径より大で、その先端部において中空糸膜のに挿入可能
な外径を有するように勾配を持たせたて成形され、かつ
、該中空糸膜の離脱防止のための突起部分が設けられた
膜拡張部材が挿入されており、該挿入部が接続部に固定
され、該接続部を介して配管と連結し得るようにしたこ
とを特徴とする生物細胞分離用濾過器。
(16) Both ends of the hydrophobic hollow fiber membrane are formed with a slope so that the outer diameter is larger than the inner diameter of the hollow fiber membrane, and the outer diameter at the tip part is such that it can be inserted into the hollow fiber membrane. , and a membrane expansion member provided with a protrusion for preventing detachment of the hollow fiber membrane is inserted, and the insertion part is fixed to the connection part so that it can be connected to the piping via the connection part. A filter for separating biological cells, which is characterized by:

本発明の細胞培養方法は、生物細胞の増殖培養に用いら
れ、培養容器、細胞と培養液とを分離する手段、老廃成
分を除去する手段、老廃成分を除去した培養液を培養容
器に戻す手段、及びこれらを接続する配管類から構成さ
れている。
The cell culture method of the present invention is used to propagate and culture biological cells, and includes a culture container, a means for separating cells and a culture solution, a means for removing waste components, and a means for returning the culture solution from which waste components have been removed to the culture container. , and the piping that connects them.

培養容器すなわち培養槽では生物の細胞が培養液中に浮
遊している。培養液中には無機塩、グルコース、アミノ
酸、抗生物質等が添加されており、また、必要に応じて
血清が加えられている。
In a culture container, ie, a culture tank, cells of an organism are suspended in a culture solution. Inorganic salts, glucose, amino acids, antibiotics, etc. are added to the culture solution, and serum is added as needed.

本発明の培養方法に用いられている培養槽の特徴は、培
養液を収容する容器、培養液を撹拌する手段、細胞と培
養液とを分離する手段、該容器の底部近傍から培養に必
要な気体を該培養液に供給する手段、該培養液の液面の
上方に位置し、気体を通過しうる多数の開口を有する撥
水性消泡手段、及び培養の進行度を検出する手段を有す
る通気培養槽にある。
The culture tank used in the culture method of the present invention is characterized by a container for storing the culture solution, a means for stirring the culture solution, a means for separating the cells from the culture solution, and a container for storing the culture solution from near the bottom of the container. a means for supplying gas to the culture solution; a water-repellent defoaming means located above the surface of the culture solution and having a number of openings through which gas can pass; and an aeration device having means for detecting the progress of the culture. It's in the culture tank.

本発明において、細胞と培養液とを分離する手段として
は、疎水性濾過膜を用いる。特に疎水性中空糸膜が好ま
しい。疎水性濾過膜は、培養液滴との接触角が80度以
上、好ましくは95度以上の素材で構成されたものであ
ることが望ましい。
In the present invention, a hydrophobic filtration membrane is used as a means for separating cells and culture medium. Particularly preferred are hydrophobic hollow fiber membranes. The hydrophobic filtration membrane is desirably made of a material that has a contact angle with the culture droplet of 80 degrees or more, preferably 95 degrees or more.

その開口度は、生物細胞が実質的に透過せず、かつ所要
量の培養液を透過させるためには、5μm〜0.5 μ
mのものが好ましい。
The opening degree is 5 μm to 0.5 μm in order to substantially prevent biological cells from passing through and to allow the required amount of culture solution to pass through.
m is preferred.

第15図は、親水性膜と疎水性膜の透過特性を示す。図
中、破線が親水性膜、実線が疎水性膜を用いた場合であ
る。
FIG. 15 shows the permeation characteristics of a hydrophilic membrane and a hydrophobic membrane. In the figure, the broken line is the case where a hydrophilic membrane is used, and the solid line is the case where a hydrophobic membrane is used.

親水性膜の透過特性は、濾過圧に比例する。これに対し
疎水性膜は、その細孔内にガスが存在する場合、すなわ
ち運転前においては、限界圧(疎水性の程度、細孔径、
膜厚、膜内空隙率等に依存する)以下の濾過圧では、液
は透過せず、限界圧となって初めて液が透過する。−度
液が透過すると、すなわち膜の細孔内が液で満たされる
とその透過特性は、濾過圧によらず親水性膜と同等とな
る。図中実線の矢印のように変化する。
The permeability properties of hydrophilic membranes are proportional to the filtration pressure. On the other hand, when a gas exists in the pores of a hydrophobic membrane, that is, before operation, the critical pressure (degree of hydrophobicity, pore diameter,
At a filtration pressure below (depending on membrane thickness, membrane porosity, etc.), the liquid will not pass through the filter, and the liquid will pass through only when the critical pressure is reached. - When a hydrophilic liquid permeates through the membrane, that is, when the pores of the membrane are filled with liquid, its permeation characteristics become equivalent to those of a hydrophilic membrane, regardless of the filtration pressure. It changes as shown by the solid line arrow in the figure.

細孔径0゜8μ鳳のポリテトラフルオロエチレン製ホロ
ーファイバ(外径211園、内径1鳳鳳)の限界圧は、
1 、5kg/cm”であり、液充満後の透過特性は。
The critical pressure of a polytetrafluoroethylene hollow fiber with a pore diameter of 0° and 8 μm (outer diameter 211 mm, inner diameter 1 mm) is:
1.5 kg/cm", and the permeation characteristics after filling with liquid are:

はぼ100s+l/mdg、 m2. hrである。こ
の透過量は親水性膜の透過量にほぼ一致する。
Habo 100s+l/mdg, m2. It is hr. This amount of permeation approximately corresponds to the amount of permeation through the hydrophilic membrane.

従って、上記ホローファイバを用いて、濾過または逆洗
する場合は、それが最初の使用のときは、上記限界圧以
上で一旦操作し、膜細孔内に液を充満することが必要で
ある。
Therefore, when using the hollow fiber for filtration or backwashing, when it is used for the first time, it is necessary to operate it at a pressure above the above-mentioned limit pressure to fill the membrane pores with liquid.

疎水性中空糸膜としては、特に限定するものではないが
、130℃程度での雰囲気でも十分な強度を保ち、濾過
のための小孔径が変化しないような疎水性材料から成る
ものを用いる必要がある。
The hydrophobic hollow fiber membrane is not particularly limited, but it is necessary to use one made of a hydrophobic material that maintains sufficient strength even in an atmosphere of about 130°C and does not change the small pore size for filtration. be.

特にテトラフルオロエチレン樹脂製のものは、こうした
点で好ましい。
In particular, those made of tetrafluoroethylene resin are preferable from this point of view.

疎水性濾過膜は長い1本の中空糸膜を用いてもよいが、
膜表面の有効利用を図るためには複数本を束ねた状態で
用いるのが望ましい。
A single long hollow fiber membrane may be used as the hydrophobic filtration membrane, but
In order to effectively utilize the membrane surface, it is desirable to use a plurality of membranes in a bundle.

特に溶接や接着による接続がむずかしいテトラフルオロ
エチレン樹脂製の中空糸膜を用いる場合には、下記のよ
うな接続方法により良好な膜ユニットを得ることができ
る。
Particularly when using hollow fiber membranes made of tetrafluoroethylene resin, which are difficult to connect by welding or adhesion, a good membrane unit can be obtained by the following connection method.

第9図に示すように、中空糸膜10の両端に膜拡張部材
52を挿入する。膜拡張部材52は、中空糸膜10の内
径より大なる外径を有する中空の管状をなしており、そ
の先端は、中空糸膜10内への挿入を容易にするために
先端に行くほど断面積が徐々に小さくなる形状を有し、
かつ表面の一部に局所的に外径の大なる突起部を有して
いる。膜拡張部材52を挿入した中空糸膜10の末端を
、室温硬化性の樹脂フェスで包含したのち、これを硬化
させる。
As shown in FIG. 9, membrane expansion members 52 are inserted into both ends of the hollow fiber membrane 10. The membrane expansion member 52 has a hollow tubular shape with an outer diameter larger than the inner diameter of the hollow fiber membrane 10, and its tip is cut off toward the tip to facilitate insertion into the hollow fiber membrane 10. It has a shape whose area gradually decreases,
In addition, a portion of the surface has locally large protrusions with a large outer diameter. After the end of the hollow fiber membrane 10 into which the membrane expansion member 52 has been inserted is covered with a room temperature curable resin face, this is cured.

必要に応じて外形を成形して膜接続部材51とし、濾過
用配管への接続端とする。複数の中空糸膜10末端を束
ねて同一の膜接続部材51に取付ければ、複数の膜から
成る濾過ユニットを作製できる。なお、中空糸膜濾過ユ
ニットのの一例を第8図及び第10図〜第13図に示す
If necessary, the membrane connecting member 51 is formed by shaping the outer shape, and is used as a connecting end to the filtration pipe. By bundling the ends of a plurality of hollow fiber membranes 10 and attaching them to the same membrane connecting member 51, a filtration unit consisting of a plurality of membranes can be produced. An example of a hollow fiber membrane filtration unit is shown in FIG. 8 and FIGS. 10 to 13.

疎水性を有する膜を用いることにより、膜面への細胞や
汚れの付着を大巾に軽減でき、長期間の濾過に使用が可
能となる。
By using a hydrophobic membrane, the adhesion of cells and dirt to the membrane surface can be greatly reduced, making it possible to use it for long-term filtration.

所定量の培養液を抜き出した後に疎水性濾過膜に新鮮な
培養液を逆に圧入することにより、濾過膜面上に付着し
た細胞や汚れを遊離させる。逆洗用液としては、未使用
の新鮮培養液または使用済の培養液から老廃成分を除去
した液あるいはこれらの混合液でもよい。
After a predetermined amount of the culture solution is removed, fresh culture solution is injected into the hydrophobic filtration membrane under pressure to release cells and dirt attached to the surface of the filtration membrane. The backwashing liquid may be an unused fresh culture solution, a used culture solution from which waste components have been removed, or a mixture thereof.

疎水性濾過膜10を培養槽2内の培養液中に設ける場合
(第5図)培養槽2内に滞留部分が生じて。
When the hydrophobic filtration membrane 10 is provided in the culture solution in the culture tank 2 (FIG. 5), a stagnation part is generated in the culture tank 2.

細胞の沈積を起すことのないように培養液1の円滑な流
動を維持でき、かつ細胞に不要な剪断力を与えないよう
な形状及び設置位置を考慮する必要がある。なお、この
場合の培養液の抜き出しは、できるだけ低流量で行なう
ことが望ましい。
It is necessary to consider a shape and installation position that can maintain smooth flow of the culture solution 1 without causing cell sedimentation and that does not apply unnecessary shearing force to the cells. Note that in this case, it is desirable to draw out the culture solution at a flow rate as low as possible.

疎水性濾過膜10を培養槽2の外に設ける場合(第2図
)は、濾過器8内に収容される。該濾過器8は配管等に
より培養槽2に接続される。なお。
When the hydrophobic filtration membrane 10 is provided outside the culture tank 2 (FIG. 2), it is accommodated within the filter 8. The filter 8 is connected to the culture tank 2 via piping or the like. In addition.

このように疎水性濾過膜10を培養槽2外に設けた場合
には、培養液の抜き出し速度はできるだけ高流量で行い
、所定の液量に達した時点ですみやかに細胞を培養槽2
に戻すような運転操作が必要となる。
When the hydrophobic filtration membrane 10 is installed outside the culture tank 2 in this way, the culture solution is withdrawn at a high flow rate as possible, and the cells are quickly removed from the culture tank 2 when a predetermined amount of liquid is reached.
It is necessary to operate the vehicle to return it to normal.

疎水性濾過膜10が培養槽2外に設けた濾過器8内に収
容されている場合には、該膜は、その表面に親水性濾過
助材を有するプリコート膜であることが望ましい、この
場合、濾過器8内には、底部あるいは底部と上部の両方
に、疎水性濾過膜10近傍に濾過助材9を保持するため
のフィルタ11を設ける。
When the hydrophobic filtration membrane 10 is housed in the filter 8 provided outside the culture tank 2, the membrane is preferably a pre-coated membrane having a hydrophilic filtration aid on its surface. In the filter 8, a filter 11 for holding the filter aid 9 in the vicinity of the hydrophobic filtration membrane 10 is provided at the bottom or at both the bottom and the top.

ここでフィルタ11は有機高分子材料、ガラス。Here, the filter 11 is made of an organic polymer material and glass.

セラミックス、焼結金属等の多孔質の材料で構成される
が、そのときの開孔度は濾過助材9の粒子が実質的に透
過しないように選定される。
It is made of a porous material such as ceramics or sintered metal, and the degree of pore opening is selected so that particles of the filter aid 9 do not substantially pass through.

培養槽2から培養液を濾過器8に導入すると、培養液内
の細胞は濾過助材9の粒子により捕捉される。濾過助材
9は、細胞に対し毒性がない有機高分子、無機化合物を
1種以上混合したものであり、細胞との付着性、細胞の
粒径等に応じて材質。
When the culture solution is introduced from the culture tank 2 into the filter 8, cells in the culture solution are captured by particles of the filter aid 9. The filter aid 9 is a mixture of one or more organic polymers and inorganic compounds that are not toxic to cells, and the material is selected depending on the adhesion to cells, particle size of cells, etc.

粒径、形状、および充填量を選定する。Select particle size, shape, and loading amount.

例えば、粒径5〜50μmの細胞に対しては、濾過助材
9の粒子間のいわゆる“さえぎり効果″だけて細胞を捕
捉する場合にはろ過助材粒子径は細胞の粒径と同程度と
する。これに対し、細胞が濾過助材9に対して付着性を
示す場合には濾過助材9として数10〜数100μm程
度の粒径のものを用いるのがよい。マイクロキャリアビ
ーズを用いれば付着性培養が可能である。多くの細胞に
対しては、上記の両方の効果を考慮した濾過助材9が選
定され、その充填量は濾過助材9で培養液中の細胞の大
部分が捕捉されるように選定する。
For example, for cells with a particle size of 5 to 50 μm, if the cells are captured only by the so-called "intercepting effect" between the particles of the filter aid 9, the particle size of the filter aid should be about the same as the particle size of the cells. do. On the other hand, when cells exhibit adhesion to the filter aid 9, it is preferable to use a filter aid 9 having a particle size of approximately several tens to several hundreds of micrometers. Adherent culture is possible using microcarrier beads. For many cells, the filter aid 9 is selected in consideration of both of the above effects, and the filling amount is selected so that the filter aid 9 captures most of the cells in the culture solution.

したがって、濾過器8内に導入された培養液が濾過助材
9を通過し、疎水性濾過膜10に到達した時には、培養
液中に細胞は殆ど含まれておらず、長期間の運転であっ
ても実質的に疎水性濾過膜10の目づまりが防止できる
Therefore, when the culture solution introduced into the filter 8 passes through the filter aid 9 and reaches the hydrophobic filtration membrane 10, there are almost no cells in the culture solution, and it is difficult to operate for a long period of time. However, clogging of the hydrophobic filtration membrane 10 can be substantially prevented.

濾過器8への培養液の通液流量は、濾過器8の代表内径
に基づく単位表面積当り 0.1〜.10 rn” / rrl’−h程度にする
と濾過助材9の粒子間を培養液が通過する際の剪断力に
よる細胞の損傷を防止できる。ただし、この値は、細胞
の種類、濾過助材9の粒径、濾過器8の構造等によって
異なる。
The flow rate of the culture solution to the filter 8 is 0.1 to 0.1 per unit surface area based on the representative inner diameter of the filter 8. When the value is about 10 rn" / rrl'-h, it is possible to prevent cell damage due to shear force when the culture solution passes between the particles of the filter aid 9. However, this value depends on the type of cells and the filter aid 9. It varies depending on the particle size of the filter, the structure of the filter 8, etc.

疎水性濾過膜10は培養液中の副生物質を透過できるか
ら、上記により、培養液中の細胞を分離濃縮し、老廃物
等の副生物質の排出が達成される。
Since the hydrophobic filtration membrane 10 can permeate byproducts in the culture solution, the cells in the culture solution can be separated and concentrated, and byproducts such as waste products can be discharged.

所要量の培養液を培養槽から排出した後は、濾過器8に
新鮮培養液を導入する。ここで新鮮培養液とは、未使用
の培養液であっても、また使用済みの培養液中の細胞の
副生物質を除去処理したものでも良い。また、培養液の
組成も、培養槽内と異なっていても良い。こうした新鮮
培養液を濾過器8に逆に導入すると、これにより濾過助
材9の粒子が上昇(又は下降)し前記工程で捕捉された
細胞とともに展開する。
After the required amount of culture solution has been discharged from the culture tank, fresh culture solution is introduced into the filter 8. Here, the fresh culture solution may be an unused culture solution or a used culture solution that has been treated to remove cell byproducts. Further, the composition of the culture solution may also be different from that in the culture tank. When such fresh culture fluid is introduced back into the filter 8, this causes the particles of the filter aid 9 to rise (or fall) and spread out together with the cells captured in the previous step.

前記の濾過助材9に要求される材質2粒径、形状等は、
上記の工程を効率良く行うために細胞よりも速く沈降す
る粒子(又は培養液中に浮上する粒子)でなければなら
ない。細胞よりも速く沈降する粒子群を濾過助材9とし
て用いた場合、濾過器8への新鮮培養液への流量は、展
開させる対象の濾過助材9のうち最も沈降速度の速い粒
子群がわずかに浮き上がる程度にすることが望ましい。
The material 2 particle size, shape, etc. required for the filter aid 9 are as follows:
In order to carry out the above steps efficiently, particles must settle faster than cells (or particles must float in the culture solution). When a particle group that settles faster than cells is used as the filter aid 9, the flow rate of the fresh culture solution to the filter 8 is limited to the particle group with the fastest sedimentation rate among the filter aids 9 to be expanded. It is desirable to make it so that it floats up to the surface.

この時、展開させる対象の濾過助材9は実質的に全て展
開するので、細胞は濾過助材9と分離し、少なくとも細
胞よりも沈降速度の速い粒子群の−E部にまで浮遊する
。濾過助材9を通過した新鮮培養液が培養槽2に移送で
きるように配管されているから、濾過器8上部に浮遊し
た細胞は新鮮培養液とともに培養槽2に戻される。
At this time, since substantially all of the filter aid material 9 to be developed is developed, the cells are separated from the filter aid material 9 and float at least to the -E part of the particle group, which has a higher sedimentation speed than the cells. Since the piping is arranged so that the fresh culture solution that has passed through the filter aid 9 can be transferred to the culture tank 2, the cells floating on the upper part of the filter 8 are returned to the culture tank 2 together with the fresh culture solution.

ここで、濾過助材9の中に細胞の粒径よりも大きい粒子
群が含まれる時には、細胞は透過されるが該粒子群は透
過できない程度の開孔度を有するスクリーン等を濾過器
8上部に設置すると、濾過助材9の培養槽2への浮上混
入が防止できる。さらに、新鮮培養液によって疎水性濾
過膜10が逆洗されるのでより膜の使用寿命を延ばすこ
とができる。
Here, when the filter aid 9 contains particles larger than the particle size of the cells, a screen or the like having a degree of aperture that allows the cells to pass through but not the particles to pass through is placed above the filter 8. When installed in the culture tank 2, it is possible to prevent the filter aid 9 from floating up and mixing into the culture tank 2. Furthermore, since the hydrophobic filtration membrane 10 is backwashed with fresh culture solution, the service life of the membrane can be further extended.

また、培養液中に浮上する粒子群を濾過助材9として用
いる第2図のような場合には、濾過器8への新鮮培養液
の通液量は、展開させる対象の濾過助材9のうち最も浮
上速度の大きな粒子群が下降し、濾過助材層が流動状態
を示す程度にすることが望ましい、この結果、細胞は濾
過助材9と分離して沈降し、濾過器8と培養槽2を連結
した配管内を逆洗用液とともに搬送されて培養槽2に戻
される。ここで、濾過器8底部には、細胞を透過し、濾
過助材9を透過しない開孔度を有するフィルタ11を設
置しておくことが好ましい。
In addition, in the case shown in FIG. 2 where a group of particles floating in the culture solution is used as the filter aid 9, the amount of fresh culture solution passed through the filter 8 depends on the amount of the filter aid 9 to be expanded. It is desirable that the particle group with the highest floating speed descends and the filter aid layer shows a fluid state.As a result, the cells separate from the filter aid 9 and settle, causing the filter 8 and the culture tank to separate. 2 is conveyed together with the backwashing liquid through the pipe connecting the two, and returned to the culture tank 2. Here, it is preferable to install a filter 11 at the bottom of the filter 8, which has a pore size that allows cells to pass through but does not allow the filter aid 9 to pass through.

この工程による1回の操作での新鮮培養液の導入量は、
特に限定されないが、前記培養液の排出工程における培
養液の排出量と同程度であることが望ましく、更に、濾
過助材9に捕捉されて細胞の大部分が新鮮培養液ととも
に培養槽2に戻されるだけの流量が望ましい。
The amount of fresh culture solution introduced in one operation in this step is:
Although not particularly limited, it is preferable that the amount of culture solution discharged is approximately the same as the amount of culture solution discharged in the culture solution discharge step, and furthermore, most of the cells captured by the filter aid 9 are returned to the culture tank 2 together with the fresh culture solution. It is desirable that the flow rate be as high as possible.

新鮮培養液の通液を停止すると展開していた濾過助材9
の粒子群はフィルタ1oの上部あるいは周囲に沈降する
が、細胞の沈降速度よりも速く沈降する粒子群が含まれ
ているため、新鮮培養液中に培養槽に移送しきれなかっ
た細胞が浮遊していても、この細胞がフィルタ10に達
する量はすくない。
Filter aid 9 that had expanded when the flow of fresh culture solution was stopped
The particles settle on or around the filter 1o, but since some particles settle faster than the settling speed of the cells, cells that could not be transferred to the culture tank may float in the fresh culture solution. Even if the cells are present, the amount of these cells reaching the filter 10 is small.

撥水性消泡手段は、生物細胞を含有する液体培地中に通
気する際に液面上に発生する泡の消泡を目的とするもの
で、気体を通過しつる多数の開口を有し、培養槽内の培
養液の液面の上方に設ける。
Water-repellent defoaming means is intended for defoaming the foam generated on the liquid surface when aerating into a liquid medium containing biological cells, and has a large number of openings through which gas can pass. Installed above the liquid level of the culture solution in the tank.

その開口比は50%以上であることが望ましく、開口径
は50〜2mであることが望ましい。さらに、消泡手段
は少なくとも表面層が撥水性の材料により形成する。
The aperture ratio is desirably 50% or more, and the aperture diameter is desirably 50 to 2 m. Furthermore, at least the surface layer of the defoaming means is made of a water-repellent material.

特に発泡性の著しい血清添加培地を用いる動物細胞の培
養に際しての消泡効果が大きいので、液中通気法による
高効率酸素供給が可能となった。
In particular, it has a great antifoaming effect when culturing animal cells using a serum-added medium with marked foaming properties, making it possible to supply oxygen with high efficiency using the submerged aeration method.

撥水材としては、培養液の液滴が該撥水材の表面との接
触角30度以上を形成する撥水性材料で、かつ実質的に
培養液に不溶又は非分散性で、かつ対象とする細胞に実
質上毒性を示さない材料であればよい。消泡層はそれ自
体、上記の撥水材で構成しても、被覆、塗布又は含浸さ
せたものでも良い。
The water-repellent material is a water-repellent material that forms a contact angle of 30 degrees or more with the surface of the water-repellent material with the droplets of the culture solution, is substantially insoluble or non-dispersible in the culture solution, and is not suitable for the target. Any material may be used as long as it is not substantially toxic to the cells to be treated. The antifoaming layer itself may be composed of the above-mentioned water-repellent material, or may be coated, coated, or impregnated with the water-repellent material.

例えば、炭素数10以上のシラン又はシロキサンがあげ
られる。特にI X 10’センチボイズ以上の粘度を
有するものが適している。
For example, silane or siloxane having 10 or more carbon atoms can be used. Particularly suitable are those having a viscosity of I x 10' centivoise or higher.

l X I O’センチボイズより低粘度の撥水材では
、培養液面が撥水材で覆われたり、液中にエマルジョン
となって細胞に付着して増殖を阻害したりする。また、
培養後に培養液中から生産物の分離を困難にする。
A water-repellent material with a lower viscosity than centiboise covers the surface of the culture solution, or forms an emulsion in the solution that adheres to cells and inhibits their growth. Also,
This makes it difficult to separate the product from the culture solution after culturing.

ポリシロキサンの炭素数の上限及び粘度は特に限定され
ないが、実質的に固体となる炭素数が1×104個、粘
度ではI X 10’センチボイズが上限となる。
The upper limit of the number of carbon atoms and the viscosity of the polysiloxane are not particularly limited, but the upper limit of the number of carbon atoms to become a substantially solid is 1 x 104, and the upper limit of the viscosity is I x 10' centiboise.

消泡層の開口比が50%未満であると、液面上の泡が破
泡した際、気体が円滑に消泡層を通過できず、2次泡が
発生しやすい、消泡層の開口部の径は好ましくは2〜5
0mである。5001mを越えると、気泡が細かい場合
、消泡層との接触が不完全となり消泡されにくい。一方
、2m未満になると、開口部の気体及び液の出入に円滑
性を欠く。
If the opening ratio of the antifoaming layer is less than 50%, when the bubbles on the liquid surface break, gas cannot pass through the antifoaming layer smoothly, and secondary bubbles are likely to occur. The diameter of the part is preferably 2 to 5
It is 0m. If the length exceeds 5001 m, if the bubbles are small, contact with the defoaming layer will be incomplete and defoaming will be difficult. On the other hand, if the length is less than 2 m, gas and liquid will not flow smoothly in and out of the opening.

消泡層の構造は、単層でも、積層したものでもよい、さ
らに、これらは一体化されていても縦方向、横方向に分
割可能であってもよい。層構造は液性2通気量、気泡径
により適宜選定する。
The structure of the defoaming layer may be a single layer or a layered structure, and furthermore, these may be integrated or separable in the vertical and horizontal directions. The layer structure is appropriately selected depending on the liquid permeability and the bubble diameter.

培養槽2内への通気は通常培養槽底部にノズル4を配置
して行うが、液面下なら適宜配置してもよい。また、底
部と液面の間に設けてもよい。特に、ドラフトチューブ
3が設けられている場合にはドラフトチューブ3の下に
ノズル4を配置すると培養液の下降流により気泡をより
長時間液中に滞流させることができるので酸素の利用率
を向上させることができる。
Aeration into the culture tank 2 is normally carried out by arranging the nozzle 4 at the bottom of the culture tank, but it may be arranged as appropriate if it is below the liquid level. Alternatively, it may be provided between the bottom and the liquid surface. In particular, when the draft tube 3 is provided, placing the nozzle 4 under the draft tube 3 allows air bubbles to remain in the solution for a longer period of time due to the downward flow of the culture solution, thereby increasing the oxygen utilization rate. can be improved.

本発明において、培養液としては、液の表面張力が45
〜90dyn/a#がよい。効果の大きい培養液として
は、血清等の生体高分子を含有する培養液があげられる
。血清以外にアルブミンの様な蛋白質や、核酸を添加又
は含有する培養液も極めて有効である。外部から添加す
る成分だけでなく。
In the present invention, the culture solution has a surface tension of 45
~90 dyn/a# is good. An example of a highly effective culture solution is a culture solution containing biopolymers such as serum. In addition to serum, a culture solution containing or adding proteins such as albumin or nucleic acids is also extremely effective. As well as ingredients added from outside.

培養中に分泌される発泡性成分を含む培養液も対象とな
る。
Culture fluids containing effervescent components secreted during culture are also targeted.

老廃成分としては、疎水性膜を用いた培養濾液に含まれ
る乳酸、アンモニア等がある。
Waste components include lactic acid, ammonia, etc. contained in the culture filtrate using a hydrophobic membrane.

老廃成分を除去する手段としては、特に限定されないが
、拡散透析装置、限外濾過装置、電気透析装置等の公知
方法により行なうことができる。
The means for removing waste components is not particularly limited, but can be carried out by known methods such as a diffusion dialysis device, an ultrafiltration device, an electrodialysis device, and the like.

しかし、培養濾液中には、血清由来の沈殿物や細胞片等
の微細な固形物が多量に含まれていることから、目詰り
の起りにくい形状を有することが望ましい。老廃成分中
の特に乳酸及びアンモニアは、細胞の増殖を阻害する。
However, since the culture filtrate contains a large amount of fine solid matter such as serum-derived precipitates and cell debris, it is desirable that the culture filtrate has a shape that prevents clogging. Among waste components, especially lactic acid and ammonia, inhibit cell proliferation.

このため、老廃成分の除去は、上記のアンモニア、乳酸
を指標として行なうのがよい、また培養濾液中には各種
のホルモン、蛋白質等の細胞の生育に必要な成分も多量
に含まれており、これらの成分はできるだけ回収して再
利用することが望まれる。これらのことから、拡散透析
膜や限外濾過膜としては2分画分子量が1,000〜1
.0 、000程度のものを用いることが望ましい。分
画分子量1,000 未満の膜では透過量が小さく、膜
面積を大きくしなければならないほか、膜の目詰りが著
しいので、長期間の使用に耐えない恐れがある。一方、
分画分子量10.000  を越える膜ではホルモン等
の細胞の増殖に有益な物質をも透過してしまうのでこれ
らの物質の回収率が低下する。
Therefore, it is best to remove waste components using the above-mentioned ammonia and lactic acid as indicators.Furthermore, the culture filtrate also contains large amounts of components necessary for cell growth, such as various hormones and proteins. It is desirable to recover and reuse these components as much as possible. Based on these facts, the 2nd molecular weight cutoff for diffusion dialysis membranes and ultrafiltration membranes is 1,000 to 1.
.. It is desirable to use a value of about 0,000. Membranes with a molecular weight cut-off of less than 1,000 have a small permeation rate, require a large membrane area, and can become clogged significantly, so they may not be able to withstand long-term use. on the other hand,
If the membrane has a molecular weight cut-off of more than 10.000, even substances beneficial to cell proliferation, such as hormones, will permeate therethrough, resulting in a decrease in the recovery rate of these substances.

なお、分子量の大きい蛋白抗体等の有用物質の分離には
、0.O1μ讃程鹿の細孔径を有する精密濾過膜を用い
るのがよい。また、これらを組合せて有用物質の分離を
多段に行うことがより有利である。
Note that for the separation of useful substances such as proteins and antibodies with large molecular weights, 0. It is preferable to use a microfiltration membrane having a pore size of O1μ. Furthermore, it is more advantageous to perform the separation of useful substances in multiple stages by combining these methods.

拡散透析装置により老廃成分を除去する場合には、透析
用液としては、新鮮培養液に含まれる各種の液、各種の
アミノ酸、ビタミン等の低分子成分と同じ濃度2組成の
溶液を用いることが望ましい。
When removing waste components using a diffusion dialysis device, it is possible to use a solution with the same concentration and composition as the various solutions contained in the fresh culture solution, various amino acids, vitamins, and other low-molecular components as the dialysis solution. desirable.

老廃成分除去後の液は、前記の濾過器の逆洗液として用
い培養槽内に戻され、細胞の培養に有効利用される。
The liquid after waste components have been removed is used as a backwash liquid for the filter and returned to the culture tank, where it is effectively utilized for cell culture.

本発明に適用できる生物細胞としては、特に限定される
ものではなく、動物細胞、微生物細胞。
Biological cells applicable to the present invention are not particularly limited, and include animal cells and microbial cells.

植物細胞が含まれる。動物細胞としては1例えばを推動
物の各種細胞、無を推動物の各種細胞、H生動物の各種
細胞があげられる。細胞は単一細胞のみならず細胞集合
体も含まれる。
Contains plant cells. Animal cells include, for example, various cells of living animals, various cells of living animals, and various cells of living animals. Cells include not only single cells but also cell aggregates.

微生物細胞としては、細菌、酵母、糸状菌、放線菌等各
種の微生物を含む。
Microbial cells include various microorganisms such as bacteria, yeast, filamentous fungi, and actinomycetes.

植物細胞としては、高等植物の細胞及び細胞集合体、藻
類の細胞及び細胞集合体が含まれる。
Plant cells include cells and cell aggregates of higher plants, cells and cell aggregates of algae.

本発明に適用できる通気用気体としては、用途に応じ、
空気、酸素、炭酸ガス単独もしくは任意の組成に混合し
たガス又は不活性ガスを混合したガスが用いられる。一
般に動物細胞培養には、酸素含有ガス、植物培養用には
炭酸ガス含有ガスを使う。
The ventilation gas that can be applied to the present invention includes, depending on the use,
Air, oxygen, carbon dioxide gas alone or a mixture of any composition, or a mixture of an inert gas may be used. Generally, oxygen-containing gas is used for animal cell culture, and carbon dioxide-containing gas is used for plant culture.

〔作用〕[Effect]

疎水性材料の濾過膜は、従来用いられてきた親水性濾過
膜に比べて膜面への細胞等の付着が少ない、また、逆洗
によっても付着した細胞等が容易にはく離する作用があ
るので、目詰りが起りにくく、従って間欠的に逆洗を実
施することによって高効率の細胞の培養ができる。
Filtration membranes made of hydrophobic materials have less adhesion of cells, etc. to the membrane surface compared to conventionally used hydrophilic filtration membranes, and backwashing also has the effect of easily removing adhering cells, etc. , clogging is less likely to occur, and therefore cells can be cultured with high efficiency by performing backwashing intermittently.

〔実施例〕〔Example〕

以下5本発明を実施例に基づき説明する。 The present invention will be explained below based on five examples.

第1図は本発明による細胞培養システムの一実施例の構
成を示した図である。
FIG. 1 is a diagram showing the configuration of an embodiment of the cell culture system according to the present invention.

培養槽2では、細胞は培養液1に分散懸濁状態で培養さ
れる。培養槽の底部には液中に酸素含有ガスを通気する
ためのノズル4があり、細胞の生育に必要な酸素及び、
p Hを調節するための炭酸ガスを供給する。すなわち
、溶存酸素濃度が一定となるようエアーコンプレッサ1
6より空気、及びボンベ17から酸素含有ガスをそれぞ
れ流量制御され、さらに、pHが7.0〜7,6となる
ようボンベ18より炭酸ガスを流量制御し、除菌フィル
タ7を通過させた後ノズル4より吹込まれる。
In the culture tank 2, cells are cultured in a dispersed suspension state in the culture solution 1. There is a nozzle 4 at the bottom of the culture tank for aerating oxygen-containing gas into the liquid, which supplies oxygen and gas necessary for cell growth.
Supply carbon dioxide gas to adjust pH. In other words, the air compressor 1 is adjusted so that the dissolved oxygen concentration is constant.
After controlling the flow rate of air from 6 and oxygen-containing gas from cylinder 17, and controlling the flow rate of carbon dioxide gas from cylinder 18 so that the pH becomes 7.0 to 7.6, and passing through sterilization filter 7, It is blown from nozzle 4.

液中に吹込まれたガスは気泡となって培養液上面に向っ
て浮上する際に培養液を流動させる。吹込まれたガスに
よる槽内での培養液の流動を効率よく行わせるため、ト
ラフ1ヘチユーブ3が設置されている。液面に到達した
気泡はそのまま破泡することなく泡層を形成するので、
液面上に撥水性材料で形成された消泡層5に接触させる
ことにより効率良く破泡される。
The gas blown into the liquid becomes bubbles and floats toward the top of the culture liquid, causing the culture liquid to flow. A trough 1 and a hetube 3 are installed in order to efficiently flow the culture solution within the tank by the blown gas. The bubbles that reach the liquid surface do not break and form a foam layer, so
The bubbles are efficiently broken by contacting the antifoaming layer 5 made of a water-repellent material on the liquid surface.

ガスはミストセパレータ6、フィルタ7を経て排ガス2
4として培養槽外に排出される。なお。
The gas passes through the mist separator 6 and the filter 7 to the exhaust gas 2.
4 and is discharged outside the culture tank. In addition.

培養槽2には、溶存酸素濃度やp Hを一定にするため
の手段、槽内及び配管内を殺菌するための手段、培養液
の注入、排出のための手段、温度を一定に保つための手
段、溶存酸素濃度?PHI温度。
The culture tank 2 includes a means for keeping the dissolved oxygen concentration and pH constant, a means for sterilizing the inside of the tank and piping, a means for injecting and discharging the culture solution, and a means for keeping the temperature constant. Means, dissolved oxygen concentration? PHI temperature.

槽内圧等のセンサや槽内の培養液の液面を検出するセン
サ等、各種の装置が設置されているが第1図ではこれら
は省略した6 培養槽2の下部には濾過器8が設けられている。
Various devices are installed, such as sensors for the internal pressure of the tank and sensors for detecting the level of the culture solution in the tank, but these are omitted in Figure 16.A filter 8 is provided at the bottom of the culture tank 2. It is being

濾過器8内には多孔質中空糸膜フィルタ10が設置され
ており、その上部あるいは周囲に濾過助材9が充填され
ている。濾過助材9は保持フィルタ11により保持され
ている。
A porous hollow fiber membrane filter 10 is installed in the filter 8, and a filter aid 9 is filled above or around the filter. The filter aid 9 is held by a holding filter 11 .

中空糸膜フィルタ10は、殺菌時および逆洗時等の液が
急速に移動する時でも、形状が変形したり、濾過助材9
層より露出したりしないように留意しなければならない
が、特にその形状は限定されない。
Even when the liquid moves rapidly during sterilization and backwashing, the hollow fiber membrane filter 10 does not deform in shape or the filter aid 9
Care must be taken not to expose the layer, but its shape is not particularly limited.

第8図A及びBは本実施例に用いた疎水性中空糸膜ユニ
ットを説明するものである。膜支持部材50は130℃
でも剛性を有し、かつ培養液により腐食する恐れのない
材料で作′成されており、その外形は第1図中の濾過器
8の内部形状にあわせて作られており、多少の外力が作
用しても濾過器内での位置が移動しない様設けられてい
る。膜支持部材50には第8図へに示すように中空糸膜
を保持するための小孔55が多数設けられている。
FIGS. 8A and 8B illustrate the hydrophobic hollow fiber membrane unit used in this example. The temperature of the membrane support member 50 is 130°C.
However, it is made of a material that has rigidity and is not likely to be corroded by the culture solution, and its external shape is made to match the internal shape of the filter 8 in Fig. 1, so that it can withstand some external force. It is provided so that its position within the filter does not move even if the filter is actuated. As shown in FIG. 8, the membrane support member 50 is provided with a large number of small holes 55 for holding hollow fiber membranes.

穴の大きさは中空糸膜を自由に通すことができる程度が
よい、第8図Bは膜支持部材5oに中空糸膜10を装着
してなる濾過ユニットを示したものである。中空糸膜1
oは1本で該濾過ユニットを構成してもよいが、通常は
2本以上の中空糸膜で構成することが好ましい、この場
合は複数の中空糸膜を膜接続部材51で1つに結束して
使用すると、濾過器への濾過ユニットの装着を容易にす
ることができる。
The size of the hole should be such that the hollow fiber membrane can freely pass through it. FIG. 8B shows a filtration unit in which the hollow fiber membrane 10 is attached to the membrane support member 5o. Hollow fiber membrane 1
Although the filtration unit may be composed of one hollow fiber membrane, it is usually preferable that the filtration unit is composed of two or more hollow fiber membranes. When used as a filter, the filtration unit can be easily attached to the filter.

第9図A及びBは、膜接続部材51の概念を示す図であ
る。この膜接続部材は疎水性中空糸膜のうち、特に接着
法や溶接法では、膜の接合が回置な材料からなる中空糸
膜、例えばテトラブルオロエチレン樹脂でつくられた中
空糸膜の接合に有効である。
9A and 9B are diagrams showing the concept of the membrane connecting member 51. FIG. Among hydrophobic hollow fiber membranes, this membrane connecting member is used to connect hollow fiber membranes made of materials in which membranes can be joined in a rotational manner, especially by adhesive or welding methods, such as hollow fiber membranes made of tetrafluoroethylene resin. It is effective for

第9図Aは、膜接続部材51を中空糸膜が接続される面
の反対の面を示す図である。膜接続部材51に膜拡張部
材52が包含され、膜接続部材51の外面は円形に整形
されていることが望ましい。
FIG. 9A is a diagram showing the surface of the membrane connecting member 51 opposite to the surface to which the hollow fiber membrane is connected. It is desirable that the membrane connecting member 51 includes a membrane expanding member 52, and that the outer surface of the membrane connecting member 51 is shaped into a circle.

第9図Bは、第9図AのA−A’断面を示す図である。FIG. 9B is a cross-sectional view taken along line A-A' in FIG. 9A.

中空糸膜10に、中空糸膜の内径と同程度の内径を有し
、外径が中空糸膜内径よりも大であり、その先端部が中
空糸膜内面に挿入しやすいようにテーパ状に成形されて
おり、かつ局部的に外径の大なる突起部分を設け、中空
糸膜の離脱を防いでいる。次いで膜拡張部材52を挿入
した部分を膜接続部材51で包含し、硬化させることに
より、中空糸膜を強固に結束することができる。膜接続
部材としては特に限定するものではないが、細胞に悪影
響を与えず、培養液中で腐食せず、かつ】。
The hollow fiber membrane 10 has an inner diameter comparable to the inner diameter of the hollow fiber membrane, an outer diameter larger than the inner diameter of the hollow fiber membrane, and a tapered tip so that it can be easily inserted into the inner surface of the hollow fiber membrane. It is molded and locally has a protruding portion with a large outer diameter to prevent the hollow fiber membrane from detaching. Next, the portion into which the membrane expansion member 52 has been inserted is covered with the membrane connection member 51 and cured, thereby making it possible to firmly bind the hollow fiber membranes. The membrane connecting member is not particularly limited, but does not have an adverse effect on cells, does not corrode in the culture solution, and].

30℃前後でのスチーム殺菌に耐える材料であればよい
。例えば2液硬化型のエポキシ樹脂が用いられる。
Any material may be used as long as it can withstand steam sterilization at around 30°C. For example, a two-component curing type epoxy resin is used.

培養液の交換は以下のように実施される。第1図の弁3
1及び32を閉じ、弁33を開いてポンプ22を作動さ
せると培養槽2より培養液1が濾過器8に導かれる。培
養液中の細胞は濾過助材9及び多孔質中空糸フィルタ1
0を通過する過程でそれぞれの表面で捕捉される6多孔
質中空糸フイルタ10は濾過助材9の粒子及び細胞を透
過しない開孔度のものを選定した。細胞を濾過した培養
濾液は、培養濾液貯槽15に貯留される。
The culture solution is replaced as follows. Valve 3 in Figure 1
1 and 32 are closed, valve 33 is opened, and pump 22 is operated, culture solution 1 is introduced from culture tank 2 to filter 8. Cells in the culture solution are filtered through a filter aid 9 and a porous hollow fiber filter 1
The six-porous hollow fiber filter 10, which is captured on each surface during the process of passing through zero, was selected to have a pore size that does not allow particles and cells of the filter aid 9 to pass through. The culture filtrate obtained by filtering the cells is stored in the culture filtrate storage tank 15.

所定量の培養液を培養槽2から排出した後、ポンプ22
を停止し、弁33を閉じる0次いで弁31.32を開き
、ポンプ19.20を作動させる6ポンプ19.20は
新鮮培養液貯槽12より新鮮培養液を濾過器に供給する
。このとき、ポンプ19は濾過器8底部より新鮮培養液
を供給し、濾過助材9の充填層を浮上させ、展開させる
よう流量を設定する。また、ポンプ20は多孔質中空糸
膜フィルタ10に逆洗のため新鮮培養液を逆に圧入し、
フィルタ10表面に付着した細胞等の固形物をはく離さ
せる。なお、ポンプ19及び2oの流量の合計は濾過助
材9が濾過器周囲より散逸することのないように調節す
る。
After discharging a predetermined amount of culture solution from the culture tank 2, the pump 22
The pump 19.20 supplies the fresh culture solution from the fresh culture solution storage tank 12 to the filter. At this time, the pump 19 supplies fresh culture solution from the bottom of the filter 8, and sets the flow rate so that the packed layer of the filter aid 9 floats and expands. In addition, the pump 20 reversely pressurizes the fresh culture solution into the porous hollow fiber membrane filter 10 for backwashing.
Solid matter such as cells adhering to the surface of the filter 10 is peeled off. Note that the total flow rate of the pumps 19 and 2o is adjusted so that the filter aid 9 does not dissipate from the surroundings of the filter.

前述の濾過工程で濾過助材9及び中空糸膜フイルタ10
上に捕捉されていた細胞は濾過助材9の展開により充填
層内から解放される。濾過助材9の粒子はその沈降速度
が細胞より大きくなるよう比重2粒径、形状が選定され
ているので、細胞は展開した充填層の上部まで浮遊し、
新鮮培養液とともに培養槽2に戻される。
In the above-mentioned filtration process, the filter aid 9 and the hollow fiber membrane filter 10 are
The cells trapped above are released from the packed bed by the expansion of the filter aid 9. The particles of the filter aid 9 have a specific gravity 2 particle size and shape selected so that the sedimentation rate is higher than that of the cells, so the cells float to the top of the expanded packed bed.
It is returned to the culture tank 2 together with the fresh culture solution.

第2図は本発明による細胞培養システムの他の実施例の
構成を示すものである。本実施例の特徴は、濾過器8に
用いた濾過助材9として、培養液比重より小なる粒子を
用いた点にある。濾過助材9としては中空ガラスピーズ
、中空カーボンビーズ等が用いられている。濾過助材9
は濾過器8の上部及び底部に設けられた2枚の保持フィ
ルタ11により保持されている。保持フィルタ11の開
口度は濾過助材9の粒子は透過させないが、細胞は自由
に透過させるものを選択する。
FIG. 2 shows the configuration of another embodiment of the cell culture system according to the present invention. The feature of this embodiment is that the filter aid 9 used in the filter 8 is made of particles smaller than the specific gravity of the culture solution. As the filter aid 9, hollow glass beads, hollow carbon beads, etc. are used. Filter aid 9
is held by two holding filters 11 provided at the top and bottom of the filter 8. The opening degree of the holding filter 11 is selected so that particles of the filter aid 9 do not pass therethrough, but cells freely pass therethrough.

本実施例によれば、濾過器の逆洗時に濾過助材9充填層
及び中空糸膜フィルタ10に捕捉されている細胞を、よ
り完全に培養槽に戻すことができる。
According to this embodiment, the cells trapped in the filter aid 9 packed layer and the hollow fiber membrane filter 10 can be more completely returned to the culture tank during backwashing of the filter.

第3図は本発明による細胞培養システムの他の実施例の
構成を示したものである。本実施例の特徴は、第1図の
実施例に老廃成分除去手段を付加した点にある。なお、
本実施例での老廃成分除去手段としては、限外濾過法を
用いている。
FIG. 3 shows the structure of another embodiment of the cell culture system according to the present invention. The feature of this embodiment is that a means for removing waste components is added to the embodiment shown in FIG. In addition,
In this embodiment, an ultrafiltration method is used to remove waste components.

培養濾液貯槽15には配管により限外濾過器14が接続
されている。限外濾過器14には全両分子1tto、o
oo の限外濾過膜が用いられており、乳酸、アンモニ
ア等の老廃成分を透過し、ホルモン等の細胞の生育に有
用な物質は透過させない。培養濾液はポンプ23により
限外濾過器141こ圧入され、限外濾過膜と接触してい
る間に老廃成分等の低分子物質は膜を透過し、老廃成分
26として系外に排出される。
An ultrafilter 14 is connected to the culture filtrate storage tank 15 via piping. The ultrafilter 14 contains all the molecules 1tto,o
oo ultrafiltration membrane is used, which allows waste components such as lactic acid and ammonia to pass through, but does not allow substances useful for cell growth such as hormones to pass through. The culture filtrate is forced into the ultrafilter 141 by the pump 23, and while in contact with the ultrafiltration membrane, low-molecular substances such as waste components pass through the membrane and are discharged from the system as waste components 26.

限外濾過器14で老廃成分を除去した液は老廃成分除去
液貯槽13に貯留される。なお、限外濾過により濾過さ
れる液量はわずかであるため、ポンプ23により限外濾
過器14と老廃成分除去液貯槽の間で、循環して濾過を
行い、老廃成分を除去する。通常、老廃成分除去液を新
鮮培養液の一部として再利用した場合に老廃成分濃度が
、乳酸としてloooppm以下、好ましくは100P
PI以下、アンモニアとして2Qppm以下好ましくは
5 ppm以下となるようにする必要がある。
The liquid from which waste components have been removed by the ultrafilter 14 is stored in a waste component removal liquid storage tank 13. Note that since the amount of liquid to be filtered by ultrafiltration is small, the pump 23 circulates the liquid between the ultrafilter 14 and the waste component removal liquid storage tank to perform filtration and remove waste components. Normally, when the waste component removal solution is reused as part of a fresh culture solution, the concentration of waste components as lactic acid is 100ppm or less, preferably 100P.
It is necessary to keep the content below PI, and below 2Q ppm as ammonia, preferably below 5 ppm.

老廃成分除去液は、ポンプ21を作動させることにより
濾過器8の逆洗液の一部として新鮮培養液に加えられ、
培養槽2に戻され、再び細胞の増殖に利用される。老廃
成分除去液中には、培養濾液中に残存していたホルモン
や生育因子等の有効成分が多量に含まれている他、細胞
自身が分泌する生育増長因子や有用生産物も含まれてい
るので。
The waste component removal liquid is added to the fresh culture liquid as part of the backwashing liquid of the filter 8 by operating the pump 21,
The cells are returned to the culture tank 2 and used again for cell proliferation. The waste component removal solution contains large amounts of active ingredients such as hormones and growth factors that remained in the culture filtrate, as well as growth growth factors and useful products secreted by the cells themselves. So.

これを用いることは細胞の生育に良好な結果を与える6 第4図は本発明による細胞培養システム他の実施例の構
成を示したものである。
Using this method gives good results for cell growth.6 FIG. 4 shows the structure of another embodiment of the cell culture system according to the present invention.

本実施例の特徴は、第3図に示した実施例において、濾
過器8に用いた濾過助材9として、培養液比重より小さ
い比重の粒子を用いる点にある。
The feature of this embodiment is that, in the embodiment shown in FIG. 3, particles having a specific gravity smaller than the specific gravity of the culture solution are used as the filter aid 9 used in the filter 8.

濾過助材9としては中空ガラスピース、中空カーボンビ
ーズ等が用いられている。濾過助材99は濾過器8の上
部及び底部に設けられた2枚の保持フィルタ11により
保持されている。保持フィルタ11の開口度は濾過助材
9の粒子を透過させず。
As the filter aid 9, hollow glass pieces, hollow carbon beads, etc. are used. The filter aid 99 is held by two holding filters 11 provided at the top and bottom of the filter 8. The opening degree of the holding filter 11 does not allow particles of the filter aid 9 to pass through.

細胞を自由に透過させるものが選択されている。Those that freely permeate cells are selected.

その他は第3図と同じである。Other details are the same as in Figure 3.

本実施例によれば、濾過器の逆洗時に濾過助材9充填層
及び中空糸膜フィルタ10に捕捉されていた細胞をより
完全に培養槽に戻すことができる。
According to this embodiment, the cells trapped in the filter aid 9 packed layer and the hollow fiber membrane filter 10 can be more completely returned to the culture tank during backwashing of the filter.

第5図は1本発明による細胞培養システムの他の実施例
の構成を示したものである。
FIG. 5 shows the structure of another embodiment of the cell culture system according to the present invention.

本実施例の特徴は、第3図に示す実施例において、疎水
性膜10を培養槽2の上層に設けたこと。
The feature of this embodiment is that, in the embodiment shown in FIG. 3, a hydrophobic membrane 10 was provided in the upper layer of the culture tank 2.

及び撹拌機を取付けたことにある。本実施例における培
養液の交換は以下のように実施される。弁33を開き、
弁32を閉じてポンプ22を作動させると中空糸膜の内
部が減圧される。その結果、培養液中に浮遊している細
胞は中空糸膜の表面に捕捉され、膜内には細胞を含まな
い培養濾液が抜き出され、培養濾液貯槽15に貯留され
る。
and a stirrer was installed. Exchange of the culture medium in this example is carried out as follows. Open the valve 33,
When the valve 32 is closed and the pump 22 is operated, the pressure inside the hollow fiber membrane is reduced. As a result, the cells floating in the culture solution are captured on the surface of the hollow fiber membrane, and the culture filtrate containing no cells is extracted from the membrane and stored in the culture filtrate storage tank 15.

所定量の培養濾液を培養槽2から排出した後、ポンプ2
2を停止し、弁33を閉じる。次いで弁32を開き、ポ
ンプ20及び21を作動させる。
After discharging a predetermined amount of culture filtrate from the culture tank 2, the pump 2
2 and close the valve 33. Valve 32 is then opened and pumps 20 and 21 are activated.

ポンプ20は新鮮培養液貯槽12より新鮮培溶液を、ポ
ンプ21は老廃成分除去液貯槽13より老廃成分除去液
を供給する。新鮮培養液及び老廃成分除去液は中空糸膜
内に圧入され、膜面の細孔より培養槽2内に流入する。
The pump 20 supplies fresh culture solution from the fresh culture solution storage tank 12, and the pump 21 supplies waste component removal solution from the waste component removal solution storage tank 13. The fresh culture solution and the waste component-removed solution are pressurized into the hollow fiber membrane and flow into the culture tank 2 through the pores on the membrane surface.

この際、中空糸膜の外面や細孔内に吸着していた細胞等
の固形物を剥離し、濾過面の再生を行う。疎水性膜10
は膜面への細胞やごみ等の剛着を防止するため、できる
だけ培養液の移動速度の大なる所に設けることが好まし
い。本実施例のごとく、撹拌翼29を設け。
At this time, solid matter such as cells adsorbed on the outer surface or inside the pores of the hollow fiber membrane is peeled off to regenerate the filtration surface. Hydrophobic membrane 10
In order to prevent cells, dirt, etc. from sticking to the membrane surface, it is preferable to provide the membrane at a location where the movement speed of the culture solution is as high as possible. As in this embodiment, stirring blades 29 are provided.

その周囲に疎水性膜を設置すれば、撹拌翼の回転により
吐出される培養液の流れで膜面の固形物が滞留すること
なく移動するため、膜面への沈積を効果的に防止するこ
とができる。
If a hydrophobic membrane is installed around the membrane, the flow of the culture liquid discharged by the rotation of the stirring blades will move the solids on the membrane surface without stagnation, effectively preventing deposition on the membrane surface. I can do it.

本実施例に用いる濾過ユニットの形状は、特に限定する
ものではないが、培養液の流動をさまたげず、かつ細胞
に不要な外力を与えないような形状であることが望まし
い。第10図〜第13図に示した各濾過ユニットは、本
実施例に特に好ましい形状である。
Although the shape of the filtration unit used in this example is not particularly limited, it is desirable that the shape does not obstruct the flow of the culture solution and does not apply unnecessary external force to the cells. Each of the filtration units shown in FIGS. 10 to 13 has a particularly preferable shape for this embodiment.

本実施例によれば、濾過を培養槽中で行うため。According to this example, filtration is performed in a culture tank.

濾過時に酸素の欠乏や温度の低下を招くことがなくなり
、細胞の増殖を良好に保つことができる。
No oxygen deficiency or temperature drop occurs during filtration, and cell growth can be maintained at a good level.

第6図は本発明による細胞培養システムの他の実施例の
構成を示したものである。本実施例の特徴は、第5図に
示す実施例において、培養液;**槽41を付加した点
にある。
FIG. 6 shows the structure of another embodiment of the cell culture system according to the present invention. The feature of this embodiment is that a culture solution tank 41 is added to the embodiment shown in FIG.

培養槽内に設けられた疎水性中空糸膜の逆洗に用いられ
る逆洗用液は、あらかじめ新鮮培養液及び老廃成分除去
液を、培養液W4製槽41で混合。
The backwash liquid used for backwashing the hydrophobic hollow fiber membrane provided in the culture tank is prepared by mixing a fresh culture liquid and a waste component removal liquid in advance in the culture liquid W4 manufacturing tank 41.

調製する。培養液調製槽41には、乳酸、アンモニア、
たん白質の濃度を測定する手段が付設されており、新鮮
培養液及び老廃成分除去液の混合割合を調節する。
Prepare. The culture solution preparation tank 41 contains lactic acid, ammonia,
A means for measuring the concentration of protein is attached, and the mixing ratio of the fresh culture solution and the waste component removed solution is adjusted.

本実施例によれば、細胞の増殖に好適な培養液を常に用
いて培養を行うことができる。
According to this example, culture can be carried out using a culture solution suitable for cell proliferation at all times.

第7図は本発明による細胞培養システムの他の実施例の
構成を示したものである。本実施例の特徴は第6図に示
す実施例において、老廃成分除去装置として限外濾過器
にかえ、拡散透析器を用いたことである。
FIG. 7 shows the structure of another embodiment of the cell culture system according to the present invention. The feature of this embodiment is that in the embodiment shown in FIG. 6, a diffusion dialysis device was used instead of the ultrafilter as the waste component removal device.

培養濾液は配管により拡散透析器44に導かれ、ポンプ
23により老廃成分除去液貯槽13と、拡散透析器44
の間を循環させる。
The culture filtrate is led to the diffusion dialyzer 44 by piping, and is transferred to the waste component removal liquid storage tank 13 and the diffusion dialyzer 44 by the pump 23.
Cycle between.

また、低分子成分液貯槽42には、各種アミノ酸、ビタ
ミン、無機塩類、グルコース等の低分子成分を溶解して
いる低分子成分液が貯留されており、ポンプ47により
、拡散透析器に送られる。
Further, the low molecular component liquid storage tank 42 stores a low molecular component liquid in which low molecular components such as various amino acids, vitamins, inorganic salts, and glucose are dissolved, and is sent to the diffusion dialyzer by a pump 47. .

抗散透析器44内で培養濾液は透析膜を介して低分子成
分液と接触し、その間に透析膜を通過しうる低分子成分
の透析が行われる。すなわち、培養濾液中に含まれた乳
酸やアンモニアに代表される老廃成分が低分子成分液中
に拡散するとともに、低分子成分液中に溶解されている
各種のアミノ酸。
In the antidialyser 44, the culture filtrate comes into contact with the low-molecular component liquid through the dialysis membrane, and during this time, the low-molecular components that can pass through the dialysis membrane are dialyzed. That is, waste components such as lactic acid and ammonia contained in the culture filtrate diffuse into the low molecular component liquid, and various amino acids are dissolved in the low molecular component liquid.

グルコース、各種の無機塩類、ビタミン類が培養濾液中
に拡散する。細胞の増殖に有益な各種のホルモン、生長
因子等の高分子成分は透析されることなくそのまま廃成
分除去液中にとどまる。透析は、乳酸濃度が11000
pp以下、好ましくは1100pp以下、アンモニアは
20ppa+以下、好ましくは5 ppm以下となるよ
う実施する。
Glucose, various inorganic salts, and vitamins diffuse into the culture filtrate. Polymer components such as various hormones and growth factors useful for cell proliferation remain in the waste component removal solution without being dialyzed. Dialysis has a lactic acid concentration of 11,000
ppm or less, preferably 1100 ppm or less, and ammonia to 20 ppm or less, preferably 5 ppm or less.

拡散透析により老廃成分を除去した老廃成分除去液は、
ポンプ46により培養液調製槽41に送られる。該培養
液調製槽には、高分子成分液貯槽42からポンプ45に
より高分子成分液が供給され、前記老廃成分除去液と混
合、調整することにより新鮮培養液となる。高分子成分
液中には、血清、ホルモン等透析膜を透過できない高分
子成分が溶解している。なお、該培地1製槽42には、
乳酸アンモニア、たん白質の濃度を測定する手段を付設
し、その測定値をもとに高分子成分液と老廃成分除去液
との混合割合を調整する。
The waste component removal solution that removes waste components by diffusion dialysis is
It is sent to the culture solution preparation tank 41 by the pump 46. A polymer component liquid is supplied to the culture liquid preparation tank from a polymer component liquid storage tank 42 by a pump 45, and is mixed and adjusted with the waste component removal liquid to obtain a fresh culture liquid. Polymer components that cannot pass through the dialysis membrane, such as serum and hormones, are dissolved in the polymer component liquid. In addition, in the medium 1 manufacturing tank 42,
A means for measuring the concentration of ammonia lactate and protein is attached, and the mixing ratio of the polymer component liquid and waste component removal liquid is adjusted based on the measured values.

本実施例によれば、常に細胞の増殖に好適な培養液を調
製することができるので、細胞を高濃度培養することが
できる。
According to this example, it is possible to always prepare a culture solution suitable for cell proliferation, and therefore cells can be cultured at high concentration.

第10図は、第6図の老廃成分除去手段を吸着筒に替え
たものである。
FIG. 10 shows an example in which the waste component removing means in FIG. 6 is replaced with an adsorption cylinder.

アンモニアの吸着にはゼオライトを、乳酸の吸着には乳
酸デヒドロゲナーゼを不溶担体に固定して用いた。
Zeolite was used to adsorb ammonia, and lactate dehydrogenase was immobilized on an insoluble carrier to adsorb lactic acid.

なお、該吸着筒は副数本設けておき、適宜配管を切替る
ことによって培養工程に影響無く吸着、再生を行うこと
ができる0本実施例によれば、老廃成分のみ選択的に除
去できるので、培養液の培養液のロスが少ない。
In addition, by providing several subadsorption cylinders and switching the piping as appropriate, adsorption and regeneration can be performed without affecting the culture process.According to this embodiment, only waste components can be selectively removed. , there is little loss of culture solution.

次により具体的な実施例を示し説明する。Next, more specific examples will be shown and explained.

実施例1 外径2mm、内径1mm、細孔径0.8μm。Example 1 Outer diameter 2mm, inner diameter 1mm, pore diameter 0.8μm.

長さ1mのテトラフルオロエチレン樹脂からなる疎水性
中空糸膜(住友電気化学工業製、TB−21)のそれぞ
れの両末端に、最大外径2.5mm。
A maximum outer diameter of 2.5 mm was attached to each end of a hydrophobic hollow fiber membrane (manufactured by Sumitomo Electric Chemical Industries, Ltd., TB-21) made of tetrafluoroethylene resin and having a length of 1 m.

内径Q、91nm、長さ30mmの第9図に示す断面を
有するS U S 3 ]、 6製の原波張部材52を
挿入した0次いで、上記中空糸膜4本を揃え、内径15
mm、深さ30mmの円筒形の硬化用型に挿入した。こ
れに2液温合硬化型のエポキシ接着剤(チバガイギー製
、アラルダイトラビッド)を、主剤と硬化剤を混合した
のち直ちに上記の硬化用型内に注入し、遠心分離機を用
いて1; 0OOGの遠心力をかけ、その間に硬化せし
めた。完全に硬化した後、硬化用型より硬化物を取りだ
し、その末端を5mm切断した。
A SUS3], which has a cross section shown in FIG. 9 with an inner diameter Q of 91 nm and a length of 30 mm, was inserted with a raw wave tension member 52 made of 6.Next, the four hollow fiber membranes were aligned and the inner diameter was 15 mm.
It was inserted into a cylindrical curing mold with a depth of 30 mm and a depth of 30 mm. A two-component thermal curing type epoxy adhesive (manufactured by Ciba Geigy, Araldite Travid) was mixed with the base resin and curing agent, and then immediately poured into the above curing mold, and was heated using a centrifugal separator to form a 1;0OOG A centrifugal force was applied during which time the material was cured. After being completely cured, the cured product was taken out from the curing mold and its end was cut by 5 mm.

上記で製作した中空糸ユニットについて、その両端から
130℃、ゲージ圧1.8kg/cm”の蒸気を通じ、
1時間保持した。室温まで冷却した後、中空糸膜の1本
について1kgの引っ張り荷重をかけても中空糸膜は膜
接続部材51がら抜けることは無かった。
For the hollow fiber unit manufactured above, steam at 130°C and a gauge pressure of 1.8 kg/cm" was passed from both ends of the unit.
It was held for 1 hour. After cooling to room temperature, even when a tensile load of 1 kg was applied to each hollow fiber membrane, the hollow fiber membrane did not come off from the membrane connecting member 51.

比較例1 実施例1において、中空糸膜の両端に原波張部材52を
挿入することなくエポキシ接着剤で固定し。
Comparative Example 1 In Example 1, the raw wave tension members 52 were not inserted at both ends of the hollow fiber membrane, but were fixed with an epoxy adhesive.

中空糸膜ユニットを製作した0次いで、その両端から1
30℃、ゲージ圧1.8kg/am”の蒸気を通じ、1
時間保持した。室温まで冷却した後、中空糸膜の1本に
ついて1kgの引っ張り荷重をかけたところ中空糸膜は
膜接続部材51から抜けてしまった。
After manufacturing the hollow fiber membrane unit, 1 from both ends.
1 at 30°C and through steam at a gauge pressure of 1.8 kg/am.
Holds time. After cooling to room temperature, a tensile load of 1 kg was applied to each hollow fiber membrane, and the hollow fiber membrane came off from the membrane connecting member 51.

実施例2 イーグルMEM培地(日水製薬製イーグルMEMニッス
イ■)9.4g/Q、グルタミン0.292g/Q、7
.5%炭酸水素ナトリウム水溶液29 m Q / Q
 、グルコース20 g / Q 、及び牛胎児血清1
00 m Q / nを加えた培養液5m12に、ラッ
ト肝臓の癌細胞株J T C−1(Japan Ti5
sueCulture No、l)を接種した偏平フラ
スコ15ケを静置培養した。培養温度は37℃、気相ガ
スは空気とした。
Example 2 Eagle MEM medium (Nissui Pharmaceutical Eagle MEM Nissui ■) 9.4 g/Q, glutamine 0.292 g/Q, 7
.. 5% sodium bicarbonate aqueous solution 29 m Q/Q
, glucose 20 g/Q, and fetal bovine serum 1
Rat liver cancer cell line JTC-1 (Japan Ti5
15 flat flasks inoculated with sueCulture No. 1) were statically cultured. The culture temperature was 37°C, and the gas phase was air.

3日間培養したフラスコの表面に付着した細胞を剥離し
、細胞濃度5.lXl0’個/mQの培養液75m12
を得た0本培養液を遠心分離し、上澄みを捨て、同容量
の新鮮な培養液に懸濁した。
The cells that had adhered to the surface of the flask that had been cultured for 3 days were detached, and the cell concentration was 5. 75ml of culture solution with lXl0' cells/mQ
The obtained 0-cell culture solution was centrifuged, the supernatant was discarded, and the suspension was suspended in the same volume of fresh culture solution.

次に、直径110mm、長さ171mm、容積1 、2
50 m Qのローラーボトルに上記細胞懸濁液75m
Q及び上記の新鮮な培養液175+nQを入れて、37
℃、気相ガスは空気、2ppmにて3日間培養した。次
いで、培養液を遠心分離し。
Next, the diameter is 110 mm, the length is 171 mm, and the volumes are 1 and 2.
Add 75 m of the above cell suspension to a 50 m Q roller bottle.
Add Q and the above fresh culture solution 175+nQ,
℃, the gas phase gas was air, 2 ppm, and cultured for 3 days. The culture solution was then centrifuged.

上澄みを捨て同容量の新鮮な培養液に懸濁した。The supernatant was discarded and suspended in the same volume of fresh culture medium.

そして再び上記条件下で3日間培養した。培養液を遠心
分離して上澄みを捨て、2倍量の新鮮な培養液に懸濁し
、それを2倍の本数のローラーボトルに分割し、再び上
記条件下で3日間培養した。
Then, the cells were cultured again under the above conditions for 3 days. The culture solution was centrifuged, the supernatant was discarded, and the suspension was suspended in twice the volume of fresh culture solution, divided into twice the number of roller bottles, and cultured again under the above conditions for 3 days.

上記の操作を更に2回繰り返し、1.7X10’個/ 
m Qの種培養液2.OOOmQを得た。本培養液を遠
心分離して上澄みを捨て、同容量の新鮮な培養液に懸濁
した。
Repeat the above operation two more times, 1.7X10' pieces/
m Q seed culture solution 2. OOOmQ was obtained. The main culture solution was centrifuged, the supernatant was discarded, and the suspension was suspended in the same volume of fresh culture solution.

次に、第1図に示す細胞培養システムの直径1.65m
m、高さ350mm、容量7.OOOmQの円筒型のス
テンレス製培養槽に、上記種細胞懸濁液2.OOOmQ
及び培養液3.OOO+nQを入れて(合計5.OOO
mQ)、37℃に保温した。液面上50 m mの高さ
に表面にシラン系有機珪素ポリマ(粘度I X 10’
センチボイズ)を薄く塗布した正方形網目のステンレス
網(目の1辺の長さ:3mm)を置き、槽底部に配置し
た直径60mmリングスパージャ(孔径1mm、110
ケ)から酸素含有ガスを通気して培養した。酸素含有ガ
スの通気量は培養液の溶存酸素濃度(DO)が2.5p
pmとなるように、空気量及び酸素量を自動的に調節す
る溶存酸素濃度調節装置により調節した。また、培養液
のpHが7.0〜7.6の範囲となるようにpH調節装
置により炭酸ガスを酸素含有ガスに加えて通気した。
Next, the diameter of the cell culture system shown in Fig. 1 is 1.65 m.
m, height 350mm, capacity 7. The above seed cell suspension 2. was placed in an OOOmQ cylindrical stainless steel culture tank. OOOmQ
and culture solution 3. Add OOO+nQ (total 5.OOO
mQ) and kept at 37°C. A silane-based organosilicon polymer (viscosity I x 10'
A square-mesh stainless steel mesh (length of one side of the mesh: 3 mm) coated with a thin layer of Centiboise) was placed, and a ring sparger with a diameter of 60 mm (pore diameter 1 mm, 110 mm) was placed at the bottom of the tank.
The culture was carried out by aerating oxygen-containing gas from (vii). The amount of aeration of oxygen-containing gas is such that the dissolved oxygen concentration (DO) of the culture solution is 2.5p.
pm using a dissolved oxygen concentration regulator that automatically adjusts the amount of air and oxygen. Further, carbon dioxide gas was added to the oxygen-containing gas using a pH controller and aerated so that the pH of the culture solution was in the range of 7.0 to 7.6.

培養槽の下部には配管により濾過器が接続されCいる。A filter is connected to the bottom of the culture tank via piping.

濾過器底部には支持フィルターがあり、親水性濾過助材
層を保持している。親水性濾過助材層の中には疎水性中
空糸フィルターユニットが埋没している。疎水性中空糸
フィルターユニットは、第8図已に示した形状に、長さ
1.2mの疎水性中空糸フィルター4本を用いて実施例
1の手法により作成したものである。tA水性濾過助材
としては直径70μmのガラスピーズをエチルアルコー
ル処理により親水化したものを用いた。
At the bottom of the filter is a support filter that holds a layer of hydrophilic filter aid. A hydrophobic hollow fiber filter unit is embedded in the hydrophilic filter aid layer. A hydrophobic hollow fiber filter unit was produced by the method of Example 1 using four hydrophobic hollow fiber filters each having a length of 1.2 m and having the shape shown in FIG. 8. As the tA aqueous filter aid, glass beads with a diameter of 70 μm made hydrophilic by treatment with ethyl alcohol were used.

引き抜き用ペリスタリックポンプを用いて中空糸膜フィ
ルター内部を減圧することにより、20m Q / m
 i nの流速で培養濾液を引き抜いた。培養濾液内へ
の細胞の混入は全く認められなかった6引き抜き量が5
00mmに達した時、引き抜き用ペリスタリックポンプ
を停止した。次いで、中空糸膜フィルター逆洗用ペリス
タリックポンプ及び濾過助材層展開用ペリスタリックポ
ンプを用いて中空糸磨フィルター逆洗及び濾過助材層展
開を行った。
By reducing the pressure inside the hollow fiber membrane filter using a peristaltic pump for drawing, 20 m Q / m
The culture filtrate was withdrawn at a flow rate of i. No contamination of cells into the culture filtrate was observed.6 The amount of withdrawal was 5.
When it reached 00 mm, the peristaltic pump for withdrawal was stopped. Next, the hollow fiber polishing filter was backwashed and the filter aid layer was developed using a peristaltic pump for backwashing the hollow fiber membrane filter and a peristaltic pump for developing the filter aid layer.

中空糸膜フィルター逆洗は80 m Q / m i 
nの流速で2分間行った。濾過助材層展開は、中空糸膜
フィルター逆洗中は70 m m / m i n +
中空糸膜フィルター逆洗終了後は150mQ/minの
流速で行い、引き抜き量と同量を培養槽内に注入した時
点で終了するように制御した。中空糸膜フィルター逆洗
及び濾過助材層展開には新鮮培養液貯槽に調製しておい
た新鮮培養液を用いた。培養液の濾過、及び中空糸膜フ
ィルター逆洗及び濾過助材層展開は、培養槽内の培養液
が1日あたり1回入れ替わるように1日あたり10回実
施した。
Hollow fiber membrane filter backwashing is 80 m Q/m i
It was run for 2 minutes at a flow rate of n. The filtration aid layer development is 70 mm/min + during backwashing of the hollow fiber membrane filter.
After backwashing of the hollow fiber membrane filter was completed, it was carried out at a flow rate of 150 mQ/min, and was controlled to end when the same amount as the amount withdrawn was injected into the culture tank. A fresh culture solution prepared in a fresh culture solution storage tank was used for backwashing the hollow fiber membrane filter and developing the filter aid layer. Filtration of the culture solution, backwashing of the hollow fiber membrane filter, and development of the filter aid layer were performed 10 times per day so that the culture solution in the culture tank was replaced once per day.

本実施例の結果を第16図に示した。培養開始12日以
後I X 10’細胞/ m Q以上、生存率88%以
上を維持できた。最高細胞濃度は1.6×107細胞/
 m Qであった。
The results of this example are shown in FIG. After 12 days from the start of culture, IX10' cells/mQ or higher and survival rate of 88% or higher were maintained. Maximum cell concentration is 1.6 x 107 cells/
It was mQ.

比較例2 第1図の培養システムより濾過器、中空糸膜フィルター
及び濾過助材を除いた培養システムを用いて実施例2と
同、じ培養を行った。その結果を第17図に示した。濾
過器、中空糸膜フィルター及び濾過助材を除いたことに
より培養液の交換が出来ず、栄養成分が枯渇して細胞濃
度が2.1×101細胞/ m nに達したあと急速に
減少した。
Comparative Example 2 The same culture as in Example 2 was carried out using the culture system shown in FIG. 1 except that the filter, hollow fiber membrane filter, and filter aid were removed. The results are shown in FIG. Due to the removal of the filter, hollow fiber membrane filter, and filter aid, the culture medium could not be replaced, and nutrients were depleted and the cell concentration reached 2.1 × 101 cells/mn and then rapidly decreased. .

これより、培養液の交換が不可欠であることがわかる。This shows that it is essential to replace the culture solution.

比較例3 第1図の培養システムにおいて、酸素供給を液面通気に
より行う培養システムを用いて実施例2と同じ培養を行
った。その結果を第18図に示した。細胞濃度は最高5
.6X10’細胞/ m Qであり、生存率が徐々に低
下した。この結果は細胞の増殖に必要な酸素が不足して
いることを示している。すなわち、液面通気法では酸素
の供給が充分でないことがわかる。
Comparative Example 3 In the culture system shown in FIG. 1, the same culture as in Example 2 was carried out using a culture system in which oxygen was supplied by aeration of the liquid surface. The results are shown in FIG. Cell concentration up to 5
.. 6X10' cells/mQ, with a gradual decrease in viability. This result indicates that there is a lack of oxygen necessary for cell growth. That is, it can be seen that oxygen supply is not sufficient in the liquid level aeration method.

比較例4 第1図の培養システムより消泡層を除いた培養システム
を用いて実施例2と同じ培養を行った。
Comparative Example 4 The same culture as in Example 2 was carried out using the culture system shown in FIG. 1 except that the antifoaming layer was removed.

その結果、培養廃ガス管より泡が流出した。これより、
液中通気による酸素供給を行うためには、培養槽内に消
泡手段が必要であることがわかる。
As a result, bubbles flowed out from the culture waste gas pipe. Than this,
It can be seen that defoaming means is required in the culture tank in order to supply oxygen through submerged aeration.

実施例3 実施例2の手法により細胞濃度1.8 X 10’個/
 m Qの種細胞懸濁液を調製した6次いで、第6図に
示した細胞培養システムによる培養を行った。
Example 3 Using the method of Example 2, the cell concentration was 1.8 x 10' cells/
A seed cell suspension of mQ was prepared.Next, it was cultured using the cell culture system shown in FIG.

本システムの培養槽は内容積7.OOOmQの5US3
16製円筒型をなしており、培養液の流動を行わせるた
めに攪拌機29を設けた。細胞と培養液とを分離するた
めの疎水性中空糸膜フイルタ−ユニット10は、第13
図に示す形状を有しており攪拌翼の回転面の周囲に設け
た。なお、疎水性中空糸膜フイルタ−ユニットは、長さ
1.5mの実施例1で用いたものと同じ中空糸膜フィル
ターを4本用いて作成した。酸素供給手段、消泡手段及
び培養条件は実施例2と同じとした。
The culture tank of this system has an internal volume of 7. OOOmQ's 5US3
It was made in the shape of a cylindrical tube made of No. 16, and was equipped with a stirrer 29 to cause the culture solution to flow. The hydrophobic hollow fiber membrane filter unit 10 for separating cells and culture medium is the 13th
It has the shape shown in the figure and is placed around the rotating surface of the stirring blade. Note that the hydrophobic hollow fiber membrane filter unit was created using four hollow fiber membrane filters that were the same as those used in Example 1 and each having a length of 1.5 m. The oxygen supply means, defoaming means, and culture conditions were the same as in Example 2.

培養槽に上記種細胞懸濁液2 、 OOOm Q及び実
施例2と同じ培養液3.’0OOrnQを入れて(合計
5.OOOmQ)、37℃に保温した。培養開始後2日
間は回分培養を行い、3日目より培養液の交換を実施し
た。中空糸膜フィルターの内部をペリスタリックポンプ
を用いて減圧し、lomQ / m i nの流速で培
養濾液を引きぬいた。培養濾液中への細胞の混入は全く
認められなかった。
The above seed cell suspension 2, OOOm Q, and the same culture solution as in Example 2 were placed in a culture tank. '0OOrnQ was added (5.OOOmQ in total) and kept at 37°C. Batch culture was performed for two days after the start of culture, and the culture solution was replaced from the third day. The pressure inside the hollow fiber membrane filter was reduced using a peristaltic pump, and the culture filtrate was drawn out at a flow rate of lomQ/min. No contamination of cells into the culture filtrate was observed.

引きぬき量が500muに達したとき、引きぬき川べり
スタリックポンプを停止した。次いで、中空糸膜フィル
ター逆洗用べりスタリックポンプにより新鮮な培養液を
200mQ/minの流速で中空糸膜フイルタ−10内
に圧入し、中空糸展フィルター10の逆洗を行った。逆
洗に用いた培養液は、イーグルMEM培地9.4g/Q
、グルタミン0゜292g/Q、7.5%炭酸水素ナト
リウム水溶液29m12、及び牛胎児血清50 m Q
 / Qの組成からなり、新鮮培養液貯層12に貯留し
た。逆洗は培養濾液引きぬき量と同量を培養槽に注入し
た時点で終了するように制御した。濾過及び逆洗は。
When the pulling amount reached 500 mu, the pulling riverside staric pump was stopped. Next, a fresh culture solution was pressurized into the hollow fiber membrane filter 10 at a flow rate of 200 mQ/min using a hollow fiber membrane filter backwashing Belisteric pump to backwash the hollow fiber extended filter 10. The culture solution used for backwashing was Eagle MEM medium 9.4g/Q.
, glutamine 0°292g/Q, 7.5% sodium bicarbonate aqueous solution 29ml, and fetal bovine serum 50mQ
/Q, and was stored in the fresh culture solution reservoir 12. Backwashing was controlled so that it ended when the same amount of culture filtrate was injected into the culture tank. Filtration and backwashing.

培養槽内の培養液が1日に1回入れ替るように、1日あ
たり10回実施し、た。
The experiment was carried out 10 times a day so that the culture solution in the culture tank was replaced once a day.

引きぬいた培養濾液は培養源液貯層15に貯留した。そ
ののち、限外濾過器14により老廃成分を含む低分子成
分を濾過し、高分子成分を濃縮して老廃成分除去液貯槽
13に貯留した。老廃成分除去液の容積が培養濾液の1
710になるまで、限外濾過器14と老廃成分除去液貯
槽13の間をペリスタリックポンプにより循環した。限
外濾過膜は分画分子量10,000のものを用いた。
The drawn culture filtrate was stored in the culture source liquid storage layer 15. Thereafter, low-molecular components including waste components were filtered by the ultrafilter 14, and high-molecular components were concentrated and stored in the waste component removal liquid storage tank 13. The volume of the waste component removal solution is 1 of the culture filtrate.
The liquid was circulated between the ultrafilter 14 and the waste component removal liquid storage tank 13 by a peristaltic pump until the liquid became 710 ml. The ultrafiltration membrane used had a molecular weight cutoff of 10,000.

培養開始後8日目より、培養液調製槽において、新鮮培
養液900mQに対し老廃成分除去液を100mQの割
合で混合し、これを中空糸膜フイルタ−lOの逆洗に用
いた。
From the 8th day after the start of culture, a waste component removal solution was mixed in a ratio of 100 mQ to 900 mQ of fresh culture solution in a culture solution preparation tank, and this was used for backwashing the hollow fiber membrane filter IO.

培養開始後188日目り、培養槽内の培養液が1日に2
回入れ替るように、濾過、及び逆洗の回数を1日あたり
20回に増加した。
On the 188th day after the start of culture, the culture solution in the culture tank was reduced to 2 times a day.
The number of filtration and backwashing was increased to 20 times per day.

本実施例の結果を第19図に示した。限外濾過により老
廃成分を除去した結果、実施例2での場合に比べ乳酸及
びアンモニアの濃度が低下している。更に最高細胞濃度
が2.8 X 10’個/ m Qに達しており1本実
施例の効果が認められる。
The results of this example are shown in FIG. 19. As a result of removing waste components by ultrafiltration, the concentrations of lactic acid and ammonia are lower than in Example 2. Furthermore, the maximum cell concentration reached 2.8 x 10' cells/mQ, which confirms the effect of this example.

実施例4 実施例2の手法により細胞濃度1.I X 10″個/
 m Qの種細胞lI!l?is液を調製した。次いで
、第7図に示した細胞培養システムによる培養を行った
Example 4 Using the method of Example 2, a cell concentration of 1. I x 10″ pieces/
m Q's seed cell lI! l? IS solution was prepared. Next, culture was performed using the cell culture system shown in FIG.

本システムは実施例3にて使用した第6図に示す培養シ
ステムの老廃成分除去手段のみを拡散透析44に替えた
ものである。酸素供給手段、消泡手段。
In this system, only the means for removing waste components of the culture system shown in FIG. 6 used in Example 3 was replaced with diffusion dialysis 44. Oxygen supply means, defoaming means.

培養液交換手段及び培養条件は実施例3と同じとした。The culture solution exchange means and culture conditions were the same as in Example 3.

培養槽に上記種細胞懸濁液2 、000 m ’n及び
実施例2と同じ培養液3.OOOmQを入れて(合計5
.OOOmQ) 、37℃に保温した。培養開始後2日
間は回分培養を行い、3日目より培養液の交換を実施し
た。中空糸膜フイルタ−10の内部をペリスタリックポ
ンプを用いて減圧し、15m Q / m i nの流
速で培養濾液を引きぬき、培養源液貯M15に貯留した
。培養濾液中への細胞の混入は全く認められなかった。
The above seed cell suspension 2,000 m'n and the same culture solution as in Example 2 were placed in a culture tank. Add OOOmQ (total 5
.. OOOmQ) and kept at 37°C. Batch culture was performed for two days after the start of culture, and the culture solution was replaced from the third day. The pressure inside the hollow fiber membrane filter 10 was reduced using a peristaltic pump, and the culture filtrate was drawn out at a flow rate of 15 mQ/min and stored in the culture source liquid storage M15. No contamination of cells into the culture filtrate was observed.

引きぬき量が500mQに達したとき、引きぬき川べり
スタリックポンプを停止した。
When the pulling amount reached 500 mQ, the pulling riverside staric pump was stopped.

培養濾液貯溜15より培養濾液をペリスタリンクポンプ
で拡散透析器44に送液し、老廃成分を含む低分子成分
を拡散透析により除去した。拡散透析膜としては1分子
量6,000以下の物質を透過し、それ以上の物質を透
過させないものを用いた。
The culture filtrate was sent from the culture filtrate reservoir 15 to the diffusion dialysis machine 44 using a peristaltic pump, and low molecular weight components including waste components were removed by diffusion dialysis. The diffusion dialysis membrane used was one that allowed substances with a molecular weight of 6,000 or less to pass through, but did not allow substances with a molecular weight larger than 6,000 to pass therethrough.

拡散透析では、対称液として、イーグルMEM培地9.
4g/R、グルタミy 0 、292 g / n 。
In diffusion dialysis, Eagle MEM medium 9.
4 g/R, glutami yo, 292 g/n.

7.5%炭酸水素ナトリウム水溶液29 m Q / 
Q、及びグルコース20 g / 12からなる低分子
成分液を用い、培養濾液に対し2倍の流量を通じて行っ
た。老廃成分を含む低分子成分を除去した老廃成分除去
液は老廃成分除去液貯槽に計留した6培養液調製槽にお
いて、老廃成分除去液に牛胎児血清を1%になるように
加えた。これを中空糸膜フイルタ−10にペリスタリッ
クポンプにより200 m Q / m i nの流速
で圧入し、中空糸膜フイルタ−10の逆洗を行った。逆
洗は培養濾液引きぬき量と同量を培養槽に注入した時点
で終了するように制御した。濾過及び逆洗は、培養槽内
の培養液が1日に3回入れ替るように、1日あたり30
回実施した。
7.5% sodium hydrogen carbonate aqueous solution 29 m Q /
A low molecular component solution consisting of Q and glucose at 20 g/12 was used at a flow rate twice that of the culture filtrate. The waste component removal solution from which low molecular weight components including waste components had been removed was stored in a waste component removal solution storage tank, and fetal bovine serum was added to the waste component removal solution to a concentration of 1% in 6 culture solution preparation tanks. This was pressurized into the hollow fiber membrane filter 10 using a peristaltic pump at a flow rate of 200 mQ/min to backwash the hollow fiber membrane filter 10. Backwashing was controlled so that it ended when the same amount of culture filtrate was injected into the culture tank. Filtration and backwashing are carried out at a rate of 30% per day so that the culture solution in the culture tank is replaced 3 times per day.
Conducted twice.

本実施例の結果を第20図に示した。拡散透析により老
廃成分の除去を行ったことにより、乳酸及びアンモニア
の濃度を低くすることができ、その結果、最高細胞濃度
が3.OX 10’個/mQに達した。
The results of this example are shown in FIG. By removing waste components by diffusion dialysis, the concentrations of lactic acid and ammonia can be lowered, resulting in a maximum cell concentration of 3. It reached OX 10' pieces/mQ.

比較例5 第1図に示すの培養装置において、疎水性濾過膜に替え
て親水性濾過膜(アミコン製、ダイアフローホローファ
イバーシステム、DH−1,中空糸膜: HI M P
O2−43,孔径0.1μm)を用いて、実施例2と同
様にして細胞培養を行った。
Comparative Example 5 In the culture apparatus shown in FIG. 1, a hydrophilic filtration membrane (manufactured by Amicon, Diaflow Hollow Fiber System, DH-1, hollow fiber membrane: HIMP) was used instead of the hydrophobic filtration membrane.
Cell culture was carried out in the same manner as in Example 2 using O2-43 (pore size: 0.1 μm).

その結果、濾過膜の逆洗を行ったが、濾過流量が急速に
減少し、培養開始から6日目で目詰りを起こし、そのた
め培養を継続することができなかった。
As a result, although the filtration membrane was backwashed, the filtration flow rate rapidly decreased and clogging occurred on the 6th day after the start of the culture, making it impossible to continue the culture.

〔発明の効果〕〔Effect of the invention〕

本発明によれば以下の効果がある。 According to the present invention, there are the following effects.

従来困難とされてきた消泡を効果的に行うこと  lが
でき、液中通気方式による酸素供給が可能となり、酸素
を高効率で活用できるため従来の液面通気方式に比べ無
菌酸素の消費量を1/10〜115oに低減できる。さ
らに発泡性の高い血清等を用いた培養液に対しても5倍
以上の酸素を供給することができ、培養効率を高めるこ
とができる。
It is possible to effectively defoamer, which has been considered difficult in the past, and oxygen can be supplied using the submerged aeration method, which allows oxygen to be used with high efficiency, resulting in lower sterile oxygen consumption compared to the conventional surface aeration method. can be reduced to 1/10 to 115o. Furthermore, it is possible to supply 5 times or more oxygen to a culture solution using highly foamable serum or the like, thereby increasing the culture efficiency.

また、培養液を、疎水性膜を用いて濾過することにより
、流体の剪断力による細胞の損傷や膜の目詰りを招くこ
となしに細胞を含まない培養濾液を抜き出すことができ
る。これにより、培養槽内の培養液交換を効率よく行う
ことができ、長期間安定して高濃度の細胞を培養できる
Furthermore, by filtering the culture solution using a hydrophobic membrane, a culture filtrate containing no cells can be extracted without causing damage to cells or clogging of the membrane due to shear force of the fluid. Thereby, the culture solution in the culture tank can be exchanged efficiently, and cells can be stably cultured at a high concentration for a long period of time.

培養液中に含まれる乳酸、アンモニア等の老廃成分を除
去し、かつホルモン、生長因子等の細胞の増殖に有効な
物質を回収した老廃成分除去液を、再び培養に用いるこ
とができるため、高価な血清の使用量を低減できるとと
もに、細胞濃度をさらに増殖することができる。
The waste component removal solution, which removes waste components such as lactic acid and ammonia contained in the culture solution and recovers substances effective for cell proliferation such as hormones and growth factors, can be used again for culture, making it expensive. The amount of serum used can be reduced, and the cell concentration can be further increased.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第7図および第14図は、本発明の一実施例の
概要を示す構成図、第8図Aは膜支持部材の斜視図、第
8図Bは、第8図Aの膜支持部材に中空糸膜を装着した
濾過ユニットの斜視図、第9図は膜支持部材を示す平面
図、及び断面図、第10図〜第13図は、濾過ユニット
の形状を示す斜視図、第15図は中空糸膜の濾過圧と濾
過流量との関係を示す曲線図、第16図〜第20図は本
発明による細胞培養日数と細胞濃度との関係を示す曲線
図である。 1・・・培養液、2・・・培養槽、3・・・ドラフトチ
ューブ。 4・・・ノズル、5・・・消泡層、6・・・ミストセパ
レータ、7・・・フィルタ、8・・・濾過器、9・・・
濾過助材、1゜・・・多孔質中空糸膜フィルタ、11・
・・保持フィルタ、12・・・新鮮培養液貯槽、13・
・・老廃成分除去液貯槽、14・・・限外濾過器、15
・・・培養濾液貯槽。 16・・・ニアコンプレッサ、17.18・・・ガスボ
ンベ、19〜23.45〜47・・・ポンプ、24・・
培養排ガス、25・・・培養濾液、26・・・限外濾過
膜透過液、27・・・老廃成分除去液、28・・・マグ
ネットカップリング、29・・・撹拌翼、31〜33・
・・弁。 41・・・培養液!III槽、42・・・低分子成分液
貯槽、43°°・高分子成分液貯槽、44・・・拡散透
析器、49・・・透析廃液、5o・・・膜支持部材、5
1・゛・膜接続部材、52・・・原鉱張部材、55・・
・小孔、56・・・老廃成分吸着筒。 菩zriJ 第30 #4回 第5図 名乙図 第7ω 応IS口 高 16因 泉口図 4.!−プ籾ζ又) 1も参B数(llLン 高19図 培)日数(改)
1 to 7 and 14 are block diagrams showing an overview of an embodiment of the present invention, FIG. 8A is a perspective view of the membrane support member, and FIG. 8B is the membrane of FIG. 8A. FIG. 9 is a perspective view of a filtration unit in which a hollow fiber membrane is attached to a support member; FIG. 9 is a plan view and a sectional view showing the membrane support member; FIGS. FIG. 15 is a curve diagram showing the relationship between the filtration pressure of the hollow fiber membrane and the filtration flow rate, and FIGS. 16 to 20 are curve diagrams showing the relationship between the number of days of cell culture and cell concentration according to the present invention. 1...Culture solution, 2...Culture tank, 3...Draft tube. 4... Nozzle, 5... Defoaming layer, 6... Mist separator, 7... Filter, 8... Filter, 9...
Filtration aid, 1°... Porous hollow fiber membrane filter, 11.
...Retention filter, 12...Fresh culture solution storage tank, 13.
...Waste component removal liquid storage tank, 14...Ultrafilter, 15
...Culture filtrate storage tank. 16...Near compressor, 17.18...Gas cylinder, 19-23.45-47...Pump, 24...
Culture exhaust gas, 25... Culture filtrate, 26... Ultrafiltration membrane permeate, 27... Waste component removal liquid, 28... Magnetic coupling, 29... Stirring blade, 31-33.
··valve. 41...Culture solution! III tank, 42...Low molecular component liquid storage tank, 43°/high molecular component liquid storage tank, 44...Diffusion dialyzer, 49...Dialysis waste liquid, 5o...Membrane support member, 5
1. Membrane connection member, 52... Raw ore tension member, 55...
・Small hole, 56... Waste component adsorption cylinder. BozriJ 30th #4th Figure 5 Name Otsu Figure 7th ω OIS Exit High 16 Insenguchi Figure 4. ! - Pu paddy

Claims (1)

【特許請求の範囲】 1、生物の細胞を液体培養しながら培養液の一部を濾過
膜を用いて濾過して取り出し、新しい培養液を補給する
細胞培養方法において、上記濾過膜が疎水性濾過膜であ
り、該濾過膜は間欠的に新しい培養液で逆洗することを
特徴とする細胞培養方法。 2、生物の細胞を液体培養しながら培養液の一部を濾過
膜を用いて濾過して取り出し、新しい培養液を補給する
細胞培養方法において、上記濾過膜が疎水性濾過膜の表
面に親水性濾過助材層を有するプレコート膜であり、該
濾過膜は間欠的に新しい培養液で逆洗することを特徴と
する細胞培養方法。 3、請求項1または2において、疎水性濾過膜が1本以
上の中空糸膜であることを特徴とする細胞培養方法。 4、請求項1または2において、疎水性濾過膜が培養液
の液滴との接触角が80度以上の素材で形成されている
ことを特徴とする細胞培養方法。 5、請求項1または2において、疎水性濾過膜の濾過孔
を培養液で充填してから濾過を行うことを特徴とする細
胞培養方法。 6、請求項1または2において、疎水性濾過膜の限界圧
以上で逆洗することを特徴とする細胞培養方法。 7、請求項1または2において、疎水性濾過膜を逆洗す
る培養液が、濾過した培養液から老廃成分を除去した培
養液であることを特徴とする細胞培養方法。 8、請求項1または2において、濾過した培養液中の老
廃成分を老廃成分除去手段により除去し、該老廃成分除
去液を疎水性濾過膜の逆洗用液の一部または全部として
用いることを特徴とする細胞培養方法。 9、請求項8において、老廃成分除去手段が拡散透析法
、限外濾過法または精密濾過法であることを特徴とする
細胞培養方法。 10、請求項1または2において、培養液中に撹拌翼を
設け、該攪拌翼の回転面の周囲に疎水性濾過膜を設けた
ことを特徴とする細胞培養方法。 11、請求項1または2において、培養により生成する
培養液の泡沫を、液面上に配置した撥水性材料で構成す
る消泡層を設け、これと接触させることにより、該泡沫
を破泡しながら培養を行うことを特徴とする細胞培養方
法。 12、請求項10において、消泡層が、粘度が1×10
^4センチポイズ以上の撥水剤を基材に塗布または含浸
されたものであることを特徴とする細胞培養方法。 13、請求項2において、親水性濾過助材が細胞の沈降
速度より大なる沈降速度を有することを特徴とする細胞
培養方法。 14、請求項2において、濾過膜を収納する濾過器を培
養槽と配管で連結して培養槽の外部に設け、疎水性濾過
膜を濾過器内の上部に配置し、密度が培養液の密度より
も小さい親水性濾過助材を用いることを特徴とする細胞
培養方法。 15、培養細胞に対する有用ガスの供給手段、培養液の
供給手段、老廃培養液の排出手段を有する生物細胞の液
体培養装置において、上記老廃培養液の排出手段が疎水
性濾過膜からなる培養液濾過手段を介して設けられ、か
つ、該疎水性濾過膜が培養液により逆洗できる手段を有
する生物細胞の液体培養装置。 16、請求項15において、培養液濾過手段が疎水性中
空糸膜の表面に親水性濾過助材層を有するプレコート膜
から成ることを特徴とする生物細胞の液体培養装置。 17、疎水性中空糸膜の両端に、外径が中空糸膜の内径
より大で、その先端部において中空糸膜のに挿入可能な
外径を有するように勾配を持たせたて成形され、かつ、
該中空糸膜の離脱防止のための突起部分が設けられた膜
拡張部材が挿入されており、該挿入部が接続部に固定さ
れ、該接続部を介して配管と連結し得るようにしたこと
を特徴とする生物細胞分離用濾過器。
[Claims] 1. In a cell culture method in which biological cells are cultured in liquid, a part of the culture solution is filtered out using a filtration membrane, and a new culture solution is replenished, wherein the filtration membrane is a hydrophobic filtration method. 1. A cell culture method, wherein the filtration membrane is intermittently backwashed with fresh culture solution. 2. In a cell culture method in which biological cells are cultured in liquid, a part of the culture solution is filtered out using a filtration membrane, and a new culture solution is replenished. 1. A cell culture method comprising a pre-coated membrane having a filter aid layer, the filtration membrane being intermittently backwashed with fresh culture solution. 3. The cell culture method according to claim 1 or 2, wherein the hydrophobic filtration membrane is one or more hollow fiber membranes. 4. The cell culture method according to claim 1 or 2, wherein the hydrophobic filtration membrane is formed of a material having a contact angle with the droplets of the culture solution of 80 degrees or more. 5. The cell culture method according to claim 1 or 2, characterized in that filtration is performed after filling the filtration pores of the hydrophobic filtration membrane with a culture solution. 6. The cell culture method according to claim 1 or 2, characterized in that backwashing is carried out at a pressure higher than the critical pressure of the hydrophobic filtration membrane. 7. The cell culture method according to claim 1 or 2, wherein the culture solution for backwashing the hydrophobic filtration membrane is a culture solution obtained by removing waste components from a filtered culture solution. 8. In claim 1 or 2, waste components in the filtered culture solution are removed by a waste component removal means, and the waste component removal liquid is used as part or all of a backwashing liquid for the hydrophobic filtration membrane. Characteristic cell culture method. 9. The cell culture method according to claim 8, wherein the means for removing waste components is a diffusion dialysis method, an ultrafiltration method, or a microfiltration method. 10. The cell culture method according to claim 1 or 2, characterized in that a stirring blade is provided in the culture solution, and a hydrophobic filtration membrane is provided around the rotating surface of the stirring blade. 11. In claim 1 or 2, the foam of the culture solution generated by the culture is broken by providing an antifoaming layer made of a water-repellent material placed on the liquid surface and bringing the foam into contact with the foam. A cell culture method characterized by culturing while 12. In claim 10, the antifoaming layer has a viscosity of 1×10
A cell culture method characterized in that a base material is coated or impregnated with a water repellent of ^4 centipoise or more. 13. The cell culture method according to claim 2, wherein the hydrophilic filter aid has a sedimentation rate greater than that of the cells. 14. In claim 2, a filter containing a filtration membrane is connected to the culture tank via piping and provided outside the culture tank, and a hydrophobic filtration membrane is arranged in the upper part of the filter, and the density is equal to that of the culture liquid. A cell culture method characterized by using a hydrophilic filter aid smaller than . 15. A liquid culture device for biological cells having a means for supplying useful gas to cultured cells, a means for supplying a culture solution, and a means for discharging a waste culture solution, wherein the means for discharging the waste culture solution is a culture solution filtration comprising a hydrophobic filtration membrane. A liquid culture device for biological cells, the device being provided via a means and having a means for backwashing the hydrophobic filtration membrane with a culture solution. 16. A liquid culture device for biological cells according to claim 15, wherein the culture solution filtration means comprises a precoated membrane having a hydrophilic filter aid layer on the surface of a hydrophobic hollow fiber membrane. 17. Both ends of the hydrophobic hollow fiber membrane are formed with a gradient so that the outer diameter is larger than the inner diameter of the hollow fiber membrane and the tip part has an outer diameter that can be inserted into the hollow fiber membrane, and,
A membrane expansion member provided with a protruding portion for preventing separation of the hollow fiber membrane is inserted, and the inserted portion is fixed to a connecting portion so that it can be connected to piping via the connecting portion. A biological cell separation filter featuring:
JP10902888A 1987-09-07 1988-05-06 Cell culture method and device Expired - Lifetime JPH0728723B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP10902888A JPH0728723B2 (en) 1988-05-06 1988-05-06 Cell culture method and device
EP88907809A EP0336966B1 (en) 1987-09-07 1988-09-05 Cell culture method and apparatus
DE3850652T DE3850652T2 (en) 1987-09-07 1988-09-05 CELL GROWING METHOD AND DEVICE.
PCT/JP1988/000890 WO1989002458A1 (en) 1987-09-07 1988-09-05 Cell culture method and apparatus
US07/347,219 US5162204A (en) 1988-05-06 1989-05-04 Apparatus and method of culturing and diagnosis of animal cells using image processing
KR1019890006018A KR900018366A (en) 1988-05-06 1989-05-04 Culture apparatus, culture method and diagnostic method of animal cells
DE68909997T DE68909997T2 (en) 1988-05-06 1989-05-05 Device for culture of animal cells, culture method and means for detecting the culture.
EP89108110A EP0340783B1 (en) 1988-05-06 1989-05-05 Apparatus for culturing animal cells, method of culturing thereof and diagnostics of the culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10902888A JPH0728723B2 (en) 1988-05-06 1988-05-06 Cell culture method and device

Publications (2)

Publication Number Publication Date
JPH01281072A true JPH01281072A (en) 1989-11-13
JPH0728723B2 JPH0728723B2 (en) 1995-04-05

Family

ID=14499776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10902888A Expired - Lifetime JPH0728723B2 (en) 1987-09-07 1988-05-06 Cell culture method and device

Country Status (1)

Country Link
JP (1) JPH0728723B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136246A (en) * 2007-12-10 2009-06-25 Hitachi Plant Technologies Ltd Cellular segregation device, culturing device, and cellular segregation method
JP2016111986A (en) * 2014-12-17 2016-06-23 積水化学工業株式会社 Culture apparatus and method
CN112639080A (en) * 2018-08-22 2021-04-09 日机装株式会社 Cell culture method and cell culture apparatus
WO2022050271A1 (en) * 2020-09-03 2022-03-10 日機装株式会社 Method for regenerating liquid to be treated, and agent for regenerating liquid to be treated
WO2023112952A1 (en) * 2021-12-15 2023-06-22 富士フイルム株式会社 Method for producing product, and cell culture apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009136246A (en) * 2007-12-10 2009-06-25 Hitachi Plant Technologies Ltd Cellular segregation device, culturing device, and cellular segregation method
DE102008061432A1 (en) 2007-12-10 2009-06-25 Hitachi Plant Technologies, Ltd. Separation system for cells, cell culture system with cell separator and method for cell separation
JP2016111986A (en) * 2014-12-17 2016-06-23 積水化学工業株式会社 Culture apparatus and method
CN112639080A (en) * 2018-08-22 2021-04-09 日机装株式会社 Cell culture method and cell culture apparatus
WO2022050271A1 (en) * 2020-09-03 2022-03-10 日機装株式会社 Method for regenerating liquid to be treated, and agent for regenerating liquid to be treated
WO2023112952A1 (en) * 2021-12-15 2023-06-22 富士フイルム株式会社 Method for producing product, and cell culture apparatus

Also Published As

Publication number Publication date
JPH0728723B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
US6685832B2 (en) Method of potting hollow fiber membranes
US6620319B2 (en) Apparatus for withdrawing permeate using an immersed vertical skein of hollow fibre membranes
US7537701B2 (en) Membrane filtration module with adjustable header spacing
USRE37549E1 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces while filtering a substrate to withdraw a permeate
US8852438B2 (en) Membrane filtration module with adjustable header spacing
JP2777385B2 (en) Biological cell culture method, culture system and culture device
IL179311A (en) Membrane bioreactor
JP2002512109A (en) Rotary filtration device with flow-through inner member
JPH01281072A (en) Cell culture method and unit therefor
EP0336966B1 (en) Cell culture method and apparatus
AU2004203856C1 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
AU2005243606B2 (en) Membrane bioreactor
AU2004203855B2 (en) Vertical skein of hollow fiber membranes and method of maintaining clean fiber surfaces
JPH0499483A (en) Method for perfusion culture of animal cell
JPH0276571A (en) Floating cell culture and unit therefor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080405

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14