JPH01280447A - Nuclear spin resonance fault photographing device - Google Patents

Nuclear spin resonance fault photographing device

Info

Publication number
JPH01280447A
JPH01280447A JP63109494A JP10949488A JPH01280447A JP H01280447 A JPH01280447 A JP H01280447A JP 63109494 A JP63109494 A JP 63109494A JP 10949488 A JP10949488 A JP 10949488A JP H01280447 A JPH01280447 A JP H01280447A
Authority
JP
Japan
Prior art keywords
magnetic field
magnetic
fixing
term
magnetic substance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63109494A
Other languages
Japanese (ja)
Inventor
Hiroyuki Watanabe
洋之 渡邊
Mitsuru Saeki
満 佐伯
Tsuyoshi Takahashi
高橋 堅
Hiroshi Hashimoto
宏 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63109494A priority Critical patent/JPH01280447A/en
Publication of JPH01280447A publication Critical patent/JPH01280447A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3873Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming

Abstract

PURPOSE:To rationally and efficiently correct a magnetic field by making the mass of a magnetic substance to correct a static magnetic field into a specific range and suppressing components except for necessary magnetic field components to be low. CONSTITUTION:A cylinder 7 for fixing a magnetic substance small piece is inserted between a gradient coil 2 and a magnet 1, and it is supported from the magnet 1 along with the gradient coil 2 by a supporter 9. To a non-magnetic cylinder 7, a base seat 5 for fixing a magnetic substance is fitted in a fittable and removable condition, and to the base seat, a magnetic substance small piece 3 correcting a magnetic field is screwed. The magnetic substance small piece 3 is the magnetic substance in the range of an element mass 0.01-30g, the generation of the other term is suppressed to be low, and the rational and economical magnetic field correction is attained. The magnetic substance small piece 3 is screwed to the base seat 5, the base seat 5 is fitted to the cylinder 7 for fixing the magnetic substance small piece in a circumferential direction at an approximately equal interval, and at the time of executing the magnetic field correction, the base seat 5 is removed from the cylinder 7 for fixing the magnetic substance small piece, it is pulled out to a magnet bore, the magnetic substance is fitted, it is sufficient, and at the time of inserting the base seat 5 again, the base seats at both sides are made into guides, and the magnetic field can be efficiently corrected.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、所定空間に均一静磁場を発生する核スピン共
鳴断層撮影装置に係り、特に静磁場発生装置合理化、及
び磁場補正作業の効率化に好適な核スピン共鳴断層撮影
装置に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a nuclear spin resonance tomography apparatus that generates a uniform static magnetic field in a predetermined space, and particularly to rationalization of the static magnetic field generation device and efficiency of magnetic field correction work. The present invention relates to a nuclear spin resonance tomography apparatus suitable for.

〔従来の技術〕[Conventional technology]

従来、磁性体の配置による磁場補正については、マグネ
ティック レゾナンスインメディスン1゜(1984)
第44頁から第65頁(Magn、 Re5on。
Conventionally, regarding magnetic field correction by arranging magnetic materials, Magnetic Resonance in Medicine 1° (1984)
Pages 44 to 65 (Magn, Re5on.

Med、1(1984)p 44−65)(文献1)お
よびレヴユーオブサイエンティフィック インストラメ
ンツ56(1)(1985)第131頁から第135頁
(Rev、 Sci、 I nstrum、56(1)
(1985) p131−135)(文献2)において
論じられている。即ち、磁石ボア内の磁場は、領域を球
にとれば球調和関数であるから、ルジャンドル函数、ル
ジャンドル陪関数で展開することができる。ルジャンド
ル函数による展開項をZ ana1項と言い、ルジャン
ドル陪函数による展開項をT essera1項と言う
。磁性体による磁場補正とは、磁性体を適当に配置する
ことにより定数項を除(Zona1項とTe5sera
1項を任意の大きさに発生させ、測定領域の磁場の展開
係数をC1即ち定数項のみにすることである0文献1に
は磁性体によるZona1項とTe5sera1項の発
生のさせ方が述べられている。しかし、装置の合理性や
、磁場補正の効率等を考慮した具体的な磁性体の配置及
び支持には何ら言及されていない。又、文献2には、鉄
の棒を使った磁場補正例を中心に、実際的な補正効果に
ついて述べられているが、文献1と同様、装置の合理性
や;磁場補正の効果については言及されていない。
Med, 1 (1984) p. 44-65) (Ref. 1) and Rev. of Scientific Instruments 56(1) (1985) pp. 131-135 (Rev.
(1985) p131-135) (Reference 2). That is, since the magnetic field within the magnet bore is a spherical harmonic function when the area is taken as a sphere, it can be expanded by a Legendre function and an associated Legendre function. The expanded term by the Legendre function is called Z ana1 term, and the expanded term by Legendre associated function is called T essera1 term. Magnetic field correction using a magnetic material means removing the constant term (Zona1 term and Te5sera) by appropriately arranging the magnetic material.
1 term is generated to an arbitrary size, and the expansion coefficient of the magnetic field in the measurement area is set to C1, that is, only a constant term.Reference 1 describes how to generate the Zona1 term and Te5sera1 term using a magnetic material. ing. However, no mention is made of the specific arrangement and support of the magnetic body in consideration of the rationality of the device, the efficiency of magnetic field correction, etc. In addition, Reference 2 describes practical correction effects, focusing on an example of magnetic field correction using an iron rod, but like Reference 1, it does not mention the rationality of the device or the effect of magnetic field correction. It has not been.

T essera1項を発生させるための周方向の鉄片
の配置は以下の方法で決定する。
The arrangement of the iron pieces in the circumferential direction for generating the T essera1 term is determined by the following method.

1、磁化した鉄片が作る磁場 第8図に示すように−様な磁場中のrの位置に置かれた
鉄片が作る磁場の表式は以下となる。
1. Magnetic field created by a magnetized piece of iron As shown in Figure 8, the expression for the magnetic field created by a piece of iron placed at position r in a -like magnetic field is as follows.

Xr”Pn、m(cosθ)cosm(φ−ψ)]  
−(I=1)2、特定のm項を発生させない鉄の配置鉄
片を方位角方向にペアで配置することにより、特定のm
項が発生しないようにすることができる。
Xr”Pn, m(cosθ)cosm(φ−ψ)]
-(I=1)2, by arranging iron pieces that do not generate a specific m term in pairs in the azimuth direction, a specific m
can be prevented from occurring.

即ち、式(I−1)より、αが一定の時、2個の鉄片に
よる磁場を考えれば、 cos[m(φ−ψ)] +cos [m(φ−ψ’)
]=0が、m項が発生しないための必要十分条件である
ことがわかる。
That is, from equation (I-1), when α is constant, considering the magnetic field due to two iron pieces, cos[m(φ-ψ)] +cos [m(φ-ψ')
]=0 is a necessary and sufficient condition for the m term not to occur.

、’、cosmφcos mψ+sin mφsin 
mψ+cosmφcosmψ’ +sin mφsin
 mψ′=OaCO5mφ(cosmψ+cosmψ’
 )+sin mφ(sinmψ+sin mψ′)=
0 <”>C011mψ+cosmψ′=0かつsin m
ψ+sin mψ′=Oa1mψ−mψ’ I=k π
(k =1.3.5−)kπ φ1ψ−ψ’I=−(k=1.3.5・・・)  ・・
・(I−2)kπ 従って、2個の鉄片を□(=1.3.5・・・)の角度
で配置すれば1m項は発生しない。例えば。
,',cosmφcos mψ+sin mφsin
mψ+cosmφcosmψ' +sin mφsin
mψ'=OaCO5mφ(cosmψ+cosmψ'
)+sin mφ(sin mψ+sin mψ′)=
0 <”>C011mψ+cosmψ′=0 and sin m
ψ+sin mψ'=Oa1mψ-mψ' I=k π
(k = 1.3.5-)kπ φ1ψ-ψ'I=-(k=1.3.5...) ・・
-(I-2)kπ Therefore, if two iron pieces are arranged at an angle of □ (=1.3.5...), the 1m term will not occur. for example.

どの鉄片にも180’反対側にペアとなる鉄片が存在す
ればmが奇数の項は発生しない。(mが奇数の項を0に
するkが必ず存在する@)3、磁場補正項のまとめ 式(I−1)より求めた球調和関数の各項を、通称の磁
場補正成分に対応させて、以下のようにまとめる。以後
、補正項は通称を以て呼ぶことにする。
If there is a pair of iron pieces on the 180′ opposite side of any iron piece, no term with an odd number of m will occur. (There always exists k that makes the terms with odd number m 0) 3. Summary of magnetic field correction terms Let each term of the spherical harmonic function obtained from formula (I-1) correspond to the so-called magnetic field correction component. , can be summarized as follows. Hereinafter, the correction term will be referred to by its common name.

4、X、Y項を発生させる鉄の配置(n=1. m=1
)i)m=2.3.4項を発生させないために(m)5
の項は高次により無視できると仮定する。)2個の鉄片
を−+  l  lの間隔で配置する。
4. Arrangement of iron that generates the X and Y terms (n=1. m=1
) i) To prevent the occurrence of term m=2.3.4 (m)5
Assume that the term can be ignored due to higher orders. ) Two pieces of iron are placed at a distance of −+ l l.

従って第9図のような配置を採用する。この時、どの鉄
片をとっても−11+の角度をなす鉄片が存在している
。又第9図の配置の場合、±ψのペアの存在により、Σ
Cosψ≠0.Σsinψ=0となるのでX項のみが発
生する。(Y項のみ発生させる場合には90°ずらせば
よい。)m=1の他の項、例えばZX、ZY、Z”X、
Z”Y (表1−1参照)などの項を発生させるための
周方向の配置も同様である。
Therefore, an arrangement as shown in FIG. 9 is adopted. At this time, no matter which iron piece you take, there is one that forms an angle of -11+. In addition, in the case of the arrangement shown in Figure 9, due to the existence of the ±ψ pair, Σ
Cosψ≠0. Since Σsinψ=0, only the X term is generated. (If only the Y term is generated, it is sufficient to shift it by 90 degrees.) Other terms of m=1, such as ZX, ZY, Z"X,
The same applies to the circumferential arrangement for generating terms such as Z''Y (see Table 1-1).

5、X”−Y”、XY項を発生させる鉄の配置(n=2
.m=2) i)m=2以外の項をできるだけ発生させないようにす
る。式(I−2)よりすべての鉄片に180°の角度を
なす鉄片が存在すれば、奇数項はすべて消去される。m
 = 4の項を発生させないためにすべての鉄片に45
°の角度をもったペアを形成させ、m = 6の項を発
生させないために30’の角度をもったペアを形成させ
る。すると、第10図のような配置を得る。(XY項の
み発生させる場合は、45°ずらせばよい。) 6 、 Te5sera1項を発生させる鉄片の配置第
4項及び5項より高次の項を無視すれば、T esse
ra 1項を発生させる鉄片の配置箇所は、第11図の
場所に限定される。
5. X”-Y”, iron arrangement that generates the XY term (n=2
.. m=2) i) Avoid generating terms other than m=2 as much as possible. According to equation (I-2), if all iron pieces form an angle of 180°, all odd terms are eliminated. m
= 45 for all iron pieces to avoid the occurrence of the term 4.
Pairs with an angle of 30' are formed to prevent the occurrence of the m = 6 term. Then, an arrangement as shown in FIG. 10 is obtained. (If you want to generate only the XY term, you can shift it by 45 degrees.) 6. If you ignore terms higher than the 4th term and 5th term of the iron piece arrangement that generates the Te5sera1 term, Te5sera1 term is
The locations of the iron pieces that generate the ra 1 term are limited to the locations shown in FIG.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、磁場補正用磁性体小片の質量や、その
支持固定方法については言及していない。
The above-mentioned prior art does not mention the mass of the small magnetic piece for magnetic field correction or the method of supporting and fixing it.

本発明の目的は、合理的で効率の良い磁場補正を行なう
のに適した磁性体の質量とその支持固定方法を提供する
ことにある。
An object of the present invention is to provide a mass of a magnetic body suitable for rational and efficient magnetic field correction and a method of supporting and fixing the mass.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、一定の静磁場を発生する静磁場コイルと、
該静磁場の補正を行う磁性体と、該磁性体を支持し前記
静磁場コイルの内側に配設した円筒状の支持体と、前記
補正された静磁場内の被測定休から発生する核磁気共鳴
信号(以下、NMR信号と称す)に位置情報を付与する
前記支持体の内側に配設した円筒状のグラディエントコ
イルと、前記被測定体にパルス状電磁波を印加して前記
NMR信号を発生させる前記グラディエントコイルの内
側に配設した照射コイルと、該NMR信号を受信する前
記グラディエントコイルの内側に配設した受信コイルと
を備えた核スピン共鳴断層撮影装置において、前記磁性
体の質量を0.01〜30gの範囲とした核スピン共鳴
断層撮影装置により、または、前記支持体の外側の面の
円周方向に所定数隣接して配設した台座に前記磁性体が
ねじにより固定されるか、またはねじそのものである核
スピン共鳴断層撮影装置により、または、前記支持体の
固定位置を該支持体の円周方向に所定の基準点から75
’〜37.5’ 、52.5’〜82゜5’ 、97.
5″〜127.5″’ 、142.5’〜172.5’
 、187.5’〜217.5” 、232゜5″〜2
62.5’ 、277.5″′〜307.5’ 322
.5’〜352.5°の範囲内とした核スピン共鳴断層
撮影装置により、または、前記静磁場コイルに前記支持
体と前記グラディエントコイルとを共に固定する核スピ
ン断層撮影装置により達成される。
The above purpose is to provide a static magnetic field coil that generates a constant static magnetic field,
a magnetic body that corrects the static magnetic field; a cylindrical support that supports the magnetic body and is disposed inside the static magnetic field coil; and a nuclear magnetism generated from the magnetic field to be measured within the corrected static magnetic field. A cylindrical gradient coil disposed inside the support body imparts position information to a resonance signal (hereinafter referred to as an NMR signal), and a pulsed electromagnetic wave is applied to the object to be measured to generate the NMR signal. In a nuclear spin resonance tomography apparatus including an irradiation coil disposed inside the gradient coil and a reception coil disposed inside the gradient coil that receives the NMR signal, the mass of the magnetic body is set to 0. The magnetic body is fixed by a nuclear spin resonance tomography device having a weight in the range of 01 to 30 g, or by screws to a predetermined number of pedestals arranged adjacent to each other in the circumferential direction on the outer surface of the support, or by a nuclear spin resonance tomography device that is a screw itself, or by fixing the support at a position 75 from a predetermined reference point in the circumferential direction of the support.
'~37.5', 52.5'~82°5', 97.
5''~127.5'', 142.5'~172.5'
, 187.5'~217.5", 232°5"~2
62.5', 277.5''~307.5' 322
.. This is achieved by a nuclear spin resonance tomography apparatus in which the angle is within the range of 5' to 352.5 degrees, or by a nuclear spin tomography apparatus in which the support and the gradient coil are both fixed to the static magnetic field coil.

〔実施例〕 以下、本発明の内容と一実施例を第1図〜第7図により
説明する。
[Example] Hereinafter, the content of the present invention and an example will be explained with reference to FIGS. 1 to 7.

核スピン共鳴断層撮影装置の撮影空間の常温ボア内磁場
を、ルジャンドル展開し、その展開項に対応する成分を
磁性体小片の配置により補正する場合、一般に該当成分
以外の成分が同時発生する。
When the magnetic field in the room-temperature bore of the imaging space of a nuclear spin resonance tomography apparatus is subjected to Legendre expansion and the component corresponding to the expansion term is corrected by the arrangement of magnetic pieces, generally components other than the corresponding component occur simultaneously.

この時、磁性体の質量と該当成分の感度及び該当成分以
外の成分の感度は密接な関係を持っている。
At this time, there is a close relationship between the mass of the magnetic material, the sensitivity of the relevant component, and the sensitivity of components other than the relevant component.

ここでは、ルジャンドル関数P、 (cosθ)項(通
称76項)を、磁性体小片の配置により補正する場合を
代表例として説明する。ZG項を発生させようとすると
、一般にp2(cosθ)項(通称72項)とP4(c
osθ)項(通称74項)を含む偶数項が同時発生する
。この時、72項は、比較的容易に単独で発生させるこ
とができ、24項の発生をできるだけ抑えることが、合
理的かつ効率のよい磁場補正をするために、必要である
。そこで、74項の発生量と22項の発生量の比を縦軸
に、磁性体小片の重量を横軸に、磁性体小片板厚一定の
条件でグラフを画くと第7図のようになる。即ち、はぼ
30gのあたりで1発生量比の傾きが変わっており、0
.01〜30gの範囲の磁性体小片を用いることにより
、30g以上の磁性体小片を用いるよりも、24項の発
生が低く抑えられることがわかる。又、下限値の0.0
1 gは商業ベースの採算上から考えられる限界値であ
る。この76項を補正する場合のような、24項と22
項の発生量の比と、磁性体小片質量との関係は、zs項
以外の項の場合にも当てはまる。従って磁場補正用磁性
体小片としては、0.01〜30gの範囲のものを用い
ることにより、合理的かつ効率的な磁場補正が達成され
る。
Here, a typical example will be explained in which the Legendre function P, (cos θ) term (commonly known as 76 terms) is corrected by the arrangement of small pieces of magnetic material. When trying to generate a ZG term, generally the p2 (cos θ) term (commonly known as the 72 term) and the P4 (c
Even-numbered terms including the osθ) term (commonly known as 74 terms) occur simultaneously. At this time, the 72nd term can be generated independently relatively easily, and it is necessary to suppress the generation of the 24th term as much as possible in order to perform rational and efficient magnetic field correction. Therefore, if we draw a graph with the ratio of the amount generated in term 74 and the amount generated in term 22 on the vertical axis and the weight of the magnetic particles on the horizontal axis, under the condition that the thickness of the magnetic particles is constant, it will look like Figure 7. . In other words, the slope of the 1 generation amount ratio changes around 30g, and 0.
.. It can be seen that by using magnetic pieces in the range of 0.01 to 30 g, the occurrence of item 24 can be suppressed to a lower level than when using magnetic pieces of 30 g or more. Also, the lower limit value is 0.0
1 g is the limit value that can be considered from a commercially profitable point of view. As in the case of correcting this 76th term, 24th term and 22nd term
The relationship between the ratio of the generation amount of the term and the mass of the small magnetic piece also applies to terms other than the zs term. Therefore, by using a small piece of magnetic material for magnetic field correction in the range of 0.01 to 30 g, rational and efficient magnetic field correction can be achieved.

又、上記磁性体小片は、磁性体小片支持用円筒上にほぼ
等間隔に設けられた取りはずし可能な台座上にねじ止め
される場合、磁場補正により磁性体小片の板厚等変更の
際には、磁性体支持用円筒を引き出す必要は無く、台座
のみを引き出して磁性体小片を交換又は追加すればよく
1台座は周方向に整列して並べられるため、−本を引き
抜いた場合は、両横の台座が再び挿入される場合のガイ
ドとなり合理的かつ効率のよい磁場補正が可能である。
In addition, when the above-mentioned magnetic pieces are screwed onto removable pedestals provided at approximately equal intervals on the cylinder for supporting the magnetic pieces, when changing the plate thickness of the magnetic pieces due to magnetic field correction, There is no need to pull out the cylinder for supporting the magnetic material; all you have to do is pull out the pedestal and replace or add a small piece of magnetic material.The pedestals are aligned circumferentially, so - when you pull out a book, both sides This serves as a guide when the pedestal is reinserted, allowing for rational and efficient magnetic field correction.

又、磁性体小片は、ねじそのものであってもよい、さら
に、T essera1項の磁場補正は磁性体小片支持
用円筒の周方向位置で任意の基準線よりボア中心の回り
に7.5″′から37.5″’、52゜5°から82.
5@、97.5” から127.5’。
Further, the magnetic piece may be a screw itself.Furthermore, the magnetic field correction of Tessera 1 is 7.5''' around the bore center from an arbitrary reference line at the circumferential position of the magnetic piece supporting cylinder. 37.5″' from 52°5° to 82.
5@, 97.5" to 127.5'.

142.5’ から172.5’ 、187.5’ か
ら217.5’ 、232.5’ から262.5@、
277.5@から307.5’ 、322.5’ から
352.5°以外を効果的に使用すれば実施できるたる
め、磁性体小片支持円筒と電磁石装置の固定位置を上記
範囲とすることにより、磁性体固定用台座を磁性体小片
支持用円筒から取りはずし磁石ボア外に引き出す際1円
筒固定用部品が邪魔になる頻度を減らすことができ、能
率よく磁場補正が達成される。又、上記円筒固定用部品
は、円筒内部に有するグラディエントコイルを同時に電
磁石装置に固定すればより合理的である。
142.5' to 172.5', 187.5' to 217.5', 232.5' to 262.5@,
This can be done by effectively using angles other than 277.5@ to 307.5' and 322.5' to 352.5 degrees, so by fixing the magnetic piece support cylinder and the electromagnet device within the above range. When the magnetic body fixing pedestal is removed from the magnetic piece support cylinder and pulled out of the magnet bore, it is possible to reduce the frequency of one cylinder fixing component getting in the way, and magnetic field correction can be achieved efficiently. Further, the above-mentioned cylinder fixing component is more rational if the gradient coil provided inside the cylinder is fixed to the electromagnet device at the same time.

以下、図面により説明する。This will be explained below with reference to the drawings.

第2図は全体構成図である。静磁場コイル1により一定
の静磁場を発生し、この静磁場コイル1の内側に配設さ
れた円筒状の支持体に配設した磁場補正用磁性体小片3
により静磁場を補正し、この補正した静磁場内の被測定
体に照射コイル23によりパルス状の電磁波を印加して
NMR信号を発生させ、このNMR信号に支持体の内側
に配設した円筒状のグラディエントコイル2により位置
情報を付与し、この位置情報を付与したN M R信号
を受信コイル24により受信し画像(図示せず)を形成
する。
FIG. 2 is an overall configuration diagram. A constant static magnetic field is generated by a static magnetic field coil 1, and a small magnetic piece 3 for magnetic field correction is disposed on a cylindrical support disposed inside the static magnetic field coil 1.
The static magnetic field is corrected, and the irradiation coil 23 applies pulsed electromagnetic waves to the object to be measured in the corrected static magnetic field to generate an NMR signal. The gradient coil 2 imparts positional information, and the receiving coil 24 receives the NMR signal to which this positional information is attached, forming an image (not shown).

第1図は本発明の一実施例で部分断面図である。FIG. 1 is a partial cross-sectional view of one embodiment of the present invention.

1は中心に静磁場を発生させる静磁場発生磁石、2はグ
ラディエントコイルである。グラディエントコイル2と
磁石1の内壁との間に磁性体小片固定用円筒7が挿入さ
れ、支持具9によりグラディエントコイル2と共に磁石
1から支持されている。
1 is a static magnetic field generating magnet that generates a static magnetic field at the center, and 2 is a gradient coil. A cylinder 7 for fixing a small magnetic piece is inserted between the gradient coil 2 and the inner wall of the magnet 1, and is supported from the magnet 1 together with the gradient coil 2 by a support 9.

非磁性円筒7には、磁性体固定用台座5が取りはずし可
能な状態で取付けられており、この台座に磁場補正用磁
性体小片3がネジ止めされている。
A magnetic body fixing pedestal 5 is removably attached to the non-magnetic cylinder 7, and a magnetic field correction magnetic piece 3 is screwed to this pedestal.

磁性体小片3は要素質量0.01〜30gの範囲の磁性
体で、他項の発生を少なく抑え、合理的で経済的な磁場
補正を達成している。磁性体小片3は台座5にネジ止め
され、台座5は磁性体小片固定用円筒7に周方向にほぼ
等間隔で取り付けられており、磁場補正をする際には1
台座5を磁性体小片固定用円筒7からはずして磁石ボア
外に引き出し、磁性体を取付ければよく、台座5を再び
挿入する場合は、両横の台座がガイドとなり能率的に磁
場補正をすることができる。支持具9は、図に示す位置
で、円筒7とグラディエントコイル2を支持しており、
磁場補正で台座5を引き出す際、邪魔になる頻度が少な
い。又、支持具9は、円筒7とグラディエントコイル2
を同時に支持しているため合理的である。 第3図は、
磁場補正用磁性体の実施例を示す。磁性体はそれ自身が
ネジとなっていてもよく、又ネジ穴をあけておく構造と
してもよい。ネジ穴はそれ自体ねじとなっていてもよく
、又、!!L通穴で別にナツトを用意して締めつけても
よい。磁性体の形状は任意で、0.01〜30gの範囲
とする。
The magnetic material piece 3 is a magnetic material with an element mass in the range of 0.01 to 30 g, suppresses the generation of other terms, and achieves rational and economical magnetic field correction. The small magnetic pieces 3 are screwed to a pedestal 5, and the pedestal 5 is attached to a cylinder 7 for fixing small magnetic pieces at approximately equal intervals in the circumferential direction.
All you need to do is remove the pedestal 5 from the cylinder 7 for fixing the small magnetic material piece, pull it out of the magnet bore, and attach the magnetic material. When the pedestal 5 is reinserted, the pedestals on both sides serve as guides to efficiently correct the magnetic field. be able to. The support 9 supports the cylinder 7 and the gradient coil 2 at the position shown in the figure.
When the pedestal 5 is pulled out by magnetic field correction, it is less likely to get in the way. Further, the support 9 includes the cylinder 7 and the gradient coil 2.
It is reasonable because it supports the following at the same time. Figure 3 shows
An example of a magnetic material for magnetic field correction is shown. The magnetic material itself may be a screw, or may have a structure in which a screw hole is provided. The screw hole may itself be a screw, or! ! You may also prepare a separate nut for the L hole and tighten it. The shape of the magnetic body is arbitrary, and the size is in the range of 0.01 to 30 g.

第4図は、磁性体固定用台座の実施例を示す。FIG. 4 shows an example of a pedestal for fixing magnetic material.

非磁性り形のしかるべき位置に磁性体固定用穴がおいて
おり、磁性体をネジ止めする。
A hole for fixing the magnetic material is placed in the appropriate position of the non-magnetic shape, and the magnetic material is screwed into the hole.

第5図は、磁性体小片固定用円筒7の取付は位置範囲の
実施例を示す。図の矢印で示した範囲には、磁性体を配
置する数が少なく、この中から適当な位置を選んで円筒
7を磁石1に取付ければ、磁場補正の際台座5を引き出
すのに、支持具9が邪魔になる頻度が少ない。
FIG. 5 shows an example of the mounting position range of the cylinder 7 for fixing the small magnetic piece. In the area indicated by the arrow in the figure, there are only a few magnetic bodies to be placed.If you select an appropriate position from among these and attach the cylinder 7 to the magnet 1, you can use the support to pull out the pedestal 5 when correcting the magnetic field. The tool 9 is less likely to get in the way.

第6図は、磁性体固定用台座の配置実施例を示す。上記
台座は、磁性体固定用円筒上にほぼ等間隔に取りはずし
可能な状態で固定されており、磁場補正の際には、台座
のみを引き出して磁性体小片を設置すればよく、再び挿
入する場合は両横の台座がガイドとなり、能率よく磁場
補正ができる。
FIG. 6 shows an example of the arrangement of the magnetic body fixing pedestal. The above-mentioned pedestal is fixed in a removable manner at approximately equal intervals on the cylinder for fixing the magnetic material, and when correcting the magnetic field, it is only necessary to pull out the pedestal and install the small pieces of magnetic material, and when re-inserting it, The pedestals on both sides serve as guides, allowing efficient magnetic field correction.

以上のように本実施例によれば、0.01〜30gの範
囲の磁性体小片を用いることにより、発生させたい磁場
成分(ルジャンドル展開項)と同時発生する他の成分を
少なく抑えることができ、合理的な磁場補正が可能であ
る。又、磁性体小片固定用円筒7上にほぼ等間隔に取り
はずし可能な台座を設置してその上に磁性体小片をねじ
止めすることにより、磁場補正の際、台座のみを引き出
して磁性体小片を設置すればよく、再び挿入する場合両
横の台座がガイドとなり能率よく磁場補正ができる。上
記磁性体小片固定用円筒7を磁石ボアから支持するのに
、図4の位置を使用することにより、磁性体固定用台座
を引き出す際、円筒固定用支持具が邪魔になる頻度が少
ない。又、この支持具は円筒を支持すると同時にグラデ
ィエントコイルも支持しているので合理的である。
As described above, according to this embodiment, by using a small piece of magnetic material in the range of 0.01 to 30 g, it is possible to suppress the magnetic field component to be generated (Legendre expansion term) and other components that occur simultaneously. , reasonable magnetic field correction is possible. Furthermore, by installing removable pedestals at approximately equal intervals on the cylinder 7 for fixing small magnetic pieces, and screwing the small magnetic pieces onto the pedestals, when correcting the magnetic field, only the pedestals can be pulled out and the small magnetic pieces can be fixed. All you have to do is install it, and when reinserting it, the pedestals on both sides serve as guides to efficiently correct the magnetic field. By using the position shown in FIG. 4 to support the magnetic piece fixing cylinder 7 from the magnet bore, the cylinder fixing support is less likely to get in the way when pulling out the magnetic body fixing pedestal. Moreover, this support is rational because it supports the cylinder and also supports the gradient coil at the same time.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので以下
に記載されるような効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

静磁場を補正する磁性体の質量を0.01〜3Ogの範
囲にし所望の磁場成分以外を低く抑えることにより合理
的で効率良く磁場補正ができる。
By setting the mass of the magnetic material that corrects the static magnetic field to a range of 0.01 to 3 Og and suppressing components other than the desired magnetic field components, the magnetic field can be corrected rationally and efficiently.

また、支持体の円周方向に所定数隣接して台座を配設し
、所定の台座に磁性体をねじ止めすることにより、磁場
補正の際、補正する磁性体が取り付けである所望の台座
だけを引外すことができ、また挿入時は隣接する台座を
挿入ガイドとして利用でき磁場補正が容易にできる。
In addition, by arranging a predetermined number of pedestals adjacent to the support in the circumferential direction and screwing the magnetic material to the predetermined pedestals, when magnetic field correction is performed, only the desired pedestals to which the magnetic material to be corrected is attached can be used. can be pulled out, and the adjacent pedestal can be used as an insertion guide during insertion, making it easy to correct the magnetic field.

また、支持体の固定位置を7.5’〜37.5°。In addition, the fixed position of the support body is 7.5' to 37.5°.

52.5’〜82.5’ 、97.5’〜127.5°
52.5'~82.5', 97.5'~127.5°
.

142.5@〜172.5’ 、187.5’〜217
.5’,232.5″〜262.5’,277.5’〜
307.5’,322.5”〜352.5’の範囲内と
することにより、磁場補正の際、磁性体が取付けである
台座の引外し及び挿入作業が支持体の支持具と干渉せず
磁場補正の作業が効率よくできる。
142.5@~172.5', 187.5'~217
.. 5', 232.5'' ~ 262.5', 277.5'' ~
307.5', 322.5" to 352.5', the removal and insertion work of the pedestal to which the magnetic body is attached will not interfere with the support of the support during magnetic field correction. Magnetic field correction work can be done efficiently.

また、静磁場コイルに支持体とグラディエントコイルと
を同時に固定することにより別々に固定する必要がなく
固定が合理的に行なえる。
Further, by simultaneously fixing the support and the gradient coil to the static magnetic field coil, it is not necessary to fix them separately, and fixing can be carried out rationally.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の部分断面図、第2図は全体
構成図、第3図は磁性体形状の斜視図、第4図は磁性体
固定用台座の斜視図、第5図は磁性体固定用円筒の固定
位置を示す模式図、第6図は磁性体固定用台座の磁性体
固定用円筒上の配設図、第7図は磁性体の質量と同時発
生する項の感度との関係図、第8図〜第11図は従来技
術の説明図である。 1・・・静磁場コイル、2・・・グラディエントコイル
。 3・・・磁場補正用磁性体小片、4・・・磁性体固定ね
じ、5・・・磁性体固定用台座、7・・・磁性体固定用
円筒、9・・・支持具、23・・・照射コイル、24・
・・受信コイル。
Fig. 1 is a partial sectional view of an embodiment of the present invention, Fig. 2 is an overall configuration diagram, Fig. 3 is a perspective view of the shape of the magnetic body, Fig. 4 is a perspective view of a pedestal for fixing the magnetic substance, and Fig. 5 is a schematic diagram showing the fixing position of the magnetic body fixing cylinder, Figure 6 is a diagram showing the arrangement of the magnetic body fixing pedestal on the magnetic body fixing cylinder, and Figure 7 is the sensitivity of the term that occurs simultaneously with the mass of the magnetic body. 8 to 11 are explanatory diagrams of the prior art. 1... Static magnetic field coil, 2... Gradient coil. 3... Magnetic material small piece for magnetic field correction, 4... Magnetic material fixing screw, 5... Magnetic material fixing pedestal, 7... Magnetic material fixing cylinder, 9... Support tool, 23...・Irradiation coil, 24・
...Receiving coil.

Claims (4)

【特許請求の範囲】[Claims] 1.一定の静磁場を発生する静磁場コイルと、静磁場の
補正を行う磁性体と、該磁性体を支持し前記静磁場コイ
ルの内側に配設した円筒状の支持体と、前記補正された
静磁場内の被測定体から発生する核磁気共鳴信号に位置
情報を付与する前記支持体の内側に配設した円筒状のグ
ラディエントコイルと、前記被測定体にパルス状電磁波
を印加して前記核磁気共鳴信号を発生させる前記グラデ
ィエントコイルの内側に配設した照射コイルと、該核磁
気共鳴信号を受信する前記グラディエントコイルの内側
に配設した受信コイルとを備えた核スピン共鳴断層撮影
装置において、前記磁性体の質量を0.01〜30gの
範囲としたことを特徴とする核スピン共鳴断層撮影装置
1. a static magnetic field coil that generates a constant static magnetic field; a magnetic body that corrects the static magnetic field; a cylindrical support that supports the magnetic body and is disposed inside the static magnetic field coil; A cylindrical gradient coil disposed inside the support body imparts position information to a nuclear magnetic resonance signal generated from the object to be measured in a magnetic field; A nuclear spin resonance tomography apparatus comprising: an irradiation coil disposed inside the gradient coil that generates a resonance signal; and a reception coil disposed inside the gradient coil that receives the nuclear magnetic resonance signal. A nuclear spin resonance tomography apparatus characterized in that the mass of the magnetic material is in the range of 0.01 to 30 g.
2.前記支持体の外側の面の円周方向に所定数隣接して
配設した台座に前記磁性体がねじにより固定されるか、
またはねじそのものであることを特徴とする請求項1記
載の装置。
2. The magnetic body is fixed to a predetermined number of pedestals adjacent to each other in the circumferential direction of the outer surface of the support body by screws, or
2. The device according to claim 1, wherein the device is a screw or a screw itself.
3.前記支持体の固定位置を該支持体の円周方向に所定
の基準点から7.5’〜37.5’,52.5’〜82
.5’,97.5’〜127.5’,142.5’〜1
72.5’,187.5’〜217.5’,232.5
’〜262.5’,277.5’〜307.5’,32
2.5’〜352.5’の範囲内としたことを特徴とす
る請求項1又は2記載の装置。
3. The fixed position of the support body is set at 7.5' to 37.5' and 52.5' to 82' from a predetermined reference point in the circumferential direction of the support body.
.. 5', 97.5' to 127.5', 142.5' to 1
72.5', 187.5' to 217.5', 232.5
'~262.5', 277.5'~307.5', 32
3. The device according to claim 1, wherein the range is from 2.5' to 352.5'.
4.前記静磁場コイルに前記支持体と前記グラディエン
トコイルとを共に固定することを特徴とする請求項1、
2又は3記載の装置。
4. Claim 1, wherein the support body and the gradient coil are both fixed to the static magnetic field coil.
3. The device according to 2 or 3.
JP63109494A 1988-05-02 1988-05-02 Nuclear spin resonance fault photographing device Pending JPH01280447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109494A JPH01280447A (en) 1988-05-02 1988-05-02 Nuclear spin resonance fault photographing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109494A JPH01280447A (en) 1988-05-02 1988-05-02 Nuclear spin resonance fault photographing device

Publications (1)

Publication Number Publication Date
JPH01280447A true JPH01280447A (en) 1989-11-10

Family

ID=14511675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109494A Pending JPH01280447A (en) 1988-05-02 1988-05-02 Nuclear spin resonance fault photographing device

Country Status (1)

Country Link
JP (1) JPH01280447A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472704A (en) * 1990-07-13 1992-03-06 Mitsubishi Electric Corp Magnetic field correction device
WO2003075757A1 (en) * 2002-03-14 2003-09-18 Hitachi, Ltd. Magnet device and magnetic resonance imaging using the same
EP2840410A1 (en) * 2013-08-20 2015-02-25 Krohne AG Homogenisation device for homogenising a magnetic field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5960346A (en) * 1982-09-30 1984-04-06 Toshiba Corp Nuclear magnetic resonance device
JPS6114007B2 (en) * 1980-10-14 1986-04-16 Sanwa Unyu Kogyo Kk
JPS62193230A (en) * 1986-02-20 1987-08-25 Toshiba Corp Magnetic resonance imaging system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114007B2 (en) * 1980-10-14 1986-04-16 Sanwa Unyu Kogyo Kk
JPS5960346A (en) * 1982-09-30 1984-04-06 Toshiba Corp Nuclear magnetic resonance device
JPS62193230A (en) * 1986-02-20 1987-08-25 Toshiba Corp Magnetic resonance imaging system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0472704A (en) * 1990-07-13 1992-03-06 Mitsubishi Electric Corp Magnetic field correction device
WO2003075757A1 (en) * 2002-03-14 2003-09-18 Hitachi, Ltd. Magnet device and magnetic resonance imaging using the same
EP2840410A1 (en) * 2013-08-20 2015-02-25 Krohne AG Homogenisation device for homogenising a magnetic field
US9846209B2 (en) 2013-08-20 2017-12-19 Krohne Ag Homogenization device for homogenization of a magnetic field

Similar Documents

Publication Publication Date Title
US6933722B2 (en) Magnetic resonance imaging device and gradient magnetic field coil used for it
US5600245A (en) Inspection apparatus using magnetic resonance
JPH0795974A (en) Magnetic resonance image pickup device
US5574417A (en) Open MRI magnet with homogeneous imaging volume
JPH041481B2 (en)
EP0374377B1 (en) Passive shims for correction of (3,2) and (3,-2) harmonic terms in magnetic resonance magnets
GB2354328A (en) Passive shimming method
JP3733441B1 (en) Magnetic resonance imaging apparatus and magnet apparatus thereof
JPH07106153A (en) C-shaped superconductive magnet
US6812700B2 (en) Correction of local field inhomogeneity in magnetic resonance imaging apparatus
JPH03501342A (en) NMR imager, method of correcting non-uniformity, and method of making magnets used in NMR imager
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
US6198371B1 (en) Open magnet with floor mount
JPH01280447A (en) Nuclear spin resonance fault photographing device
JPH0317488B2 (en)
US20030110564A1 (en) Magnetic resonance imaging apparatus
JP3897958B2 (en) Magnetic resonance imaging system
JP3171721B2 (en) Magnetic field generator for magnetic resonance imaging
JP4331322B2 (en) MRI equipment
US6504372B1 (en) High field open magnetic resonance magnet with reduced vibration
JP2002102205A (en) Magnetic resonace imaging apparatus
JP2000357608A (en) Magnetic field generator
Blümler et al. Halbach Magnets for Magnetic Resonance
EP0457285A2 (en) Apparatus for generating static magnetic field used by MRI system and method for assembling said apparatus
JP4617596B2 (en) MRI magnetic field generator and MRI apparatus using the same