JPH01280305A - Dry-type metallized plastic film capacitor - Google Patents

Dry-type metallized plastic film capacitor

Info

Publication number
JPH01280305A
JPH01280305A JP11085588A JP11085588A JPH01280305A JP H01280305 A JPH01280305 A JP H01280305A JP 11085588 A JP11085588 A JP 11085588A JP 11085588 A JP11085588 A JP 11085588A JP H01280305 A JPH01280305 A JP H01280305A
Authority
JP
Japan
Prior art keywords
capacitor
resin
dry
capacitor element
armor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11085588A
Other languages
Japanese (ja)
Other versions
JP2558807B2 (en
Inventor
Akio Mizutani
水谷 明夫
Korehiko Hiroyama
広山 是彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichicon Corp
Original Assignee
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichicon Corp filed Critical Nichicon Corp
Priority to JP63110855A priority Critical patent/JP2558807B2/en
Publication of JPH01280305A publication Critical patent/JPH01280305A/en
Application granted granted Critical
Publication of JP2558807B2 publication Critical patent/JP2558807B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To realize resin armor at a lower temperature as compared with a conventional method which uses epoxy resin, etc., as armor resin, to enable easy armor sealing, and to realize quality stability without reducing electric efficiency and electric characteristics of a capacitor by using thermosetting unsaturated polyester resin as armor resin. CONSTITUTION:A capacitor is made by a capacitor element 1 whereto a metallized plastic film is wound or laminated and provided with a metallicon electrode 2 on the both ends, a drawn terminal 3 connected to the metallicon electrode 2, and a thermosetting unsaturated polyester resin armor section 4 which covers a part of the drawn terminal 3 and the capacitor element 1. For instance, the capacitor element 1 is dried at 85 deg.C in a vacuum tank of 0.01mmHg for about 30 hours and then insulating varnish is filled and immersed to eliminate wax attaching to the surface. The capacitor element 1 is inserted into a molding die, thermosetting unsaturated polyester resin is charged, and resin armor 4 is formed at a molding temperature of 110 deg.C by using a transfer molding machine of closing pressure of 50 tons.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は家庭用電気機器、照明灯、小形産業用電気機器
などに用いる金属化プラスチックフィルム(以下MFと
いう)を誘電体に用い樹脂外装した乾式金属化プラスチ
ックフィルムコンデンサ(以下乾式MFコンデンサとい
う)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dry metal film coated with a resin and using a metallized plastic film (hereinafter referred to as MF) as a dielectric material, which is used for household electrical equipment, lighting lights, small industrial electrical equipment, etc. This invention relates to a plastic film capacitor (hereinafter referred to as a dry MF capacitor).

従来の技術 (1)従来の乾式MFコンデンサは、MFを巻回してプ
レスで偏平にするか、またはMFを積層してコンデンサ
素子を形成し、該コンデンサ素子をケースに収容してエ
ポキシ樹脂、ポリウレタン樹脂などの流動性のよい樹脂
を注入し、加熱硬化して密封したものが主流である。
Conventional technology (1) Conventional dry MF capacitors are made by winding MF and flattening it with a press, or by stacking MF to form a capacitor element, and then housing the capacitor element in a case made of epoxy resin or polyurethane. The mainstream is injected with a highly fluid resin such as resin, heated and hardened, and sealed.

前記、ケースはまれに金属製のものを使用することがあ
るが、はとんどのケースは熱可塑性樹脂で、射出成形し
たものが使用されている。このほかにコンデンサ素子の
外側を厚手のポリエステルフィルムで巻回被覆し、該コ
ンデンサ素子の両端部に前記エポキシ樹脂などを充填し
て密封する簡易構造のものなどがある。
As mentioned above, cases are occasionally made of metal, but most cases are made of thermoplastic resin and are injection molded. In addition, there is a simple structure in which the outside of the capacitor element is wrapped and covered with a thick polyester film, and both ends of the capacitor element are filled with the epoxy resin or the like and sealed.

(2)前記(1)のコンデンサ素子をエポキシ樹脂など
の熱硬化性樹脂に浸漬し、熱硬化する操作を2〜3回繰
り返して表面を樹脂被覆したデイツプ形乾式MFコンデ
ンサがある。
(2) There is a dip type dry type MF capacitor in which the capacitor element of (1) is immersed in a thermosetting resin such as an epoxy resin, and the heat curing operation is repeated two or three times to coat the surface with the resin.

(3)また、最近では以前から電子回路用コンデンサに
用いられていたインサートダイレクトモールド法を小形
電気機器用コンデンサに応用した乾式MFコンデンサが
出現し、ごく限られた一部の特殊用途に使用されている
。この方法は、前記(11と同様のコンデンサ素子を金
型にインサートし、外装をポリプロピレン樹脂(以下P
P樹脂という)などの熱可塑性樹脂で射出成形封止した
ものである。(特開昭59−213121号公報はその
例である。) 発明が解決しようとする問題点 前記従来技術の(11の乾式MFコンデンサは多くの問
題点がある。ケース構造が主流である熱可を性樹脂ケー
スを用いた乾式MFコンデンサを例として以下説明する
(3) Recently, dry-type MF capacitors have appeared that apply the insert direct molding method, which has long been used for capacitors for electronic circuits, to capacitors for small electrical equipment, and are used for a limited number of special applications. ing. In this method, a capacitor element similar to the above (11) is inserted into a mold, and the exterior is made of polypropylene resin (hereinafter referred to as P
It is injection molded and sealed with a thermoplastic resin such as P resin. (Japanese Unexamined Patent Publication No. 59-213121 is an example of this.) Problems to be Solved by the Invention The dry type MF capacitor of the prior art (No. 11) has many problems. A dry MF capacitor using a plastic case will be explained below as an example.

巻回形コンデンサ素子では、通常角形ケースが用いられ
、コンデンサ素子の収容効率を高め、小形化を図る目的
でコンデンサ素子を熱プレスなどで加圧偏平する方法が
とられる。元来丸形に巻回されたコンデンサ素子を加熱
、加圧して強制的に偏平にすると、誘電体が機械的損傷
を受けて耐電圧の低下や静電容量のバキツキが大きくな
るなど電気特性が低下する。一方製造工程が多く複雑に
なり、封止用充填樹脂の熱硬化に長時間を要するために
設備が大規模になる、各工程が寸断されるなどして機械
化しにくく、おおくの人手を必要とし、製品がコスト高
になるなどの問題点があった。
For wound capacitor elements, a rectangular case is usually used, and the capacitor element is pressed and flattened using a hot press or the like in order to increase the efficiency of accommodating the capacitor element and to reduce its size. When a capacitor element, which was originally wound in a round shape, is forcibly flattened by heating and pressurizing, the dielectric material is mechanically damaged, causing electrical characteristics to deteriorate, such as a decrease in withstand voltage and large fluctuations in capacitance. descend. On the other hand, the manufacturing process has become many and complex, and the equipment has become large-scale because it takes a long time to heat-cure the filling resin for sealing, and each process has been cut into pieces, making it difficult to mechanize and requiring a large amount of manpower. However, there were problems such as high product costs.

また、前記従来技術(2)のデイツプ形乾式MFコンデ
ンサは、基板取付用などリード線取付構造のものであり
、小容量小形コンデンサに限られ、モーターに内蔵した
り、家電機器などの電気機器用としては、固定取付がで
きる構造でないので、不適当である。
Furthermore, the dip-type dry MF capacitor of the prior art (2) has a lead wire attachment structure, such as for mounting on a board, and is limited to small capacitors with a small capacity, and is used for built-in motors and electrical equipment such as home appliances. This is inappropriate because it does not have a structure that allows for fixed installation.

次に、前記従来技術(3)の熱可塑性樹脂によるインサ
ートダイレクトモールド外装した乾式MFコンデンサに
ついては、コンデンサの基本特性に及ぼす問題点があっ
て、これまで余り進歩しなかった構造である。
Next, regarding the dry type MF capacitor having an insert direct mold exterior made of thermoplastic resin according to the prior art (3), there are problems with the basic characteristics of the capacitor, and the structure has not made much progress so far.

すなわち、その最大の問題点は外装成形の際、コンデン
サ素子を形成する誘電体が金型内で高温度と高圧力のた
めに劣化し、コンデンサの電気特性が急激に低下するこ
とである。この構造のコンデンサは、コンデンサ素子を
リード端子とともに一体形成して金型内にインサートし
、金型とコンデンサ素子およびリード端子との空間に高
温度の溶融樹脂を高圧力で充填し、冷却して硬化させる
That is, the biggest problem is that during exterior molding, the dielectric material forming the capacitor element deteriorates in the mold due to high temperature and pressure, and the electrical characteristics of the capacitor rapidly deteriorate. In capacitors with this structure, the capacitor element and lead terminals are integrally formed and inserted into a mold, and the space between the mold, capacitor element, and lead terminals is filled with high-temperature molten resin under high pressure, and then cooled. Let it harden.

このために、外装材料の熱可塑性樹脂は、例えば成形温
度が最も低い範喘のPP樹脂を用いても200℃を超え
、特にMFが金属化ポリプロピレンフィルム(以下MP
PFという)である場合、MPPF自体の溶融温度は1
65℃付近であるから、この封止成形時にMPPFが致
命的な熱損傷を受けてしまうことである。従って、熱可
塑性樹脂によるダイレクトモールド封止においては、今
日乾式MFコンデンサの本命であるMPPFが誘電体と
して使用できず、もっばら耐熱性の高い金属化ポリエチ
レンテレフタレートフィルム(以下MPETFという)
が用いられている。また、特に誘電体がMPETFでは
誘電体保安機構の付加が難しく、乾式MFコンデンサに
とって、最も重要な安全性保証ができなくなる。
For this reason, the thermoplastic resin used as the exterior material has a molding temperature of over 200°C even when using PP resin, which has the lowest molding temperature.
PF), the melting temperature of MPPF itself is 1
Since the temperature is around 65° C., the MPPF will suffer fatal thermal damage during this sealing molding. Therefore, in direct mold sealing with thermoplastic resin, MPPF, which is the mainstay of dry MF capacitors, cannot be used as a dielectric material, and metallized polyethylene terephthalate film (hereinafter referred to as MPETF), which has a high heat resistance, cannot be used as a dielectric material.
is used. Further, especially when the dielectric is MPETF, it is difficult to add a dielectric safety mechanism, making it impossible to guarantee the most important safety for dry MF capacitors.

さらに端子部の封止は熱可塑性樹脂の場合、熱膨張係数
が大きく、かつ熱可塑性樹脂は通常状態では金属との接
着性を有さないため、端子と熱可塑性樹脂は接着せずに
僅かな隙間を生じている。
Furthermore, when sealing the terminal part with thermoplastic resin, the coefficient of thermal expansion is large, and thermoplastic resin does not have adhesive properties with metal under normal conditions. A gap is created.

乾式MFコンデンサの通電、停止などの操り返し温度変
化によって端子封止部が呼吸作用を起こし、長期間中に
吸湿して乾式MFコンデンサが絶縁劣化を起こす。因に
、金属の熱膨張係数は1〜1.5×10−S7℃と小さ
く、一方熱可塑性樹脂がPP樹脂である場合、熱膨張係
数は4〜6X10−’/”Cであり、このような組合せ
では長期的な気密性維持は最早困難である。
Repeated temperature changes such as energization and deactivation of the dry MF capacitor cause the terminal sealing part to breathe, and over a long period of time it absorbs moisture, causing insulation deterioration of the dry MF capacitor. Incidentally, the thermal expansion coefficient of metal is as small as 1 to 1.5 x 10-S7°C, while when the thermoplastic resin is PP resin, the thermal expansion coefficient is 4 to 6 x 10-'/''C; With such a combination, it is no longer possible to maintain long-term airtightness.

従って、その対策として前記特開昭59−213121
号公報では端子部を凹凸状に弯曲させ、外部からの端子
引張力に対してゆるみを生じないようにしたり、また実
開昭58−173227号公報では端子表面にシランカ
プル剤を塗布して金属面と樹脂との膠着性を増やすなど
の努力が払われているが、何れも決定的な対策ではない
Therefore, as a countermeasure to this problem,
In this publication, the terminal part is curved in an uneven shape to prevent the terminal from loosening due to external tensile force, and in Japanese Utility Model Application Publication No. 58-173227, a silane couple agent is applied to the terminal surface to prevent the metal surface from loosening. Efforts have been made to increase the adhesion between the resin and the resin, but none of these measures are definitive.

次に前記従来技術の(1)、(2)、(3)に共通して
いえることは、熱と燃焼に対する外装の安全性であり、
これは金属を除いて全ての樹脂外装に対する問題点であ
る。この中で、熱可塑性樹脂は熱によって必ず溶融する
という決定的な欠陥を持っている。
Next, what is common to the prior art (1), (2), and (3) is the safety of the exterior against heat and combustion.
This is a problem with all resin sheaths except metal. Among these, thermoplastic resins have a decisive flaw in that they always melt due to heat.

使用中不測の事故により乾式MFコンデンサが熱破壊し
たり、あるいは外部から高温度にさらされる事態が生じ
た場合に外装が破損し、最悪の場合にはコンデンサが炎
上する危険を伴う、このような最悪の場面では、外装樹
脂がたとえ難燃性であっても熱で溶融し破損した場合、
内部のコンデンサ素子が露出し、炎上する問題点があっ
た。
If a dry MF capacitor is thermally destroyed due to an unexpected accident during use, or if it is exposed to high temperatures from the outside, the exterior may be damaged, and in the worst case, there is a risk that the capacitor may burst into flames. In the worst case scenario, even if the exterior resin is flame retardant, if it melts and breaks due to heat,
There was a problem that the internal capacitor element was exposed and could catch fire.

問題点を解決するための手段 本発明は前記の問題点を解決した乾式MFコンデンサを
提供しようとするものである。
Means for Solving the Problems The present invention seeks to provide a dry MF capacitor that solves the above problems.

前記のような背景の中で発明者は、樹脂自体が高熱に遭
遇しても全く溶融する心配のない熱硬化性樹脂の存在に
着目した。
Against this background, the inventors focused on the existence of thermosetting resins that do not have any fear of melting even if the resin itself encounters high heat.

通常熱硬化性樹脂はガラス繊維や無機物で物性強化し易
く、かつコンデンサの特性に悪影響を及ぼす有機難燃剤
を用いなくても容易に強力な難燃化ができるなどコンデ
ンサの外装用として極めて有望な特性を兼ね備えている
からである。
Normally, thermosetting resins are extremely promising for use in capacitor exteriors because their physical properties can be easily reinforced with glass fibers or inorganic substances, and strong flame retardance can be easily achieved without using organic flame retardants that adversely affect capacitor properties. This is because it has both characteristics.

しかしながら、熱硬化性樹脂は従来マイカコンデンサの
外装モールド、タンタルコンデンサや超耐熱性を有する
金属化ポリフェニレンスルフィドフィルム(以下MPP
SFという)を用いたMPPSFコンデンサの外装モー
ルドなど、高耐熱を必要とする電子回路用コンデンサの
封止に用いられているにすぎなかった。
However, thermosetting resins have traditionally been used in mica capacitor exterior molds, tantalum capacitors, and super heat-resistant metalized polyphenylene sulfide films (hereinafter referred to as MPP).
It was only used to seal capacitors for electronic circuits that require high heat resistance, such as the exterior mold of MPPSF capacitors using SF.

一般に市販されている汎用性のある熱硬化性樹脂、例え
ばフェノール樹脂、エポキシ樹脂、ユI)ア樹脂、メラ
ミン樹脂、ジアリルフタレート樹脂などでは成形温度が
一様に140〜200 ’Cと高く、しかも成形時にコ
ンデンサ素子が熱と接触する時間が1〜5分と長いため
、熱損傷を受ける影響が極めて大である。従って、元来
MPPFを主体とした乾式MFコンデンサのダイレクト
モールド外装に採用できる余地は全くなかった。
Generally available commercially available thermosetting resins, such as phenolic resins, epoxy resins, urethane resins, melamine resins, and diallyl phthalate resins, have molding temperatures uniformly as high as 140 to 200'C; Since the capacitor element is in contact with heat for a long time of 1 to 5 minutes during molding, it is extremely susceptible to thermal damage. Therefore, there was originally no room for it to be used in the direct mold exterior of a dry MF capacitor mainly composed of MPPF.

しかしながら、発明者は前記熱硬化性樹脂の乾式MFコ
ンデンサの外装への合理性について、さらに究明した結
果、熱硬化性樹脂の中で比較的新しく特異な特性を持つ
「熱硬化性不飽和ポリエステル樹脂」を見出した。この
熱硬化性不飽和ポリエステル樹脂は超低温成形性(90
〜130℃)、短時間硬化(60〜150秒)、硬化後
の超耐熱性(200℃以上)、溶融しない、超難燃性付
与が可能(UL94−5V) 、熱膨張係数が金属に近
く端子との気密封止が極めて容易(熱膨張係数は鉄が1
×10−’/”C1銅ナトノ非鉄金にカ1〜1.5X1
0−’/℃、アルミニウムおよびその合金が1.5〜2
.5×10−’/’Ill:、および熱硬化性不飽和ポ
リエステル樹脂が1.0〜3.0X10弓/℃−任意調
節可能)、成形収縮率が小さく  (0,0〜0.3%
−任意調節可能)、成形時に樹脂にクラックが発生しに
くいことなど、乾式MFコンデンサ素子の封止成形に極
めて有利な諸条件を兼ね備えている。
However, as a result of further investigation into the rationality of using the thermosetting resin for the exterior of a dry MF capacitor, the inventor discovered that ``thermosetting unsaturated polyester resin'' is relatively new among thermosetting resins and has unique characteristics. ” was discovered. This thermosetting unsaturated polyester resin has ultra-low temperature moldability (90
-130℃), short-time curing (60-150 seconds), super heat resistance after curing (200℃ or more), does not melt, can be provided with super flame retardancy (UL94-5V), thermal expansion coefficient close to that of metal. It is extremely easy to airtightly seal with the terminal (the coefficient of thermal expansion is 1 for iron).
×10-'/”C1 copper nano-non-ferrous gold 1~1.5X1
0-'/℃, aluminum and its alloys 1.5-2
.. 5 x 10-'/'Ill:, and thermosetting unsaturated polyester resin is 1.0-3.0
- arbitrarily adjustable), and the resin is less likely to crack during molding, which are extremely advantageous conditions for sealing and molding dry-type MF capacitor elements.

すなわち、本発明はMFを巻回または積層し両端面にメ
タリコン電極を設けたコンデンサ素子と、該コンデンサ
素子のメタリコン電極に接続した引出し端子と、該引出
端子の一部および前記コンデンサ素子を被覆してなる熱
硬化性不飽和ポリエステル樹脂外装部とから構成した乾
式MPコンデンサである。
That is, the present invention provides a capacitor element in which MF is wound or laminated and metallicon electrodes are provided on both end faces, a lead terminal connected to the metallicon electrode of the capacitor element, and a part of the lead terminal and the capacitor element covered. This is a dry-type MP capacitor constructed from a thermosetting unsaturated polyester resin exterior part.

なお、前記熱硬化性不飽和ポリエステル樹脂は特に熱膨
張係数が1〜3 Xl0−’/”C1加熱成形温度が1
00〜140℃、成形収縮率が0〜0.3%の範囲のも
のが、乾式MFコンデンサの外装樹脂として適している
ことが判明した。
Note that the thermosetting unsaturated polyester resin has a thermal expansion coefficient of 1 to 3, and a heat molding temperature of 1 to 3.
It has been found that a resin having a molding shrinkage rate of 0 to 0.3% at a temperature of 00 to 140°C is suitable as an exterior resin for a dry type MF capacitor.

作用 前記したように乾式MFコンデンサの外装樹脂として新
たに開発した「熱硬化性不飽和ポリエステル樹脂」を誘
電体材料としてMPPFを用いた乾式MPPFコンデン
サのダイレクトモールド封止においては、樹脂外装の成
形温度は90〜135℃の超低温成形が可能であり、成
形温度を低温域に適正設定することによって、誘電体が
MPPFであっても、乾式MPPFコンデンサの電気特
性に全く影響を及ぼすことなく、その封止成形を行うこ
とができた。
Function As mentioned above, in the direct mold sealing of dry-type MPPF capacitors using MPPF as the dielectric material and the newly developed "thermosetting unsaturated polyester resin" as the exterior resin of dry-type MF capacitors, the molding temperature of the resin exterior is can be molded at ultra-low temperatures of 90 to 135°C, and by appropriately setting the molding temperature in the low temperature range, even if the dielectric is MPPF, it can be sealed without affecting the electrical characteristics of dry MPPF capacitors at all. We were able to perform permanent molding.

次に端子部の気密封止については、端子材料の金属と外
装封止材料の熱硬化性不飽和ポリエステル樹脂の熱膨張
係数を合致させることで、端子の形状や構造に特別の工
夫をする必要がなく、また端子表面にシランカプル剤や
その他の膠着剤を塗布する必要がなく、乾式MPコンデ
ンサの性能維持に必要な気密封止が確実に可能となった
。このことは異種の複数の材料同志の熱膨張係数を合致
または接近させることで得られた封止技術を乾式MFコ
ンデンサへ新たに応用することができた。
Next, in order to airtightly seal the terminal part, it is necessary to make special efforts in the shape and structure of the terminal by matching the thermal expansion coefficients of the metal of the terminal material and the thermosetting unsaturated polyester resin of the exterior sealing material. There is no need to apply a silane coupler or other adhesive to the terminal surface, making it possible to reliably achieve the airtight seal necessary to maintain the performance of dry MP capacitors. This made it possible to newly apply the sealing technology obtained by matching or approaching the thermal expansion coefficients of a plurality of different materials to dry MF capacitors.

実施例 〔実施例1〕 厚さ51m1巾40mのMPPF一対を巻回して、直径
31mm、長さ43mmのカラム状コンデンサ素子1を
形成し、該コンデンサ素子1の両端面にメタリコン電極
2を形成し、該メタリコン電極2に引出端子3を取付け
たコンデンサ素子を第2図に示す。
Examples [Example 1] A pair of MPPFs having a thickness of 51 m and a width of 40 m were wound to form a column-shaped capacitor element 1 with a diameter of 31 mm and a length of 43 mm, and metallicon electrodes 2 were formed on both end faces of the capacitor element 1. FIG. 2 shows a capacitor element in which a lead terminal 3 is attached to the metallicon electrode 2.

前記コンデンサ素子1を温度85℃、0.01mHgの
真空タンク中で約30時間乾燥し、絶縁フェス、ニチロ
180Mを充填・含浸し、表面の付着ワックスを十分除
去して常温に冷却し、該コンデンサ素子lを成形用金型
にインサートし、該成形用金型に熱硬化性不飽和ポリエ
ステル樹脂を注入して、型締圧力50トンのトランスフ
ァー成形機を用い、成形温度110℃で樹脂外装成形4
して、第1図に示す乾式MPPFコンデンサを構成する
。該乾式MPPFコンデンサの静電容量は18μF、定
格電圧220 V A Cである。
The capacitor element 1 is dried in a vacuum tank at a temperature of 85° C. and 0.01 mHg for about 30 hours, filled with and impregnated with an insulating face, Nichiro 180M, thoroughly removed wax adhering to the surface, and cooled to room temperature. The element 1 was inserted into a molding die, thermosetting unsaturated polyester resin was injected into the molding die, and resin exterior molding was performed at a molding temperature of 110°C using a transfer molding machine with a mold clamping pressure of 50 tons.
As a result, the dry MPPF capacitor shown in FIG. 1 is constructed. The capacitance of the dry MPPF capacitor is 18 μF and the rated voltage is 220 V AC.

外装に用いた熱硬化性不飽和ポリエステル樹脂は昭和高
分子株式会社の商品名「リボラック」RNC833で、
乾式MPPFコンデンサの外装封止用として物性を改良
したもので、成形最低温度100℃、成形収縮率0.0
05%、成形物の熱膨張係数1.5X10−’/”Cの
物性を有するものである。
The thermosetting unsaturated polyester resin used for the exterior is Showa Kobunshi Co., Ltd.'s product name "Revolac" RNC833.
It has improved physical properties for the exterior sealing of dry MPPF capacitors, with a minimum molding temperature of 100°C and a molding shrinkage rate of 0.0.
05%, and the thermal expansion coefficient of the molded product is 1.5×10-'/''C.

第3図〜第5図において、Aは前記したようにして製作
した本発明の乾式MPPFコンデンサ、Bは従来技術で
製作したケースボッティング形乾式MPPFコンデンサ
で、AとBは誘電体仕様および定格容量、定格電圧が同
一である。
In Figures 3 to 5, A is a dry MPPF capacitor of the present invention manufactured as described above, B is a case-botting type dry MPPF capacitor manufactured using the conventional technology, and A and B are dielectric specifications and ratings. The capacity and rated voltage are the same.

第3図はJIS C490Bの試験法による連続耐用性
試験の結果で、静電容量変化率−時間特性図、第4図定
格電圧220VAC160Hz、周囲温度75℃におけ
るtanδ−時間特性図、第5図は一25℃120分、
+85℃、120分の急冷、急熱操作を100回繰り返
し、端子封止部および外装樹脂部に苛酷な損傷を与え、
その後60℃、95%の高温、高湿度下の環境で200
0時間耐湿試験を行った端子相互間の絶縁抵抗−時間特
性図である。
Figure 3 shows the results of a continuous durability test according to the JIS C490B test method. Figure 4 shows the capacitance change rate vs. time characteristic. Figure 4 shows the tan δ vs. time characteristic at rated voltage 220 VAC 160 Hz and ambient temperature 75°C. Figure 5 shows the results. -25℃ 120 minutes
Rapid cooling and rapid heating operations at +85℃ for 120 minutes were repeated 100 times, causing severe damage to the terminal sealing part and exterior resin part.
After that, it was heated to 200℃ in an environment of 60℃, 95% high temperature, and high humidity.
FIG. 3 is an insulation resistance-time characteristic diagram between terminals subjected to a 0-hour moisture resistance test.

前記試験の結果、本発明の乾式MPPFコンデンサAは
第3図および第4図の結果から明らかなように、電気特
性が従来の乾式MPPFコンデンサBと比較して同等遜
色を示すことがなかった。
As a result of the above test, as is clear from the results shown in FIGS. 3 and 4, the dry-type MPPF capacitor A of the present invention did not exhibit comparable electrical characteristics to the conventional dry-type MPPF capacitor B.

すなわち、MPPF誘電体が金型内で高温度と高圧力に
さらされても乾式MPPFコンデンサの特性に変化が生
じなかったことを示すものである。
That is, this shows that the characteristics of the dry MPPF capacitor did not change even when the MPPF dielectric was exposed to high temperatures and pressures in the mold.

また第5図は冷却、加熱の繰り返しで端子封止部および
外装樹脂部に膨張、収縮、損傷を与え、さらにその後の
耐湿性試験においても、本発明の乾式MPPFコンデン
サAは従来の乾式MPPFコンデンサBと比較して何等
の遜色を示さなかった。従って、端子封止部と外装樹脂
部からの異常吸湿によるコンデンサの特性低下がなかっ
たことを示す。
Figure 5 also shows that the terminal sealing part and the exterior resin part are expanded, contracted, and damaged by repeated cooling and heating, and furthermore, in the subsequent moisture resistance test, the dry MPPF capacitor A of the present invention was compared to the conventional dry MPPF capacitor. It did not show any inferiority compared to B. This indicates that there was no deterioration in the characteristics of the capacitor due to abnormal moisture absorption from the terminal sealing portion and the exterior resin portion.

〔実施例2〕 厚さ10μm1幅40mのMPPF一対を巻回して直径
30mm、長さ43酊のカラム状コンデンサ素子を実施
例1と同様の方法で製作し、該コンデンサ素子を85〜
90℃、0.01inHgの真空中で約30時間乾燥し
た後、低粘度含浸用エポキシ樹脂(粘度が25℃で18
0〜200cps )を含浸・熱硬化し、熱硬化完了後
常温に冷却し、該コンデンサ素子を成形用金型にインサ
ートし、該金型に熱硬化性不飽和ポリエステル樹脂を注
入して、型締圧力50)ンのトランスファー成形機を用
い、成形温度110℃で外装成形して乾式MPPFコン
デンサを構成する。該乾式MPPFコンデンサの静電容
量は4μF定格電圧440■である。
[Example 2] A column-shaped capacitor element with a diameter of 30 mm and a length of 43 mm was manufactured by winding a pair of MPPFs with a thickness of 10 μm and a width of 40 m in the same manner as in Example 1.
After drying in a vacuum of 0.01 inHg at 90°C for about 30 hours, a low viscosity impregnating epoxy resin (viscosity 18
0 to 200 cps) is impregnated and heat cured, and after heat curing is completed, the capacitor element is cooled to room temperature, the capacitor element is inserted into a mold, a thermosetting unsaturated polyester resin is injected into the mold, and the mold is clamped. Using a transfer molding machine with a pressure of 50 mm, the outer shell was molded at a molding temperature of 110° C. to form a dry MPPF capacitor. The capacitance of the dry MPPF capacitor is 4 μF with a rated voltage of 440 μF.

外装成形は、昭和高分子株式会社の不飽和ポリエステル
樹脂商品名「リボラック」でRLS70、RNC833
、K515各シリーズを使用し、成形温度と乾式MPP
Fコンデンサの特性劣化の関係を実験により確認した。
Exterior molding was done using Showa Kobunshi Co., Ltd.'s unsaturated polyester resin product name "Revolac" RLS70, RNC833.
, K515 series, molding temperature and dry MPP
The relationship between the characteristics deterioration of the F capacitor was confirmed through experiments.

その結果は第6図および第7図に示す通りである。また
、リゴラソクRNC833を本発明の乾式MPPFコン
デンサの外装樹脂として用いたときの成形温度と熱硬化
時間の実測値を第8図に示す。
The results are shown in FIGS. 6 and 7. Further, Fig. 8 shows actual measured values of the molding temperature and thermosetting time when Rigorasoc RNC833 was used as the exterior resin of the dry MPPF capacitor of the present invention.

第6図は乾式MPPFコンデンサの耐電流性を示す充放
電回数100回における累積過電流(A/m)値を外装
樹脂の各成形温度毎にプロットした静電容量変化率−累
積過電流特性図である。
Figure 6 is a capacitance change rate-cumulative overcurrent characteristic diagram in which the cumulative overcurrent (A/m) value during 100 charging and discharging cycles is plotted for each molding temperature of the exterior resin, showing the current resistance of a dry MPPF capacitor. It is.

第6図から明らかなように成形温度が120℃では、極
めて安定した耐電流性が得られるが、140℃以上の成
形温度では、乾式MPPFコンデンサの誘電体が顕著な
熱損傷を受ける。最早この成形温度領域では、乾式MP
PFコンデンサがその機能を維持できない、中間領域に
ある130℃は使用できる領域であるが、熱劣化の影響
が現れる。
As is clear from FIG. 6, when the molding temperature is 120° C., extremely stable current resistance can be obtained, but when the molding temperature is 140° C. or higher, the dielectric of the dry MPPF capacitor suffers significant thermal damage. In this molding temperature range, dry MP
The intermediate region of 130° C., where the PF capacitor cannot maintain its function, is a usable region, but the influence of thermal deterioration appears.

第7図はJIS C4908に基づく連続耐用性試験の
結果で、各成形温度別の静電容量変化率−時間特性図を
示したものである。
FIG. 7 shows the results of a continuous durability test based on JIS C4908, and shows a capacitance change rate-time characteristic diagram for each molding temperature.

この結果から明らかなように、前記第6図と同様傾向の
特性を示し、成形温度が140℃を超える場合は、乾式
MPPFコンデンサの機能を失う。
As is clear from this result, the characteristics tend to be similar to those shown in FIG. 6, and when the molding temperature exceeds 140° C., the dry MPPF capacitor loses its function.

第8図は外装樹脂リゴラソクRNC833の成形温度−
熱硬化時間特性図で、硬化領域と未硬化領域の限界を示
す。
Figure 8 shows the molding temperature of the exterior resin Rigorasoku RNC833.
A thermal curing time characteristic diagram showing the limits of the cured area and uncured area.

この結果から成形可能な温度領域の下限はほぼ100℃
であることが判明した。
From this result, the lower limit of the moldable temperature range is approximately 100℃.
It turned out to be.

それ以下の温度では時間をかければ樹脂は硬化するが、
所定の物性強度が期待できなくなる。また他の樹脂グレ
ードのRLS70およびに515シリーズにおいてもこ
れと類似の熱硬化時間特性を示すことが実験の結果判明
した。
At lower temperatures, the resin will harden over time, but
The desired physical strength cannot be expected. Experiments have also revealed that other resin grades, RLS70 and 515 series, exhibit similar heat curing time characteristics.

以上の結果を総合すると、成形温度が140℃を超える
高温領域では乾式MPPFコンデンサの電気特性の急激
な低下を招き、また100℃未満の低温領域では樹脂の
十分な硬化ができず、所定の樹脂物性が得られない。従
って、熱硬化性不飽和ポリエステル樹脂が、特に乾式M
PPFコンデンサの外装樹脂として開発された低温成形
グレードであっても、前記成形温度条件を確実に守らな
ければ本発明に係る乾式MPPFコンデンサに使用する
ことは非常に難しい。
Combining the above results, it can be concluded that when the molding temperature is in a high temperature range exceeding 140°C, the electrical characteristics of dry MPPF capacitors rapidly deteriorate, and in a low temperature range below 100°C, the resin cannot be sufficiently cured, and the specified resin Physical properties cannot be obtained. Therefore, thermosetting unsaturated polyester resins, especially dry M
Even if it is a low-temperature molding grade developed as an exterior resin for PPF capacitors, it is very difficult to use it in the dry MPPF capacitor according to the present invention unless the above-mentioned molding temperature conditions are reliably observed.

前記実施例では誘電体にMPPFを用いた乾式MPPF
コンデンサについて説明したが、誘電体にMPPF以外
のMFを用いた乾式MFコンデンサについても、乾式M
PPFコンデンサの場合と同様な傾向を示し、本発明の
乾式MFコンデンサが従来の乾式MFコンデンサに比べ
て優れた電気特性を示した。
In the above embodiment, a dry MPPF using MPPF as a dielectric material is used.
Although we have explained about capacitors, dry-type MF capacitors using MF other than MPPF for the dielectric are also explained.
The same tendency as in the case of the PPF capacitor was shown, and the dry MF capacitor of the present invention showed superior electrical characteristics compared to the conventional dry MF capacitor.

また前記は巻回形MFコンデンサについて説明したが、
MFを積層した積層形乾式MFコンデンサについても巻
回形乾式MFコンデンサと同様な傾向の電気特性を示す
Also, although the above explanation was about a wound type MF capacitor,
A multilayer dry type MF capacitor in which MF is laminated also exhibits electrical characteristics similar to those of a wound type dry type MF capacitor.

発明の効果 前記したように低温成形用熱硬化性不飽和ポリエステル
樹脂を外装樹脂として用いた本発明の乾式MFコンデン
サは、 (イ)エポキシ樹脂などの熱硬化性樹脂を外装樹脂とし
て用い、高温度・高圧力下で樹脂外装した従来の乾式M
Fコンデンサに比べて、低温度で樹脂外装できるので、
外装封止が容易であるとともに、コンデンサの電気性能
ならびに電気特性が低下せず、品質上安定である。
Effects of the Invention As described above, the dry MF capacitor of the present invention uses a thermosetting unsaturated polyester resin for low-temperature molding as the exterior resin.・Conventional dry type M with resin exterior under high pressure
Compared to F capacitors, it can be coated with resin at a lower temperature.
In addition to being easy to package, the capacitor's electrical performance and characteristics do not deteriorate, and its quality is stable.

(ロ)コンデンサ素子と2個の端子のほか構成部品が不
要で、部品・材料が削減できる。
(b) No component parts other than the capacitor element and two terminals are required, reducing the number of parts and materials.

(ハ)成形金型に全ての組立工程を集約するので、工程
の短縮・工数の削減による製造時間の短縮化、すなわち
生産性の合理化がはかれ、コストダウンできる。
(c) Since all the assembly processes are concentrated in the mold, manufacturing time can be shortened by shortening the process and man-hours, in other words, productivity can be streamlined, and costs can be reduced.

などの効果があり、工業的ならびに実用的価値大である
It has the following effects and is of great industrial and practical value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の乾式金属化ポリプロピレンフィルムコ
ンデンサの一実施例の正断面図、第2図は第1図に示す
コンデンサのコンデンサ素子の斜視図、第3図−第5図
は本発明の乾式金属化ポリプロピレンフィルムコンデン
サと従来の乾式金属化ポリプロピレンフィルムコンデン
サの電気特性図の比較で、第3図はJIS C4908
に基づく連続耐用性試験における静電容量変化率−時間
特性図、第4図は第3図の連続耐用試験後に定格電圧2
20■、60Hz、周囲温度75℃におけるtanδ−
時間特性図、第5図は一25℃で120分、+85℃で
120分の急冷、急熱操作を100回繰り返した後、6
0℃、湿度95%の耐湿試験における絶縁抵抗−時間特
性図、第6図は乾式金属化ポリプロピレンフィルムコン
デンサの耐電流性試験における樹脂外装の成形温度毎の
静電容量変化率−累積過電流特性図、第7図は乾式金属
化ポリプロピレンフィルムコンデンサのJIS C49
08に基づく連続耐用性試験における樹脂外装の成形温
度毎の静電容量変化率−時間特性図、第8図は外装樹脂
にリボラックRCN833を使用した本発明の乾式金属
化ポリプロピレンフィルムコンデンサの樹脂外装の成形
温度−熱硬化時間特性図を示す。 1:コンデンサ素子 2:メタリコン電極3:引出端子 4:熱硬化性不飽和ポリエステル樹脂外装A:本発明の
乾式金属化ポリプロピレンフィルムコンデンサ B:従来の乾式金属化ポリプロピレンフィルムコンデン
FIG. 1 is a front cross-sectional view of one embodiment of a dry metalized polypropylene film capacitor of the present invention, FIG. 2 is a perspective view of a capacitor element of the capacitor shown in FIG. 1, and FIGS. Figure 3 is a comparison of the electrical characteristics diagrams of a dry-type metalized polypropylene film capacitor and a conventional dry-type metalized polypropylene film capacitor, and is based on JIS C4908.
Figure 4 shows the capacitance change rate vs. time characteristic diagram in the continuous durability test based on Figure 3.
tan δ- at 20■, 60Hz, ambient temperature 75℃
The time characteristic diagram, Figure 5, shows that after repeating the rapid cooling and heating operations 100 times at -25°C for 120 minutes and +85°C for 120 minutes,
Figure 6 shows the insulation resistance vs. time characteristics in a humidity test at 0°C and 95% humidity. Figure 6 shows the capacitance change rate vs. cumulative overcurrent characteristics for each molding temperature of the resin exterior in a current withstand test of a dry metallized polypropylene film capacitor. Figure 7 shows JIS C49 dry metalized polypropylene film capacitors.
Figure 8 shows the capacitance change rate vs. time characteristic diagram for each molding temperature of the resin casing in the continuous durability test based on 08. A molding temperature-thermal curing time characteristic diagram is shown. 1: Capacitor element 2: Metallicon electrode 3: Output terminal 4: Thermosetting unsaturated polyester resin exterior A: Dry metallized polypropylene film capacitor of the present invention B: Conventional dry metallized polypropylene film capacitor

Claims (1)

【特許請求の範囲】[Claims] (1)金属化プラスチックフィルムを巻回または積層し
、両端面にメタリコン電極を設けたコンデンサ素子と,
該コンデンサ素子のメタリコン電極に接続した引出端子
と、該引出端子の一部および前記コンデンサ素子を被覆
してなる熱硬化性不飽和ポリエステル樹脂外装部とから
構成したことを特徴とする乾式金属化プラスチックフィ
ルムコンデンサ。
(1) A capacitor element made by winding or laminating metallized plastic film and having metallicon electrodes on both end faces,
A dry metallized plastic comprising a lead-out terminal connected to a metallicon electrode of the capacitor element, and a thermosetting unsaturated polyester resin exterior covering a part of the lead-out terminal and the capacitor element. Film capacitor.
JP63110855A 1988-05-06 1988-05-06 Dry metallized plastic film capacitor Expired - Fee Related JP2558807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63110855A JP2558807B2 (en) 1988-05-06 1988-05-06 Dry metallized plastic film capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63110855A JP2558807B2 (en) 1988-05-06 1988-05-06 Dry metallized plastic film capacitor

Publications (2)

Publication Number Publication Date
JPH01280305A true JPH01280305A (en) 1989-11-10
JP2558807B2 JP2558807B2 (en) 1996-11-27

Family

ID=14546377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63110855A Expired - Fee Related JP2558807B2 (en) 1988-05-06 1988-05-06 Dry metallized plastic film capacitor

Country Status (1)

Country Link
JP (1) JP2558807B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357372A (en) * 1999-12-16 2001-06-20 News Distrib Ltd Vacuum stage in wound capacitor manufacture.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155807A (en) * 1984-08-28 1986-03-20 日立化成工業株式会社 Thermosetting resin composition for film capacitor
JPS61271813A (en) * 1985-05-27 1986-12-02 東洋ゴム工業株式会社 Through type capacitor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6155807A (en) * 1984-08-28 1986-03-20 日立化成工業株式会社 Thermosetting resin composition for film capacitor
JPS61271813A (en) * 1985-05-27 1986-12-02 東洋ゴム工業株式会社 Through type capacitor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357372A (en) * 1999-12-16 2001-06-20 News Distrib Ltd Vacuum stage in wound capacitor manufacture.
GB2357372B (en) * 1999-12-16 2004-06-02 News Distrib Ltd A method for manufacturing a wound film capacitor

Also Published As

Publication number Publication date
JP2558807B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
US3037266A (en) Method for making sealed resistors
US2713700A (en) Method of producing sealed capacitors
EP3731298B1 (en) Case member with terminals, and method for manufacturing same
CN108538578A (en) A kind of capacitance and its preparation process based on nanometer evaporation metal thin film technique
US2444880A (en) Electrical seal
US2940161A (en) Methods of making encapsulated electrical devices
US3585468A (en) Thermoplastic jacketed thermoplastic capacitor
US2392311A (en) Sealing of metallic members in molded casings
US3044151A (en) Method of making electrically conductive terminals
CN101980345A (en) Packaging process of solid electrolytic capacitor
JPH01280305A (en) Dry-type metallized plastic film capacitor
CN108417392A (en) A kind of X2 safety capacitance and its preparation process inhibiting breakthrough performance based on cross-line
US2713715A (en) Coil making method
US2785352A (en) Electrical capacitors
CN108736672B (en) Method for manufacturing vacuum pressure impregnation stator bar of air-cooled hydraulic generator
US7037392B2 (en) Method for producing a bar-type conductor
US4893107A (en) Axial miniature fuse with plastic molded body
US4558399A (en) Electrolytic capacitor and a process for producing the same
CN107910145A (en) A kind of embedded varistor and its manufacture craft
CN208489116U (en) A kind of X2 safety capacitor inhibiting breakthrough performance based on cross-line
CN100541687C (en) Niobiuim solid electrolytic capacitor
CN220963217U (en) Fuse shell adopting melamine resin
JP2020136518A (en) Capacitor and manufacturing method of capacitor
CN209980984U (en) Shell-less capacitor
US4965925A (en) Method of making an axial miniature fuse with plastic molded body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees