JPH01280204A - Surface inspecting device for screw - Google Patents

Surface inspecting device for screw

Info

Publication number
JPH01280204A
JPH01280204A JP10961888A JP10961888A JPH01280204A JP H01280204 A JPH01280204 A JP H01280204A JP 10961888 A JP10961888 A JP 10961888A JP 10961888 A JP10961888 A JP 10961888A JP H01280204 A JPH01280204 A JP H01280204A
Authority
JP
Japan
Prior art keywords
light
tube end
detector
screw
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10961888A
Other languages
Japanese (ja)
Other versions
JPH0794977B2 (en
Inventor
Mikio Tachibana
橘 幹夫
Mitsuhito Kamei
光仁 亀井
Toshiro Nakajima
利郎 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63109618A priority Critical patent/JPH0794977B2/en
Publication of JPH01280204A publication Critical patent/JPH01280204A/en
Publication of JPH0794977B2 publication Critical patent/JPH0794977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

PURPOSE:To reduce the size of the device by converging only light in the photodetection width direction of a tube end detector through an optical system whose light converging function has directivity. CONSTITUTION:When a sample 1 is set a specific position, an elevation mechanism 17 lowers an inspection head 25 and a positioning device consisting of a position detector 11, etc., operates to stop the mechanism 17. Then a turning roller 2 rotates and overscan irradiation light 6 from a projection system 3 enters the optical system 21 whose light converging function has directivity and is converged as shown by an arrow (a) to enter the tube end detector 22. The light is not converged as shown by an arrow 8b, so the irradiation light 6 is cut off at the tube end of the sample 1 and the output of the detector 22 is cased. Said optical system 3 converges only the light in the photodetection width direction of the detector 22 without exerting any influence in the scanning direction of the irradiation light 6 to reduce the photodetection area of the detector 22, thereby reducing the size of the device.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明はネジの表面欠陥等を検出する装置に係り、特
に被検体の検査エリアを検出するための同期信号を、被
検体外径の影響を受けることなく得ることができるネジ
の表面検査装置に関するものである。
The present invention relates to a device for detecting surface defects of screws, and more particularly to a screw surface inspection device that can obtain a synchronization signal for detecting an inspection area of a test object without being affected by the outside diameter of the test object. It is something.

【従来の技術】[Conventional technology]

第5図、第6図は例えば特開昭62−69113.特開
昭60−253906に示された従来のこの種のネジの
表面検査装置の構成図であり、図において、1は管端に
ネジIAが加工された被検体、2は被検体1を回転させ
るターニングローラ、3は例えば特開昭58−1468
43に示されたようにネジIAの表面の照射点を通過す
る法線(以下、法線と略す)に対して所定の角度をもた
せて光を照射し、且つ被検体1のネジIAO軸方向に管
端をオーバスキャンして走査する投光系、4は投光系3
から照射されて軸方向に走査されているレーザを代表例
とする照射光、5は照射光4が被検体1から反射された
反射光、6は照射光4のうち管端をオーバスキャンされ
被検体1で反射されなかったオーバスキャン照射光、7
は反射光5を捉える受光系である。 照射光4と反射光5は法線に対して等しい角度を持つこ
とから受光するに適切な位置に配置される。 8はオーバスキャン照射光6を受光して管端を検出する
管端検出器、9は管端検出器8で捉えた光を光電変換器
10(例えば、光電子増信管)へ導くライトガイド、1
1は被検体1の表面高さを検出するタッチローラ等の位
置検出器、2は位置検出器11を支える支柱13を位置
検出器11がフリーの時、下へ押し下げておくバネ機構
、14は支柱13に取付られたストライカ15にて動く
リミットスイッチ等の検出器である。これら位置検出器
11.バネ機構12.支柱13.検出器14゜ストライ
カ15にて被検体検出器30を構成している。16は投
光系3.受光系7.光電変換器10゜バネ機構12.支
柱13.検出器14等を収納する検査ヘッド、17は電
動機、油圧、空気圧等を動力源とする検査ヘッド16の
昇降機構である。 上記被検出機30と昇降機構17で、投光系3゜受光系
7と被検体1の位置関係を所定に保つ位置決め装置40
として機能する。 次に動作について説明する。被検体lが図示しない搬送
設備によって所定位置にセットされると、昇降機構17
にて検査ヘッド16が加工する。位置検出器11が被検
体1に当たると、バネ機構12が圧縮されて、ストライ
カ15が検出器14に当たり、被検体1の検出が行われ
、昇降装置17が停止される。この時、投光系3.受光
系7と被検体1の位置関係は所定に保たれる。次に、タ
ーニングローラ2が回転し、投光系3から光が照射され
る。照射光4は被検体1の管端をオーバスキャンして照
射されていることから、先ず管端検出器8に入り、管端
でオーバスキャン照射光6がさえぎられると、管端検出
器8の信号はなくなる。この時から反射光5が発生し、
その光は受光系7に捉えられる。この様子を時間軸で表
現したのが第7図である。即ち、管端検出器信号がなく
なるエツジを検出エリア開始の同期信号とすることで、
受光7の出力する被検体1からの被検査信号を信号処理
するタイミングを知ることができ、容易に表面検査が行
える。 なお、ターニングローラ2にて被検体1は回転している
ことから、照射光の走査を繰り返すことで、被検体1の
全周を検査することができる。ただし、被検体lは回転
することで、軸方向に移動するこ°とから、管端検出器
8は軸方向に搬送設備の位置決め精度も含めたマージン
をとる必要がある(この長さをlとする)。さらに、前
記位置決め装置40は、位置検出器11の作動をトリガ
ーとして働くため、被検体lの外径が変化しても所定の
位置関係を保つことができる。 この様子を示したのが第8図である。第8図において、
laは被検体1と異なる外径の被検体、3a、4a、5
a、6a、7aは被検体が13の場合の投光系、照射光
1反射光、オーバスキャン照射光、受光系である。照射
光4の法線に対する角度θ1と反射光5の法線に対する
角度e2に等しく、同様に照射光4aの法線に対する角
度θ3と反射光5aの法線に対する角度θ4もまた等し
い。さらに、被検体1,1aはターニングローラ2に乗
るため、その中心は第8図の法線上にある。 よって、被検体1,1aの外径が変化しても照射光4と
4a、反射光5と5aは平行であることから、結局θ1
〜θ4は全て等しくなる。 次に、管端検出器8に入光するオーバスキャン照射光6
を考えると、オーバスキャン照射光6ではA点、オーバ
スキャン照射光6aではB点と変化する。A点とB点の
距離をmとすると、結局、管端検出器8の受光面はm 
X 1の面積が必要である。この管端検出器8の受光面
を示したのが第9図である。
Figures 5 and 6 are, for example, published in Japanese Patent Application Laid-Open No. 62-69113. This is a configuration diagram of a conventional screw surface inspection device of this type shown in Japanese Patent Application Laid-Open No. 60-253906. In the figure, 1 is a test object with a screw IA machined on the tube end, and 2 is a test object 1 rotated. The turning roller 3 is, for example, disclosed in Japanese Patent Application Laid-Open No. 58-1468.
43, the light is irradiated at a predetermined angle to the normal line (hereinafter referred to as normal line) passing through the irradiation point on the surface of the screw IA, and the axial direction of the screw IAO of the subject 1 is irradiated. A light projection system that overscans and scans the tube end; 4 is a light projection system 3;
5 is the reflected light of the irradiated light 4 reflected from the subject 1, and 6 is the reflected light of the irradiated light 4 that overscans the tube end and is scanned in the axial direction. Overscan irradiation light not reflected by specimen 1, 7
is a light receiving system that captures the reflected light 5. Since the irradiated light 4 and the reflected light 5 have equal angles with respect to the normal line, they are placed at an appropriate position to receive the light. 8 is a tube end detector that detects the tube end by receiving the overscan irradiation light 6; 9 is a light guide that guides the light captured by the tube end detector 8 to a photoelectric converter 10 (for example, a photomultiplier tube); 1;
1 is a position detector such as a touch roller that detects the surface height of the subject 1; 2 is a spring mechanism that pushes down the column 13 supporting the position detector 11 when the position detector 11 is free; 14 is a spring mechanism This is a detector such as a limit switch that is operated by a striker 15 attached to a column 13. These position detectors 11. Spring mechanism 12. Pillar 13. A detector 14 and a striker 15 constitute a subject detector 30. 16 is a light projection system 3. Light receiving system 7. Photoelectric converter 10° spring mechanism 12. Pillar 13. The inspection head 17 houses the detector 14, etc., and 17 is a lifting mechanism for the inspection head 16, which uses an electric motor, oil pressure, air pressure, etc. as a power source. A positioning device 40 that maintains a predetermined positional relationship between the light emitting system 3, the light receiving system 7, and the subject 1 using the detected device 30 and the lifting mechanism 17.
functions as Next, the operation will be explained. When the subject l is set in a predetermined position by a transport facility (not shown), the elevating mechanism 17
The inspection head 16 performs processing. When the position detector 11 hits the subject 1, the spring mechanism 12 is compressed, the striker 15 hits the detector 14, the subject 1 is detected, and the lifting device 17 is stopped. At this time, the light projection system 3. The positional relationship between the light receiving system 7 and the subject 1 is maintained at a predetermined value. Next, the turning roller 2 rotates, and light is emitted from the light projection system 3. Since the irradiation light 4 overscans and irradiates the tube end of the subject 1, it first enters the tube end detector 8, and when the overscan irradiation light 6 is blocked by the tube end, the tube end detector 8 enters the tube end detector 8. There will be no signal. From this point on, reflected light 5 is generated,
The light is captured by the light receiving system 7. FIG. 7 shows this situation on a time axis. That is, by using the edge where the tube end detector signal disappears as the synchronization signal for starting the detection area,
The timing at which the signal to be inspected from the object 1 outputted by the light receiver 7 is processed can be known, and the surface inspection can be easily performed. Note that since the subject 1 is being rotated by the turning roller 2, the entire circumference of the subject 1 can be inspected by repeating scanning with the irradiation light. However, since the object l moves in the axial direction by rotating, it is necessary to provide a margin for the tube end detector 8 in the axial direction, including the positioning accuracy of the transport equipment (this length is ). Furthermore, since the positioning device 40 operates using the operation of the position detector 11 as a trigger, it is possible to maintain a predetermined positional relationship even if the outer diameter of the subject I changes. FIG. 8 shows this situation. In Figure 8,
la is a test object with a different outer diameter from test object 1, 3a, 4a, 5
a, 6a, and 7a are the light projection system, irradiation light 1 reflected light, overscan irradiation light, and light receiving system when the number of objects to be examined is 13. The angle θ1 with respect to the normal of the irradiated light 4 and the angle e2 with respect to the normal of the reflected light 5 are equal, and similarly, the angle θ3 with respect to the normal of the irradiated light 4a and the angle θ4 with respect to the normal of the reflected light 5a are also equal. Furthermore, since the subjects 1 and 1a ride on the turning roller 2, their centers are on the normal line in FIG. Therefore, even if the outer diameter of the objects 1 and 1a changes, since the irradiated lights 4 and 4a and the reflected lights 5 and 5a are parallel, θ1
~θ4 are all equal. Next, the overscan irradiation light 6 enters the tube end detector 8.
Considering this, the overscan irradiation light 6 changes to point A, and the overscan irradiation light 6a changes to point B. If the distance between point A and point B is m, then the light receiving surface of tube end detector 8 is m
An area of X 1 is required. FIG. 9 shows the light receiving surface of this tube end detector 8.

【発明が解決しようとする課題】[Problem to be solved by the invention]

従来のネジの表面検査装置は以上のように構成されてい
るので、被検体の外径が変化すると、投光系と管端検出
器の位置関係が第8図に示すように変化するため、管端
検出器の受光面を第8図の矢印方向に幅広くしなければ
ならず、従って管端検出器の受光面積の増大となり、適
用できる被検体外径範囲は光電変換器(同期信号のため
高速応答が必要)の受光面積で制約を受けることとなり
、場合によっては被検体外径によって管端検出器を再設
定しなければならず、仮にできる限り大きな受光面積を
持つ光電変換器(具体的には例えば大口径光電子増信管
等)を用いたとすれば、装置が大形化し、高価格となる
にもかかわらず、それでも本質的に前記問題を解決でき
ないという問題点があった。 この発明は上記のような問題点を解決するためになされ
たもので、被検体外径の影響を受けることなく、管端同
期信号を検出できるとともに、装置を小形化できるネジ
の表面検査装置を得ることを目的とする。
Since the conventional screw surface inspection device is configured as described above, when the outer diameter of the object to be inspected changes, the positional relationship between the light emitting system and the tube end detector changes as shown in Fig. 8. The light-receiving surface of the tube end detector must be made wider in the direction of the arrow in Fig. 8, which increases the light-receiving area of the tube end detector. In some cases, it may be necessary to reset the tube end detector depending on the outer diameter of the test object. If a large-diameter photomultiplier tube (for example, a large-diameter photomultiplier tube, etc.) were used, the device would become larger and more expensive, but the problem still remains that the above-mentioned problem cannot be essentially solved. This invention was made to solve the above-mentioned problems, and provides a screw surface inspection device that can detect a tube end synchronization signal without being affected by the outside diameter of the object to be inspected, and that can reduce the size of the device. The purpose is to obtain.

【課題を解決するための手段】[Means to solve the problem]

この発明に係わるネジの表面検査装置は、集光機能に方
向性を持つ光学系を、ネジの外径方向のオーバスキャン
照射光が集光できる向きで、管端と管端検出器の間に配
置するようにしたものである。
The surface inspection device for a screw according to the present invention includes an optical system having a directional light focusing function between a tube end and a tube end detector in a direction that allows overscan irradiation light in the direction of the outer diameter of the screw to be focused. This is how it is placed.

【作 用】[For use]

この発明における集光機能に方向性を持つ光学系は、照
射光の走査方向に影響を与えることなく(同期信号と被
検査信号の時間的関係に変化を生じない)、管端検出器
の受光面幅方向(第9図のm)の光のみを集光すること
で、光学系の集光限界(光学系の集光性能)まで狭くし
、しいては管端検出器の受光面積(光電変換器の受光面
積)を小さくできるようにする。
The optical system in this invention that has directionality in its light focusing function allows light to be received by the tube end detector without affecting the scanning direction of the irradiated light (no change in the temporal relationship between the synchronization signal and the signal to be inspected). By focusing only the light in the surface width direction (m in Figure 9), the light focusing limit of the optical system (light focusing performance of the optical system) is narrowed, and the light receiving area of the tube end detector (photoelectric The light-receiving area of the converter can be made smaller.

【実施例】【Example】

以下、この発明の一実施例を図について説明する。なお
、前述した従来技術を示す第5図及び第6図と同一、又
は相当部分には同一符号をつけて示している。第1図、
第2図において、21は被検体1の径方向を向いた矢印
■の方向には集光し、被検体1の長さ方向を向いた矢印
■の方向には集光しない(入光状態を固定条件下で保存
する。)光学径(例えば、シリンドリカルレンズ)、2
2は受光面積が第5図の管端検出器8より大幅に減少し
た管端検出器、23は第5図のライトガイド9に比して
断面積が減少したライトガイド、24は第5図の光電変
換器10に比して受光面積が減少した光電変換器(例え
ばビンフォトダイオード等の半導体光電変換器で、これ
らは小形且つ安価)、25は第5図の検査ヘッド16に
比して小形化した検査ヘッドである。 次に動作について説明する。被検体1が所定位置にセッ
トされると、昇降機構17にて検査ヘッド25が下降し
、位置検出器11〜ストライカ15よりなる被検体検出
器30が作動すると、昇降機構17が停止し、次にター
ニングローラ2が回転し、投光形3から光が照射される
のは、従来装置と同様である。オーバスキャン照射光6
は集光機能に方向性を持つ光学系21に入り、矢印■の
方向に集光されて管端検出器22に入る。一方、光学系
21で矢印■の方向には集光されていないことから、走
査方向では照射光位置と時間軸の関係(第7図)には変
化は起こらず、被検体1の管端でオーバスキャン照射光
6がさえぎられると、管端検出器22の信号はなくなる
。以下、管端同期信号と被検査信号を使って容易に全周
表面検査が行われるのは従来装置と同様である。 また、矢印■方向の長さマージン(長さA)も従来装置
と同様である。 次に、被検体外径が変化する場合について第3図を用い
て説明する。 投光系3.3a、受光系7,7a、照射光4゜4a、反
射光5,5aの関係は従来装置と同様であることから被
検査信号の検出に変化はない。−方、オーバスキャン照
射光6,6aの関係については、光学系21と管端検出
器22が、オーバスキャン照射光6と直交(紙面におい
て)し、かつ光学系21の焦点距離の距離を保って平行
して配置されており、オーバスキャン照射光6は光学系
21で集光されて管端検出器22の■に集まる。 ある時刻をとれば、理論上幾何光学的には点となるが、
実際は光学系21の集光限界によるある幅を持つ(これ
をnとする。)。つぎに、被検体外径が変化してオーバ
スキャン照射光6と63となった場合も、オーバスキャ
ン照射光6と6aが平行であることから、やはり光学系
21の焦点位置■に集光される。即ち、被検体外径によ
らず■に集光される。 以上より結局、管端検出器22の受光面はn×lあれば
よいことになる。(nはmに比べ極小)。 管端検出器22の受光面を示したのが第4図である。 なお、上記実施例では、集光機能に方向性を持つ光学系
としてシリンドカルレンズを用いたが、鏡の集光機能を
使ってもよいことは言うまでもない。 上記実施例では、従来装置と同様に、管端検出器22の
出力をライトガイド23で検査ヘッド25で内に設置の
光電変換器24に導いているが、光電変換器24が極め
て小形となることがら管端検出器22の側に光電変換器
24を設置して、ライトガイド23の代わりに光電変換
器24の出力の電気信号を検査ヘッド25へ送ることで
、ライトガイド23を電線に置換えると共に、装置全体
をさらに小形化することも可能である。 また、この発明による構成によれば、円筒体端部よりに
被検査面を持つ、外径が変化する被検体1の検査に広く
適用できることは言うまでもない。
An embodiment of the present invention will be described below with reference to the drawings. Note that the same or equivalent parts as in FIGS. 5 and 6 showing the prior art described above are indicated by the same reference numerals. Figure 1,
In Fig. 2, 21 focuses light in the direction of the arrow ■ pointing in the radial direction of the subject 1, but does not focus in the direction of the arrow ■ pointing in the longitudinal direction of the subject 1 (depending on the light incident state). Stored under fixed conditions) Optical diameter (e.g. cylindrical lens), 2
2 is a tube end detector whose light-receiving area is significantly smaller than that of the tube end detector 8 shown in FIG. 5; 23 is a light guide whose cross-sectional area is reduced compared to the light guide 9 shown in FIG. 5; and 24 is a light guide whose cross-sectional area is reduced compared to the light guide 9 shown in FIG. A photoelectric converter (for example, a semiconductor photoelectric converter such as a bin photodiode, which is small and inexpensive) has a reduced light-receiving area compared to the photoelectric converter 10 shown in FIG. This is a smaller inspection head. Next, the operation will be explained. When the subject 1 is set at a predetermined position, the inspection head 25 is lowered by the lifting mechanism 17, and when the subject detector 30 consisting of the position detector 11 to the striker 15 is activated, the lifting mechanism 17 is stopped and the next The turning roller 2 rotates and the light is emitted from the light projector 3, as in the conventional device. Overscan irradiation light 6
The light enters the optical system 21 which has a directional light focusing function, is focused in the direction of the arrow (■), and enters the tube end detector 22. On the other hand, since the light is not focused in the direction of the arrow ■ by the optical system 21, there is no change in the relationship between the irradiation light position and the time axis (Fig. 7) in the scanning direction, and at the tube end of the subject 1. When the overscan illumination light 6 is blocked, the signal of the tube end detector 22 disappears. Thereafter, the entire circumference surface inspection is easily performed using the tube end synchronization signal and the signal to be inspected, as in the conventional apparatus. Further, the length margin (length A) in the direction of the arrow (■) is also the same as that of the conventional device. Next, a case where the outer diameter of the subject changes will be explained using FIG. 3. Since the relationship among the light projecting system 3.3a, the light receiving systems 7, 7a, the irradiated light 4.4a, and the reflected lights 5,5a is the same as in the conventional apparatus, there is no change in the detection of the signal to be inspected. - On the other hand, regarding the relationship between the overscan irradiation lights 6 and 6a, the optical system 21 and the tube end detector 22 are perpendicular to the overscan irradiation light 6 (in the paper), and the focal length of the optical system 21 is maintained. The overscan irradiation light 6 is focused by the optical system 21 and collected at the tube end detector 22 (2). If you take a certain time, it theoretically becomes a point in terms of geometric optics, but
In reality, it has a certain width due to the condensing limit of the optical system 21 (this is assumed to be n). Next, even when the outer diameter of the object changes and the overscan irradiation lights 6 and 63 become the overscan irradiation lights 6 and 63, since the overscan irradiation lights 6 and 6a are parallel, the light is still focused on the focal position (■) of the optical system 21. Ru. In other words, the light is focused on ■ regardless of the outer diameter of the object. From the above, it follows that the light receiving surface of the tube end detector 22 only needs to be n×l. (n is extremely small compared to m). FIG. 4 shows the light receiving surface of the tube end detector 22. In the above embodiment, a cylindrical lens is used as an optical system having a directionality in the light condensing function, but it goes without saying that the light condensing function of a mirror may also be used. In the above embodiment, like the conventional device, the output of the tube end detector 22 is guided by the light guide 23 to the photoelectric converter 24 installed inside the inspection head 25, but the photoelectric converter 24 is extremely small. In other words, by installing a photoelectric converter 24 on the side of the tube end detector 22 and sending an electrical signal output from the photoelectric converter 24 to the inspection head 25 instead of the light guide 23, the light guide 23 can be replaced with an electric wire. At the same time, it is also possible to further downsize the entire device. Moreover, it goes without saying that the configuration according to the present invention can be widely applied to the inspection of the object 1 to be inspected whose outer diameter changes and whose surface to be inspected is closer to the end of the cylindrical body.

【発明の効果】【Effect of the invention】

以上のように、この発明によれば集光機能に方向性を持
つ光学系を、ネジの外径方向のオーバスキャン照射光を
集光できるようにして管端と管端検出器の管に配置する
ように構成したので、検査エリア開始の管端同期信号を
、被検体外径の影響を受けることなく得ることができる
と共に、装置を小形且つ安価にできる効果がある。
As described above, according to the present invention, an optical system having a directional light focusing function is arranged on the tube end and the tube of the tube end detector so as to be able to focus the overscan irradiation light in the direction of the outer diameter of the screw. With this configuration, the tube end synchronization signal for starting the inspection area can be obtained without being affected by the outer diameter of the subject, and the apparatus can be made smaller and cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図はこの発明の一実施例によるネジの表面
検査装置の正面図及びその右側面図、第3図はこの発明
の一実施例による装置の動作説明図、第4図はこの発明
で用いている管端検出器の受光面図、第5図、第6図は
従来のネジの表面検査装置の正面図及びその右側面図、
第7図は管端検出器検出信号と被検査信号の時間軸説明
図、第8図は従来装置における動作説明図、第9図は従
来装置における管端検出器の受光面図である。 1は被検体、2はターニングローラ、3は投光系、7は
受光系、11〜15.17は位置決め装置、21は集光
機能に方向性を持つ光学系、22は管端検出器、40は
位置決め装置。 なお、図中、同一符号は同一、又は相当部分を示す。 特 許 出 願 人  三菱電機株式会社−つ 手続補正書(自発)
1 and 2 are a front view and a right side view of a screw surface inspection device according to an embodiment of the present invention, FIG. 3 is an explanatory diagram of the operation of the device according to an embodiment of the present invention, and FIG. The light-receiving surface view of the tube end detector used in this invention, FIGS. 5 and 6 are a front view and a right side view of a conventional screw surface inspection device,
FIG. 7 is a time axis explanatory diagram of the tube end detector detection signal and the signal to be inspected, FIG. 8 is an explanatory diagram of the operation in the conventional device, and FIG. 9 is a view of the light receiving surface of the tube end detector in the conventional device. 1 is an object to be inspected, 2 is a turning roller, 3 is a light projecting system, 7 is a light receiving system, 11 to 15.17 are positioning devices, 21 is an optical system with directionality in the light focusing function, 22 is a tube end detector, 40 is a positioning device. In addition, in the figures, the same reference numerals indicate the same or equivalent parts. Patent applicant: Mitsubishi Electric Corporation - Procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] 管端にネジが加工されている被検体に対して前記ネジの
表面の照射点を通過する法線に対して所定の角度をもた
せて光を照射しつつ前記ネジの軸方向に前記管端をオー
バスキャンして走査する投光系と、前記ネジからの反射
光を捉える受光系と、前記投光系と前記受光系と前記被
検体の位置関係を所定に保つ位置決め装置と、前記管端
をオーバスキャンして走査されている光が前記管端にて
光がさえぎられることにより前記管端に光がきたことを
検出する管端検出器とを備え、前記管端検出器にて前記
管端を検出して検査エリア開始の同期信号となしたるネ
ジの表面検査装置において、前記管端と前記管端検出器
の間に、集光機能に方向性を持つ光学系を前記ネジの外
径方向のオーバスキャン照射光が集光できるように設け
たことを特徴とするネジの表面検査装置。
The tube end is irradiated with light at a predetermined angle to the normal passing through the irradiation point on the surface of the screw, and the tube end is threaded in the axial direction of the screw. a light emitting system that scans by overscanning; a light receiving system that captures the reflected light from the screw; a positioning device that maintains a predetermined positional relationship between the light emitting system, the light receiving system, and the subject; a tube end detector that detects that the light that is being overscanned has come to the tube end when the light is blocked by the tube end; In a screw surface inspection device, an optical system having a directionality for focusing light is installed between the tube end and the tube end detector to detect the outer diameter of the screw and generate a synchronization signal to start the inspection area. A screw surface inspection device characterized by being provided so that directional overscan irradiation light can be focused.
JP63109618A 1988-05-02 1988-05-02 Screw surface inspection equipment Expired - Lifetime JPH0794977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63109618A JPH0794977B2 (en) 1988-05-02 1988-05-02 Screw surface inspection equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63109618A JPH0794977B2 (en) 1988-05-02 1988-05-02 Screw surface inspection equipment

Publications (2)

Publication Number Publication Date
JPH01280204A true JPH01280204A (en) 1989-11-10
JPH0794977B2 JPH0794977B2 (en) 1995-10-11

Family

ID=14514858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63109618A Expired - Lifetime JPH0794977B2 (en) 1988-05-02 1988-05-02 Screw surface inspection equipment

Country Status (1)

Country Link
JP (1) JPH0794977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324703A (en) * 2001-04-26 2002-11-08 Koa Corp Method of observing surface of electronic component and observing device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122207A (en) * 1984-07-11 1986-01-30 Sumitomo Metal Ind Ltd Surface inspection apparatus of thread

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6122207A (en) * 1984-07-11 1986-01-30 Sumitomo Metal Ind Ltd Surface inspection apparatus of thread

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324703A (en) * 2001-04-26 2002-11-08 Koa Corp Method of observing surface of electronic component and observing device

Also Published As

Publication number Publication date
JPH0794977B2 (en) 1995-10-11

Similar Documents

Publication Publication Date Title
US8975582B2 (en) Method and apparatus for reviewing defects
JP5355922B2 (en) Defect inspection equipment
US4095905A (en) Surface-defect detecting device
US7023954B2 (en) Optical alignment of X-ray microanalyzers
US20050105791A1 (en) Surface inspection method
US9568437B2 (en) Inspection device
JPS6352696B2 (en)
JP2000031245A (en) Wafer notch position detector
JPH01280204A (en) Surface inspecting device for screw
CA2282015C (en) Light-scanning device
JPS61288143A (en) Surface inspecting device
JP3432273B2 (en) Foreign matter inspection device and foreign matter inspection method
JP2839594B2 (en) Inspection device for bent end of object
JP2794576B2 (en) Pinhole detection device for cylindrical body
WO2003073085A1 (en) Surface foreign matters inspecting device
JPH04247Y2 (en)
JPH05188004A (en) Foreign matter detecting device
JPS57135343A (en) Surface defect inspecting device
JP5668113B2 (en) Defect inspection equipment
WO2015045890A1 (en) Magnetic disk inspection device and magnetic disk inspection method
JP2006090747A (en) Surface-flaw inspection device
JP2000074738A (en) Infrared ray detecting device
JPH04303751A (en) Detecting apparatus for defect of sample surface
JPH07134103A (en) Apparatus and method for surface inspection
JPH0519642B2 (en)