JPH0127997B2 - - Google Patents

Info

Publication number
JPH0127997B2
JPH0127997B2 JP4239280A JP4239280A JPH0127997B2 JP H0127997 B2 JPH0127997 B2 JP H0127997B2 JP 4239280 A JP4239280 A JP 4239280A JP 4239280 A JP4239280 A JP 4239280A JP H0127997 B2 JPH0127997 B2 JP H0127997B2
Authority
JP
Japan
Prior art keywords
alumina ceramic
melting point
powder
paste
high melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4239280A
Other languages
Japanese (ja)
Other versions
JPS56140085A (en
Inventor
Mamoru Kamyama
Takao Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP4239280A priority Critical patent/JPS56140085A/en
Priority to GB8109193A priority patent/GB2072707B/en
Priority to DE3111808A priority patent/DE3111808C2/en
Publication of JPS56140085A publication Critical patent/JPS56140085A/en
Priority to US06/473,213 priority patent/US4493789A/en
Priority to SG873/84A priority patent/SG87384G/en
Publication of JPH0127997B2 publication Critical patent/JPH0127997B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は焼結もしくは未焼結アルミナセラミツ
ク基板などを用いて高い電気電導性を有するメタ
ライズセラミツクの製造法に関する。 従来セラミツク配線板、パツケージなどに用い
られるアルミナセラミツク基板は表面あるいは内
部に導体層を形成するのに、例えば導体ペースト
を厚膜手法により印刷しこれを焼結する必要があ
つた。このような配線導体層を容易に形成する方
法としては焼結したアルミナセラミツク基板上に
ガラスフリツトなどを接合剤として混合したAg
−Pd系導体ペーストなどをスクリーン印刷し、
高温で熔融接合することにより導体配線層の形成
とアルミナセラミツク基板との接着をはかる乾式
厚膜配線板の製造法がある。 しかしながらこれらの乾式厚膜配線板はガラス
フリツトを用いて熔融接合するのでアルミナセラ
ミツク基板との接着力が劣る欠点を有するため、
高い接着強度を必要とする高密度配線板にこれを
用いると使用中に配線導体が剥離しやすく熱衝撃
特性に不満が生じ、また貴金属導体を用いるため
高価になりやすい欠点を有していた。 一方これらの欠点を改良した配線導体の形成法
が提案されている。すなわちMo−Mnメタライ
ズ法、Moメタライズ法、Wメタライズ法などが
それである。このうちMo−Mnメタライズ法は
電子管の金属封着や半導体製品に応用されている
が、焼結基板を用いるため配線導体層を形成する
には焼結を2回以上行なう必要があり工程が複雑
なため高価になりやすく、また寸法精度に劣り再
現性も低いため高密度配線板への適用は困難であ
つた。 これに対してMoメタライズ法及びWメタライ
ズ法は未焼結アルミナセラミツク基板上に厚膜手
法によりMoペースト、Wペーストなどの金属ペ
ーストをスクリーン印刷しアルミナセラミツク基
板と金属ペーストとを同時焼成する方法で、アル
ミナセラミツク基板と金属ペーストとが焼成中に
相互に拡散しやすいため焼結アルミナセラミツク
基板を用いて行なう方法には期待できない強固な
接着強度を得ることができる。しかし電気特性に
優れた高密度配線用として一般に用いられてい
る、例えばアルミナ純度が90%以上の高純度アル
ミナセラミツクに応用すると、アルミナセラミツ
ク中に金属ペーストと反応し拡散する酸化物が少
ないためアルミナセラミツクの焼結及び金属導体
との強固な接着力を得るためにはアルミナセラミ
ツクの焼結温度と金属ペーストとの焼結温度をマ
ツチングさせる必要がある。このため金属ペース
トには従来アルミナセラミツクの焼結温度にマツ
チングしやすい比較的粒径の粗い金属粉に結合剤
及び溶媒を混合してペースト化していた。しかる
にこれらのペーストを用いて製造した配線板の配
線導体層の電気抵抗はW粒径及び焼結温度に著し
く左右される。すなわち本発明者らの検討によれ
ば良好な接着強度を持つたアルミナセラミツク基
板上のW導体層の電気抵抗はW粒径が1μmのペー
ストを用いた場合、W金属の電気抵抗値
(0.0055mΩcm)に比べ著しく高く0.03mΩcmを示
し、3.8μmの場合には0.05mΩcmであり配線密度
の高い多層配線板やICパツケージ用として使用
する場合配線間隔を小さくしたり多層化の層数を
増す必要が生じるなど配線設計上複雑になりやす
い欠点を有していた。 このため、これの改善をはかるべく高い電気電
導性を得やすい粒径が0.5μm以下のW粉を用いて
ペースト化したWペーストを用いるとアルミナセ
ラミツクの焼結温度とのマツチングが得にくくな
るためメタライズ強度が著しく低下したり焼結後
にメタライズ層に亀裂を生じひいてはメタライズ
層の剥離を生じるなど配線導体層の形成が困難で
あつた。 本発明はこのような点に鑑みてなされたもの
で、Wメタライズ法のほかMoメタライズ法、
Mo−Mnメタライズ法などにも適用可能な高い
電気電導性を有し、接着強度が高いメタライズセ
ラミツクを製造する方法を提供することを目的と
するものである。 本発明は高融点金属粉100重量部、この高融点
金属粉の粒子間空隙に充填され、かつ高融点金属
粉の焼結を進めることなく高融点金属粉を収縮緻
密化する添加剤としてAl2O3とアルミナセラミツ
クの焼結助剤であるMgO,CaO及びSiO2の混合
物0.1〜3重量部、結合剤並びに溶媒を混合した
メタライズ用金属ペーストをアルミナセラミツク
の表面に塗布しかつ焼成して金属ペーストを焼付
けて金属化層を形成することを特徴とする高電気
電導性メタライズセラミツクの製造法に関する。 更に詳しくは本発明はW,Mo,−Mo−Mn,
Ptなどの高融点金属粉あるいはそれらの混合粉
と添加剤としてAl2O3とアルミナセラミツクの焼
結助剤であるMgO,CaO及びSiO2の混合物を結
合剤、溶媒とともに均一に分散したメタライズ用
金属ペーストをアルミナセラミツクの表面に塗布
し、さらに焼成して金属ペーストを焼付けて高い
電気電導性を持つた金属層を形成することを特徴
とするものである。 本発明において使用するアルミナセラミツクに
は未焼結アルミナセラミツク基板を用いることが
好ましく、大きな接着強度を必要としない場合ま
たは寸法精度が厳しくない場合には通常の焼結ア
ルミナセラミツク基板を用いてもよい。 また本発明において高融点金属粉としてはW,
Mo,Mo−Mn,Ptあるいはそれらの混合粉、結
合剤としてはエチルセルローズなどのエチルセル
ローズ誘導体樹脂、アクリル系樹脂、アルキツド
フエノール系樹脂、ビニル系樹脂、エポキシ樹脂
などが使用される。またペースト化に用いる溶媒
には、トルエン、キシレンなどの芳香族溶剤、酢
酸エチルなどのエステル系溶剤、メチルエチルケ
トンなどのケトン系溶剤、アルコール系溶剤など
あるいはそれらの混合溶剤が使用されるが結合剤
が溶解するものであれば他のものも使用し得る。
また金属ペーストの添加剤として用いるAl2O3
アルミナセラミツクの焼結助剤はMgO(MgCO3
も含む…焼成するとMgOとCO2に解離しMgOだ
けが残る)、CaO(CaCO3も含む…焼成すると
CaOとCO2に解離しCaOだけが残る)及びSiO2
混合体が用いられ、場合によつてはこれらの混合
体の焼結粉が利用される。また焼成雰囲気は弱還
元雰囲気が好ましいがPtのような耐酸化性金属
ペーストを用いる場合には酸化雰囲気でも良い。 更に本発明において添加剤は高融点金属粉100
重量部に対し0.1〜3重量部添加することが必要
であり、この範囲から外れると電気抵抗が増大
し、詳しくは電気電導性が低下し本発明の目的を
達成することができない。 以下実施例により説明する。 実施例 第1表に示す粒径を有するW粉100部(重量部、
以下同じ)に第2表に示す配合組成のAl2O3
MgO,CaCO3及びSiO2の混合粉からなる添加剤
を各々0,0.3,1,3,5部配合した混合粉に
エチルセルローズ6部とニトロセルローズ2部と
を混合し酢酸エチルとエチルアルコールとの等量
混合溶媒とともに擂潰機に投入し5時間混合して
均一混合後エチレングリコールモノブチルエーテ
ルで溶媒を置換してWペーストを得た。次にこの
Wペーストを純度96%で厚さが1.0mmの未焼結ア
ルミナセラミツク基板にスクリーン印刷により
30μmの厚さに印刷し、80℃で15分間乾燥後弱還
元雰囲気中で第1表に示す焼成温度で同時焼成し
てWメタライズセラミツク基板を得た。 次いでWメタライズセラミツク基板上のW導体
層の厚さと幅及び長さを測定後更に20℃における
電気抵抗を測定し体積固有抵抗を求め、これを第
1表に示した。 第1表に示したようにW導体層の電気抵抗は焼
成温度が高くなるにつれ低下する傾向にあり、ま
たW粒径が粗くなるにつれ増大する傾向にある。
一方W粉に焼結助剤を混合すると電気抵抗はいつ
たん低下して極小値を示し、その後添加量が増加
するに従い増大する。 従来電気電導性粒子に絶縁性粒子を混合すると
電気電導性は低下するものと考えられカーボンブ
ラツク、銀粉などをベースとした抵抗ペーストな
どとして実用化されており上記実施例にみられる
ようなAl2O3,MgO,CaCO3及びSiO2の混合粉
からなる絶縁性粒子の少量混合が電気電導性を増
大する現象は全く予期せざる現象である。このよ
うな電気抵抗の減少を生ずる原因については明確
ではないが本発明者らの考察によればAl2O3
MgO,CaCO3及びSiO2の混合粉からなる添加剤
がW粉の空隙に充填されアルミナセラミツクとの
同時焼成中に焼成収縮を生じW粉全体の収縮緻密
化を惹起しW粉の充填密度を向上させるためと考
えられる。 本発明はこのような現象の発見に基づいてなさ
れたものである。すなわちW導体層の電気電導性
は焼結温度が高くなるにつれ増大するため電導性
の高い配線導体層を得るためには焼結温度を著し
く高くする必要があるが、このことはアルミナセ
ラミツクが過焼結になりやすく機械的強度が低下
したり配線導体層の接着強度が低下し高品質のメ
タライズ製品が得られなかつた。これに対して本
発明においてはAl2O3,MgO,CaCO3及びSiO2
の混合粉からなる添加剤を高融点金属粉100重量
部に対し0.1〜3%重量部の範囲で混合した金属
ペーストを用いアルミナセラミツクにこれを塗布
後焼結して金属化することにより低温焼成でも接
着強度が高く、また充分電気電導性に優れたメタ
ライズセラミツクを得られるのでセラミツク配線
板の導体ラインの細線化が可能となり製品の配線
密度の向上や性能改善はもちろん経済性に優れ、
製造技術的にも極めて実用効果に優れたものであ
る。 なお本発明において電気電導性は電気抵抗の逆
数になる。詳しくは電気抵抗が0.023mΩcmの場
合、電気電導度は1/0.023×103mho/cmとなる。
The present invention relates to a method for producing metallized ceramic having high electrical conductivity using a sintered or unsintered alumina ceramic substrate. Conventionally, in order to form a conductive layer on the surface or inside of an alumina ceramic substrate used for ceramic wiring boards, packages, etc., it was necessary to print a conductive paste using a thick film method and then sinter it. One way to easily form such a wiring conductor layer is to use Ag mixed with glass frit as a bonding agent on a sintered alumina ceramic substrate.
−Screen printing Pd-based conductor paste, etc.
There is a method for manufacturing a dry thick film wiring board in which a conductive wiring layer is formed and bonded to an alumina ceramic substrate by melt bonding at high temperatures. However, since these dry thick film wiring boards are melt-bonded using glass frit, they have the disadvantage of poor adhesion to alumina ceramic substrates.
When used in high-density wiring boards that require high adhesive strength, the wiring conductors tend to peel off during use, resulting in dissatisfaction with thermal shock properties, and since noble metal conductors are used, they tend to be expensive. On the other hand, methods for forming wiring conductors have been proposed that improve these drawbacks. That is, Mo-Mn metallization method, Mo metallization method, W metallization method, etc. are examples. Among these, the Mo-Mn metallization method is applied to metal sealing of electron tubes and semiconductor products, but since it uses a sintered substrate, sintering must be performed two or more times to form a wiring conductor layer, making the process complicated. Therefore, it tends to be expensive, and it is difficult to apply it to high-density wiring boards because of poor dimensional accuracy and low reproducibility. On the other hand, the Mo metallization method and the W metallization method are methods in which a metal paste such as Mo paste or W paste is screen printed on an unsintered alumina ceramic substrate using a thick film method, and the alumina ceramic substrate and the metal paste are simultaneously fired. Since the alumina ceramic substrate and the metal paste tend to diffuse into each other during firing, it is possible to obtain a strong adhesive strength that cannot be expected from a method using a sintered alumina ceramic substrate. However, when applied to high-purity alumina ceramics, which are generally used for high-density wiring with excellent electrical properties and have an alumina purity of 90% or more, the alumina ceramic contains fewer oxides that react with the metal paste and diffuse. In order to sinter the ceramic and obtain strong adhesive strength with the metal conductor, it is necessary to match the sintering temperature of the alumina ceramic and the sintering temperature of the metal paste. For this reason, metal paste has conventionally been made by mixing metal powder with a relatively coarse particle size that easily matches the sintering temperature of alumina ceramic with a binder and a solvent. However, the electrical resistance of the wiring conductor layer of a wiring board manufactured using these pastes is significantly influenced by the W particle size and the sintering temperature. In other words, according to the study conducted by the present inventors, the electrical resistance of a W conductor layer on an alumina ceramic substrate with good adhesive strength is equal to the electrical resistance value of the W metal (0.0055 mΩcm) when a paste with a W particle size of 1 μm is used. ), which is significantly higher than 0.03 mΩcm, and 0.05 mΩcm in the case of 3.8 μm, so when used for multilayer wiring boards with high wiring density or IC packages, it is necessary to reduce the wiring spacing and increase the number of multilayers. This has the disadvantage that the wiring design tends to be complicated. Therefore, in order to improve this, if we use W paste made from W powder with a particle size of 0.5 μm or less, which is easy to obtain high electrical conductivity, it will be difficult to match the sintering temperature of alumina ceramic. It has been difficult to form a wiring conductor layer, as the metallized strength is significantly reduced and the metallized layer cracks after sintering, resulting in peeling of the metallized layer. The present invention was made in view of these points, and in addition to the W metallization method, the Mo metallization method,
The object of the present invention is to provide a method for producing metallized ceramics that have high electrical conductivity and high adhesive strength and can be applied to Mo-Mn metallization methods. The present invention includes 100 parts by weight of high melting point metal powder, and Al 2 as an additive that fills the interparticle voids of this high melting point metal powder and shrinks and densifies the high melting point metal powder without proceeding with sintering of the high melting point metal powder . A metallizing paste made by mixing O 3 with 0.1 to 3 parts by weight of a mixture of MgO, CaO and SiO 2 which are sintering aids for alumina ceramic, a binder and a solvent is applied to the surface of the alumina ceramic and fired to form a metallizing paste. The present invention relates to a method for producing highly electrically conductive metallized ceramic, which is characterized by forming a metallized layer by baking a paste. More specifically, the present invention relates to W, Mo, -Mo-Mn,
For metallization, a mixture of high melting point metal powder such as Pt or a mixed powder thereof, Al 2 O 3 as an additive, and MgO, CaO and SiO 2 as sintering aids for alumina ceramic is uniformly dispersed together with a binder and a solvent. This method is characterized by applying a metal paste to the surface of the alumina ceramic and then firing the metal paste to form a metal layer with high electrical conductivity. It is preferable to use an unsintered alumina ceramic substrate for the alumina ceramic used in the present invention, but if high adhesive strength is not required or dimensional accuracy is not critical, a normal sintered alumina ceramic substrate may be used. . In addition, in the present invention, the high melting point metal powder is W,
Mo, Mo-Mn, Pt, or a mixed powder thereof, and as a binder, ethyl cellulose derivative resin such as ethyl cellulose, acrylic resin, alkydophenol resin, vinyl resin, epoxy resin, etc. are used. In addition, the solvents used for pasting include aromatic solvents such as toluene and xylene, ester solvents such as ethyl acetate, ketone solvents such as methyl ethyl ketone, alcohol solvents, and mixtures thereof, but the binder is Other materials may also be used as long as they are soluble.
In addition, Al 2 O 3 used as an additive for metal paste and sintering aid for alumina ceramic are MgO (MgCO 3
(Contains... When fired, it dissociates into MgO and CO 2 , leaving only MgO), CaO (Also includes CaCO 3 ... When fired,
A mixture of CaO and SiO 2 (dissociated into CaO and CO 2, leaving only CaO remaining) and SiO 2 is used, and in some cases, a sintered powder of these mixtures is used. Further, the firing atmosphere is preferably a weakly reducing atmosphere, but an oxidizing atmosphere may be used when an oxidation-resistant metal paste such as Pt is used. Furthermore, in the present invention, the additive is high melting point metal powder 100
It is necessary to add 0.1 to 3 parts by weight per part by weight; if it is out of this range, the electrical resistance will increase, and more specifically, the electrical conductivity will decrease, making it impossible to achieve the object of the present invention. This will be explained below using examples. Example 100 parts of W powder (parts by weight,
(the same applies hereinafter), Al 2 O 3 with the composition shown in Table 2,
6 parts of ethyl cellulose and 2 parts of nitrocellulose were mixed with a mixed powder containing 0, 0.3, 1, 3 , and 5 parts of additives consisting of a mixed powder of MgO, CaCO 3, and SiO 2, and mixed with ethyl acetate and ethyl alcohol. The mixture was put into a crusher with an equal amount of a mixed solvent and mixed for 5 hours. After uniform mixing, the solvent was replaced with ethylene glycol monobutyl ether to obtain a W paste. Next, this W paste was screen printed on an unsintered alumina ceramic substrate with a purity of 96% and a thickness of 1.0 mm.
It was printed to a thickness of 30 μm, dried at 80° C. for 15 minutes, and then simultaneously fired at the firing temperature shown in Table 1 in a slightly reducing atmosphere to obtain a W metallized ceramic substrate. Next, after measuring the thickness, width and length of the W conductor layer on the W metallized ceramic substrate, the electrical resistance at 20°C was further measured to determine the volume resistivity, which is shown in Table 1. As shown in Table 1, the electrical resistance of the W conductor layer tends to decrease as the firing temperature increases, and also tends to increase as the W grain size becomes coarser.
On the other hand, when a sintering aid is mixed with W powder, the electrical resistance suddenly decreases to a minimum value, and then increases as the amount added increases. Conventionally, it is believed that mixing insulating particles with electrically conductive particles reduces electrical conductivity, and has been put into practical use as resistance pastes based on carbon black, silver powder, etc., and Al 2 as seen in the above example. It is completely unexpected that a small amount of insulating particles made of a mixed powder of O 3 , MgO, CaCO 3 and SiO 2 increases electrical conductivity. The cause of such a decrease in electrical resistance is not clear, but according to the inventors' considerations, Al 2 O 3 ,
An additive consisting of a mixed powder of MgO, CaCO 3 and SiO 2 is filled into the voids of the W powder, causing firing shrinkage during co-firing with alumina ceramic, causing shrinkage and densification of the entire W powder, and increasing the packing density of the W powder. It is thought that this is to improve the performance. The present invention was made based on the discovery of such a phenomenon. In other words, the electrical conductivity of the W conductor layer increases as the sintering temperature increases, so in order to obtain a wiring conductor layer with high conductivity, it is necessary to raise the sintering temperature significantly. High quality metallized products could not be obtained because of the tendency to sinter, resulting in lower mechanical strength and lower bonding strength of the wiring conductor layer. On the other hand, in the present invention, Al 2 O 3 , MgO, CaCO 3 and SiO 2
A metal paste containing an additive consisting of a mixed powder in the range of 0.1 to 3% by weight per 100 parts by weight of high-melting point metal powder is applied to alumina ceramic, and then sintered to metallize it, resulting in low-temperature firing. However, since it is possible to obtain metallized ceramic with high adhesive strength and sufficient electrical conductivity, it is possible to make the conductor lines of ceramic wiring boards thinner, which not only increases the wiring density and performance of the product, but also has excellent economic efficiency.
It has excellent practical effects in terms of manufacturing technology. In the present invention, electrical conductivity is the reciprocal of electrical resistance. Specifically, when the electrical resistance is 0.023 mΩcm, the electrical conductivity is 1/0.023×10 3 mho/cm.

【表】【table】

【表】 だけが残る。
Only the [table] remains.

Claims (1)

【特許請求の範囲】[Claims] 1 高融点金属粉100重量部、この高融点金属粉
の粒子間空隙に充填され、かつ高融点金属粉の焼
結を進めることなく高融点金属粉を収縮緻密化す
る添加剤としてAl2O3とアルミナセラミツクの焼
結助剤であるMgO,CaO及びSiO2の混合物0.1〜
3重量部、結合剤並びに溶媒を混合したメタライ
ズ用金属ペーストをアルミナセラミツクの表面に
塗布し、さらに焼結して金属ペーストを焼付けて
金属化層を形成することを特徴とする高電気電導
性メタライズセラミツクの製造法。
1 100 parts by weight of high melting point metal powder, Al 2 O 3 as an additive that fills the interparticle voids of this high melting point metal powder and shrinks and densifies the high melting point metal powder without proceeding with sintering of the high melting point metal powder. and a mixture of MgO, CaO and SiO2 , which are sintering aids for alumina ceramics, from 0.1 to
Highly electrically conductive metallization characterized by applying a metallizing metal paste containing 3 parts by weight, a binder, and a solvent to the surface of alumina ceramic, and then sintering the metal paste to form a metallized layer. Ceramic manufacturing method.
JP4239280A 1980-03-31 1980-03-31 Manufacture of highly electroconductive metallized ceramics Granted JPS56140085A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP4239280A JPS56140085A (en) 1980-03-31 1980-03-31 Manufacture of highly electroconductive metallized ceramics
GB8109193A GB2072707B (en) 1980-03-31 1981-03-24 Electroconductive paste and process for producing electroconductive metallized ceramics using the same
DE3111808A DE3111808C2 (en) 1980-03-31 1981-03-25 Electrically conductive paste, its manufacturing process and its use
US06/473,213 US4493789A (en) 1980-03-31 1983-03-08 Electroconductive paste and process for producing electroconductive metallized ceramics using the same
SG873/84A SG87384G (en) 1980-03-31 1984-12-05 Electroconductive paste and process for producing electroconductive metallized ceramics using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4239280A JPS56140085A (en) 1980-03-31 1980-03-31 Manufacture of highly electroconductive metallized ceramics

Publications (2)

Publication Number Publication Date
JPS56140085A JPS56140085A (en) 1981-11-02
JPH0127997B2 true JPH0127997B2 (en) 1989-05-31

Family

ID=12634788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4239280A Granted JPS56140085A (en) 1980-03-31 1980-03-31 Manufacture of highly electroconductive metallized ceramics

Country Status (1)

Country Link
JP (1) JPS56140085A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0738491B2 (en) * 1986-07-23 1995-04-26 株式会社東芝 Method of manufacturing circuit board and circuit board

Also Published As

Publication number Publication date
JPS56140085A (en) 1981-11-02

Similar Documents

Publication Publication Date Title
US4493789A (en) Electroconductive paste and process for producing electroconductive metallized ceramics using the same
US4109377A (en) Method for preparing a multilayer ceramic
US4072771A (en) Copper thick film conductor
JP3226280B2 (en) Method for manufacturing multilayer circuit board
US3423517A (en) Monolithic ceramic electrical interconnecting structure
KR100462289B1 (en) Conductive paste, Ceramic multilayer substrate, and Method for manufacturing ceramic multilayer substrate
US20020005507A1 (en) Conductive paste and printed wiring board using the same
JP3237497B2 (en) Conductive paste, conductor and ceramic substrate using the same
US4316920A (en) Thick film resistor circuits
KR940002032B1 (en) Method for preparing green sheets
JPH08274433A (en) Silver based conductive paste, and multilayer ceramic circuit board using the paste
US5723073A (en) Conductive paste containing 2-tetradecanol and ceramic circuit substrate using the same
JPH0127997B2 (en)
JPS5840282B2 (en) Manufacturing method of conductive paste
JPH10233119A (en) Copper conductor paste and substrate printed therewith
JP2000315421A (en) Copper conductive paste
JPH087646A (en) Copper paste
JPH0349108A (en) Copper conductor composition material
JP2892163B2 (en) Low temperature firing glass ceramic body
JPS6025294A (en) Method of producing circuit board
JP2002231049A (en) Conductive paste
JPH0831229A (en) Copper paste
JPH02105594A (en) Conductor paste and multilayer ceramic board
JPH1083717A (en) Conductive composition
JP4497627B2 (en) Glass ceramic sintered body, method for producing the same, wiring board, and mounting structure thereof