JPH01279549A - Misconvergence measuring device - Google Patents

Misconvergence measuring device

Info

Publication number
JPH01279549A
JPH01279549A JP63108984A JP10898488A JPH01279549A JP H01279549 A JPH01279549 A JP H01279549A JP 63108984 A JP63108984 A JP 63108984A JP 10898488 A JP10898488 A JP 10898488A JP H01279549 A JPH01279549 A JP H01279549A
Authority
JP
Japan
Prior art keywords
electron beam
ray tube
photoelectric conversion
light
conversion element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63108984A
Other languages
Japanese (ja)
Inventor
Takumi Karasawa
唐沢 工
Norio Tsukii
月井 教男
Takashi Atobe
跡辺 隆
Takaaki Ishikawa
孝明 石川
Kazuhiko Mizuno
一彦 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP63108984A priority Critical patent/JPH01279549A/en
Priority to KR1019890005967A priority patent/KR920009850B1/en
Priority to US07/347,216 priority patent/US4988857A/en
Priority to CN89104290A priority patent/CN1040888A/en
Publication of JPH01279549A publication Critical patent/JPH01279549A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily sense the accurate position of an electron beam with simple constitution by controlling movement of electron beam to a certain position using a light deflecting power supply, and sensing the light emission position with max. light reception output form a one-dimensional photoelectric transducer element in vertical orientation. CONSTITUTION:The deflection coil voltage of a color cathode-ray tube 1 is controlled by a light deflecting power supply 4, and an electron beam in the cathode-ray tube 1 moves horizontally a certain unit by unit. The image light from cathode-ray tube 1 generated thereby is received by a cylindrical lens and a one-dimensional photoelectrical transducer element 6 in vertical orientation, and the horizontal misconvergence of each color is determined from the electron beam locational difference where the light reception output maximizes. Through the element 6 the vertical misconvergence is alike decided by movement of electron beam in the vertical direction, and the position of the electron beam is measured precisely by a simple constitution to accomplish determination of misconvergence.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーブラウン管の製造あるいはカラーブラ
ウン管を用いたカラー表示装置の製造(こおいて、コン
バーゼンス調整の自動化を図る(こ好適なコンバーゼン
スずれ測定装置(こ関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to the manufacture of color cathode ray tubes or the manufacture of color display devices using color cathode ray tubes (in this case, automation of convergence adjustment (this preferred method for adjusting convergence Measuring equipment (related to this)

〔従来の技術〕[Conventional technology]

カラーブラウン管の製造工程あるいはカラーブラウン管
を用いたカラー表示装置の製造工程(こおいては、本来
の色沢を再現するために、表示面全域について3原色用
のそれぞれの電子ビームが一点に集中するように調整し
ている。この調整を通常コンバーゼンス調整と呼んでい
る。
The manufacturing process of color cathode ray tubes or the manufacturing process of color display devices using color cathode ray tubes (in this process, the electron beams for each of the three primary colors are concentrated at one point over the entire display surface in order to reproduce the original color). This adjustment is usually called convergence adjustment.

従来、コンバーゼンス調整作業の自動化については、例
えば[カラーブラウン管ピユリティ・コンバーゼンス自
動調整装置の開発」(電子通信学会技術報告IE77−
72.1978月こおいて論じられている。しかし、こ
の装置は大規模で非常に高価である。
Conventionally, regarding the automation of convergence adjustment work, for example, [Development of automatic color cathode ray tube purity/convergence adjustment device] (IEICE Technical Report IE77-
72. Discussed in August 1978. However, this equipment is large-scale and very expensive.

ところで、カラーブラウン管の発光面は大きいにもかか
わらず微小な色ずれ(ミスコンバーゼンス)を測定する
ものであり、前記した従来の技術では大規模な装置とな
るので、現在でもなお、人間iこよる目視でコンバーゼ
ンスずれを測定しているのが実情である。
By the way, even though the light-emitting surface of a color cathode ray tube is large, it is used to measure minute color shifts (misconvergence), and the conventional technology described above requires a large-scale device, so even today, it is still difficult for humans to measure color misconvergence. The reality is that the convergence shift is measured visually.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、自動化壷こ対して高価な大規模な装置
を必要とすると共に、広い設置スペースを必要とする。
The above-mentioned prior art requires expensive large-scale equipment and requires a large installation space compared to automated pots.

また人手で(ズ熟練作業者を必要とするばかりでなく、
疲労が大きいなどの労働条件の問題があった。
In addition, it is not only necessary to use skilled workers manually, but also to
There were problems with working conditions such as high fatigue.

不発明の目的は、安価な装置で測定の自動化が図れるコ
ンバーゼンスずれ測定装置を提供することにある。
An object of the present invention is to provide a convergence shift measuring device that can automate measurement using an inexpensive device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、偏向ヨークが装着されたカラーブラウン管
の発光面の前面擾こ垂直方向(こ配置された分割受光構
造の一次元光電変換素子と、カラーブラウン管の電子ビ
ームを一定単位づつ移動させる出力波形を前記偏向ヨー
ク(こ出力する偏向電源と、前記光電変換素子の出刃が
最大となる発光位filiを検出すると共に、前記偏向
電源を制御する処理装置とを備えた構成壷こより達成さ
れる。
The above purpose is to create an output waveform that moves the front surface of the light emitting surface of the color cathode ray tube (on which the deflection yoke is attached) in a vertical direction (a one-dimensional photoelectric conversion element with a divided light receiving structure arranged in this way) and the electron beam of the color cathode ray tube in fixed units. This is achieved by a configuration including a deflection power source that outputs the deflection yoke, and a processing device that detects the light emission level fili at which the edge of the photoelectric conversion element is maximized and controls the deflection power source.

〔作用〕[Effect]

垂直方向に置いた一次元光電変換素子は、カラーブラウ
ン管の発光ドツトの水平方向像を得るよう(こなるので
、光′邂変換素子の出力は受光面と発光面とが平行にな
る位置に電子ビームが達したときに最大となる。つまり
、各色の電子ビームが一点(こ集中、いわゆるコンバー
ゼンスが合っていれば、はぼ同一位置で光電変換出力は
最大となるが、ミスコンバーゼンスであると、ずれ量i
こ応して異なる位置に電子ビームが達したときに最大と
なる。
The one-dimensional photoelectric conversion element placed in the vertical direction obtains a horizontal image of the light-emitting dots of the color cathode ray tube. The maximum is reached when the beams reach each other.In other words, if the electron beams of each color are concentrated at one point (so-called convergence), the photoelectric conversion output will be maximum at almost the same position, but if there is misconvergence, Displacement amount i
Accordingly, it becomes maximum when the electron beam reaches different positions.

そこで、電子ビームを一定単位で移動させることで、電
子ビームの位置を正確かつ安易(こ求めることができ、
これによってコンバーゼンスずれが測定できる。
Therefore, by moving the electron beam in fixed units, the position of the electron beam can be determined accurately and easily.
This allows the convergence shift to be measured.

〔実施例〕〔Example〕

以下、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図に示すように、カラーブラウン管1には駆動電源
2により所定の電圧が印加される。偏向ヨーク3には電
子ビームを一定単位づつ移動させることができる偏向電
源4が接続されている。またカラーブラウン管1の発光
面の前面に(ま円筒状レンズ5が垂直方向に配置されて
いる。円筒状レンズ5の後方には、第2図に示すように
、CCD素子のような分割した受光セル61〜6nより
なる分割受光構造の一次元光電変換素子6が同様に垂直
方向ζこ配置されている。この光を変換素子6の光電変
換出力(ま処理装置用こより信号処理される。
As shown in FIG. 1, a predetermined voltage is applied to the color cathode ray tube 1 by a driving power source 2. As shown in FIG. A deflection power source 4 is connected to the deflection yoke 3 and is capable of moving the electron beam in fixed units. In addition, a cylindrical lens 5 is arranged vertically in front of the light emitting surface of the color cathode ray tube 1. Behind the cylindrical lens 5, as shown in FIG. A one-dimensional photoelectric conversion element 6 having a divided light-receiving structure consisting of cells 61 to 6n is similarly arranged in the vertical direction ζ.This light is subjected to photoelectric conversion output (or signal processing by a processing device) of the conversion element 6.

また処理装置7からは駆動#L源2及び偏向電源4を制
御する制御信号7a17bが出力される。
Further, the processing device 7 outputs a control signal 7a17b for controlling the drive #L source 2 and the deflection power source 4.

次に測定方法について説明する。処理装置7からの制御
信号78によって駆動電源2を制御し、赤、緑、青の3
色のうちの1色を発光させておく。
Next, the measurement method will be explained. The drive power supply 2 is controlled by the control signal 78 from the processing device 7, and the three
Let one of the colors emit light.

そして、処理装置7の制御信号7bによって偏向電源4
を制御し、偏向電源4の出力波形を第3図に示すよう(
こ、垂直偏向電流8の1膜中に水平偏向電流9を数万段
階程度となるように制御すると、発光点10は第4図に
示すように真横に順次移動していく。水平方向の移動が
終了した時点で発光点10は1段下方に移り、同様の動
作を繰返す。
Then, the deflection power source 4 is controlled by the control signal 7b of the processing device 7.
is controlled, and the output waveform of the deflection power source 4 is as shown in Fig. 3 (
When the horizontal deflection current 9 is controlled to have tens of thousands of steps in one film of the vertical deflection current 8, the light emitting point 10 sequentially moves right sideways as shown in FIG. When the horizontal movement is completed, the light emitting point 10 moves one step downward, and the same operation is repeated.

この動作を第5図Iこよって見ると、垂直位置viにお
けろ水平方向の位置による光電変換素子6の光電変換出
力11は第6図に示す形となる。そこで、Cの光電変換
出力11を3原色曇こついて求め、それぞれ最大となっ
た時の水平偏向位置の差の)ら横方向のミスコンバーゼ
ンス−it+求めるこさができる。
When this operation is viewed from FIG. 5I, the photoelectric conversion output 11 of the photoelectric conversion element 6 depending on the horizontal position at the vertical position vi takes the form shown in FIG. Therefore, the photoelectric conversion output 11 of C can be obtained for the three primary colors, and the lateral misconvergence -it+ can be calculated from the difference in the horizontal deflection position when each becomes maximum.

次+こ垂直方向のミスコンバーゼンス11111 定に
ついて説明する。今、第7図に示すよう(こ谷垂直位置
の発光点10を考えると、発光点10血に対向する光電
変換素子6の受光セル61〜6nの受光面は光電変換出
力が最大となる。この受光面から上下に偏位するにつれ
て光電変換素子6(こ入射する出力はCO8θで表わさ
れ、減少する。この光電変換素子6の光電変換出力が最
大となる発光位置は光電変換素子6の受光面の受光セル
61〜6nの位置から安易すこ求められるので、以下、
前記した水平方向のコンバーゼンスずれと同様に求める
ことができる。
Next, misconvergence in the vertical direction will be explained. Now, as shown in FIG. 7, considering the light emitting point 10 in a vertical position, the light receiving surface of the light receiving cells 61 to 6n of the photoelectric conversion element 6 facing the light emitting point 10 has the maximum photoelectric conversion output. The output power incident on the photoelectric conversion element 6 (expressed as CO8θ) decreases as the photoelectric conversion element 6 is displaced vertically from the light-receiving surface. The distance can be easily determined from the positions of the light receiving cells 61 to 6n on the light receiving surface, so below,
It can be determined in the same manner as the horizontal convergence shift described above.

このように、元を変換素子6の出力が最大となる点の受
光セル61〜6nの位置及び階段波形の段差からコンバ
ーゼンスずれが求められるので、必要なコンバーゼンス
ずれ読み取り分解能まで階段波形のステップを小さく、
あるいは光電変換素子6の分割セル61〜6nの大きさ
を小さくするだけで正確なコンバーゼンスずれを求める
ことができる。才だ以上説明したような簡単な構成より
なるので、安価な装置が得られる。
In this way, the convergence shift can be found from the position of the light receiving cells 61 to 6n at the point where the output of the original conversion element 6 is maximum and the step difference in the staircase waveform, so the step of the staircase waveform can be reduced to the required convergence shift reading resolution. ,
Alternatively, an accurate convergence shift can be obtained by simply reducing the size of the divided cells 61 to 6n of the photoelectric conversion element 6. Since it has a simple configuration as explained above, an inexpensive device can be obtained.

なお、本実施例に示すようIこ、円筒状レンズ5を設け
ると、水平方向を集光し、水平方向のある範囲をカバー
し、より測定精度が向上する。
It should be noted that if the cylindrical lens 5 is provided as shown in this embodiment, the light will be focused in the horizontal direction, covering a certain range in the horizontal direction, and the measurement accuracy will be further improved.

〔発明の効果〕〔Effect of the invention〕

不発明によれば、安価な装置でコンバーゼンスずれを正
確に自動的に求めることができる。
According to the invention, the convergence shift can be accurately and automatically determined using an inexpensive device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す概略構成図、第2図は
光を変換素子の正面図、第3図は偏向電源の出力波形を
示し、1a)lま垂直偏向波形図、(h)は水平偏向波
形図、第4図は発光点の移動説明図、第5図はカラーブ
ラウン管と光電変換素子の関係を示す正面図、第6図は
光電変換素子の出力図、第7図は発光点と光電変換素子
の関係を示す縦断面説明図である。 1・・・カラーブラウン管、   3・・・偏向ヨーク
、4・・・偏向電源、       5・・・円筒状レ
ンズ、6・・・−次元光電変換素子、 7・・・処理装
置。 第1図 6:−夜元九電嚢4葵東キ 7:処理へ1 第4図 第5図     第6図 第7図
Fig. 1 is a schematic configuration diagram showing an embodiment of the present invention, Fig. 2 is a front view of a light converting element, and Fig. 3 shows an output waveform of a deflection power source. h) is a horizontal deflection waveform diagram, Figure 4 is an explanatory diagram of movement of the light emitting point, Figure 5 is a front view showing the relationship between the color cathode ray tube and the photoelectric conversion element, Figure 6 is an output diagram of the photoelectric conversion element, and Figure 7. FIG. 2 is a vertical cross-sectional explanatory diagram showing the relationship between a light emitting point and a photoelectric conversion element. DESCRIPTION OF SYMBOLS 1... Color cathode ray tube, 3... Deflection yoke, 4... Deflection power supply, 5... Cylindrical lens, 6... -dimensional photoelectric conversion element, 7... Processing device. Figure 1 6: - Yamoto Kyuden Bag 4 Aoi Toki 7: Go to processing 1 Figure 4 Figure 5 Figure 6 Figure 7

Claims (1)

【特許請求の範囲】 1、偏向ヨークが装着されたカラーブラウン管の発光面
の前面に垂直方向に配置された分割受光構造の一次元光
電変換素子と、カラーブラウン管の電子ビームを一定単
位づつ移動させる出力波形を前記偏向ヨークに出力する
偏向電源と、前記光電変換素子の出力が最大となる発光
位置を検出すると共に、前記偏向電源を制御する処理装
置とを備えたコンバーゼンスずれ測定装置。 2、偏向ヨークが装着されたカラーブラウン管の発光面
の前面に垂直方向に配置された分割受光構造の一次元光
電変換素子と、この光電変換素子に対応してカラーブラ
ウン管と光電変換素子間に配置された円筒状レンズと、
カラーブラウン管の電子ビームを一定単位づつ移動させ
る出力波形を前記偏向ヨークに出力する偏向電源と、前
記光電変換素子の出力が最大となる発光位置を検出する
と共に、前記偏向電源を制御する処理装置とを備えたコ
ンバーゼンスずれ測定装置。
[Claims] 1. A one-dimensional photoelectric conversion element with a divided light receiving structure arranged vertically in front of the light emitting surface of a color cathode ray tube to which a deflection yoke is attached, and the electron beam of the color cathode ray tube are moved in fixed units. A convergence shift measuring device comprising: a deflection power source that outputs an output waveform to the deflection yoke; and a processing device that detects a light emission position where the output of the photoelectric conversion element is maximum and controls the deflection power source. 2. A one-dimensional photoelectric conversion element with a divided light-receiving structure arranged vertically in front of the light emitting surface of the color cathode ray tube equipped with a deflection yoke, and a corresponding one-dimensional photoelectric conversion element placed between the color cathode ray tube and the photoelectric conversion element. a cylindrical lens,
a deflection power source that outputs an output waveform for moving an electron beam of a color cathode ray tube in fixed units to the deflection yoke; a processing device that detects a light emission position at which the output of the photoelectric conversion element is maximum and controls the deflection power source; Convergence shift measuring device equipped with
JP63108984A 1988-05-06 1988-05-06 Misconvergence measuring device Pending JPH01279549A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP63108984A JPH01279549A (en) 1988-05-06 1988-05-06 Misconvergence measuring device
KR1019890005967A KR920009850B1 (en) 1988-05-06 1989-05-03 Measuring device
US07/347,216 US4988857A (en) 1988-05-06 1989-05-04 Misconvergence measuring apparatus
CN89104290A CN1040888A (en) 1988-05-06 1989-05-06 Apparatus for detecting convergence deflection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108984A JPH01279549A (en) 1988-05-06 1988-05-06 Misconvergence measuring device

Publications (1)

Publication Number Publication Date
JPH01279549A true JPH01279549A (en) 1989-11-09

Family

ID=14498637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108984A Pending JPH01279549A (en) 1988-05-06 1988-05-06 Misconvergence measuring device

Country Status (1)

Country Link
JP (1) JPH01279549A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599882A (en) * 1979-01-23 1980-07-30 Toshiba Corp Automatic adjustment method of dynamic convergence and its unit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5599882A (en) * 1979-01-23 1980-07-30 Toshiba Corp Automatic adjustment method of dynamic convergence and its unit

Similar Documents

Publication Publication Date Title
KR20000022184A (en) Test and alignmen for electronic display devices fixture for same
JPH0339374B2 (en)
CA1155908A (en) Alignment or correction of energy beam type displays
JPH01279549A (en) Misconvergence measuring device
JPS5824186A (en) Electronic beam deflection controller
US4988857A (en) Misconvergence measuring apparatus
JP2839190B2 (en) Convergence deviation measuring device
JP2839189B2 (en) Horizontal convergence deviation measuring device
JP2947803B2 (en) Manufacturing method of color CRT
JP2845895B2 (en) Convergence measurement method for color CRT
KR0129959B1 (en) Color picture tube of mis-convergence control equipment
JPS6133312B2 (en)
JPH0855580A (en) Method and equipment for convergence measurement of color cathode-ray tube
JPH01200538A (en) Measuring equipment of convergence aberration
KR920005023B1 (en) Measuring equipment of convergence aberration
KR200176399Y1 (en) An electron gun grid gap measuring device
US6274990B1 (en) Device and method for correcting landing position in color cathode ray tube
JP3269318B2 (en) Automatic geomagnetic compensator
JPH02213022A (en) Convergence measuring instrument
SU960998A1 (en) Method of measuring the response of crt to deflection
JPS61101190A (en) Detecting method of center position of electron beam raster on color cathode ray tube display screen
KR100261477B1 (en) Apparatus for measuring convergence using an optical sensor
JPS62252037A (en) Magnetizing device of magnetic material for landing correction
JPH10243410A (en) Convergence correction method
JPH03174892A (en) Measuring equipment for deviation in convergence