JPH02213022A - Convergence measuring instrument - Google Patents

Convergence measuring instrument

Info

Publication number
JPH02213022A
JPH02213022A JP3103989A JP3103989A JPH02213022A JP H02213022 A JPH02213022 A JP H02213022A JP 3103989 A JP3103989 A JP 3103989A JP 3103989 A JP3103989 A JP 3103989A JP H02213022 A JPH02213022 A JP H02213022A
Authority
JP
Japan
Prior art keywords
output
power source
photoelectric conversion
color
convergence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3103989A
Other languages
Japanese (ja)
Inventor
Takaaki Ishikawa
孝明 石川
Takumi Karasawa
唐沢 工
Eiichi Nishiyama
栄一 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3103989A priority Critical patent/JPH02213022A/en
Publication of JPH02213022A publication Critical patent/JPH02213022A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To automate measurement using a low-cost instrument by detecting a position of emission where the output of a photoelectric transfer device becomes maximum, and by providing a processor by which a deflecting power source is controlled. CONSTITUTION:A driving source 2 is controlled by a processor 7 through a control signal 7a, and one color, for example, red among three colors of red, green, blue is emitted. A deflecting power source 4 is controlled by a control signal 7b from the processor 7, so as to control an output wave form of the deflecting power source 4. The photoelectric transfer output of a photoelectric transfer device 6 is taken in the processor 7, and the position of emission where the photoelectric transfer output becomes maximum, or a position of the center of gravity for red IR is determined. The same operation is performed for the other two colors in order to determine the position of emission where photoelectric transfer output becomes maximum, or a position of the center of gravity for green or blue, IG or IB. The difference in the deflecting current obtained during the process is the difference in convergence for each color.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、カラーブラウン管の製造あるいはカラーブラ
ウン管を用いたカラー表示装置の製造において、コンバ
ーゼンス調整の自動化を図るに好適なコンバーゼンスず
れ測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a convergence shift measuring device suitable for automating convergence adjustment in the manufacture of color cathode ray tubes or color display devices using color cathode ray tubes.

〔従来の技術〕[Conventional technology]

カラーブラウン管の製造工程あるいはカラーブラウン管
を用いたカラー表示装置の製造工程においては、本来の
色彩を再現するために、表示面全域について3原色のそ
れぞれの電子ビームが一点に集中するようにy4整して
いる。この調整を通常コンバーゼンス調整と呼んでいる
In the manufacturing process of color cathode ray tubes or color display devices using color cathode ray tubes, in order to reproduce the original colors, the electron beams of each of the three primary colors are arranged in a y4 manner so that the electron beams of each of the three primary colors are concentrated at one point over the entire display surface. ing. This adjustment is usually called convergence adjustment.

従来、コンバーゼンス調整作業の自動化については1例
えば[カラーブラウン管ビユリティ・コンバーゼンス自
動調整装置の開発J(を子通信学会技術報告1E77−
72,1978)  において論じられている。しかし
、この装置は大規模で非常に高価である。
Conventionally, regarding the automation of convergence adjustment work, for example, 1.
72, 1978). However, this equipment is large-scale and very expensive.

ところで、カラーブラウン管の発光面は大きいにもかか
わらず微小な色ずれ(ミスコンバーゼンス)を測定する
ものであり、前記した従来の技術では大規模な装置とな
るので、現在でもなお、人間による目視でコンバーゼン
スずれを測定しているのが実情である。
By the way, even though the light emitting surface of a color cathode ray tube is large, it is used to measure minute color shifts (misconvergence), and the conventional technology described above requires a large-scale device, so even now it is difficult to measure color misconvergence by human visual inspection. The reality is that the convergence shift is being measured.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術は、自動化に対して高価な大規模な装置を
必要とすると共に、広い設置スペースを必要とする。ま
た人手では熟練作業者を必要とするばかりでなく、疲労
が大きいなどの労働条件の間頃があった。
The above-mentioned conventional techniques require expensive large-scale equipment for automation and require a large installation space. In addition, manual work not only required skilled workers, but also had poor working conditions, such as high fatigue.

本発明の目的は、安価な装置で測定の自動化が図れるコ
ンバーゼンス測定装置を提供することにある。
An object of the present invention is to provide a convergence measurement device that can automate measurement with an inexpensive device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、偏向ヨークが装着されたカラーブラウン管
の発光面の前面に配置された拡大用レンズと、この拡大
用レンズの後方に配置され、該拡大レンズで拡大された
カラーブラウン管の螢光体ドツトのうち3色1組以上の
ドツトを囲う大きさニー・の受光部を有する光電変換素
子と、電子ビームを一定単位づつ移動させる出力波形を
前記偏向ヨークに出力する偏向電源と、前記光電変換素
子の出力が最大となる発光位置を検出すると共に、前記
偏向電源を制御する処理装置とを備えた構成ζこより達
成される。
The above purpose consists of a magnifying lens placed in front of the light emitting surface of a color cathode ray tube to which a deflection yoke is attached, and a phosphor dot of the color cathode ray tube magnified by the magnifying lens placed behind this magnifying lens. a photoelectric conversion element having a light-receiving portion having a knee size that surrounds one or more sets of dots of three colors; a deflection power source that outputs an output waveform to the deflection yoke to move the electron beam in fixed units; and the photoelectric conversion element. This is achieved by the configuration ζ, which includes a processing device that detects the light emitting position where the output of the beam is maximum and controls the deflection power source.

また上記光電変換素子に代えて各色1個づつ3個の受光
部を有する光電変換素子とし、この光電変換素子の前方
に赤、青、緑の3色のフィルターを設けることによって
も達成される。
This can also be achieved by replacing the photoelectric conversion element with a photoelectric conversion element having three light receiving sections, one for each color, and providing three color filters of red, blue, and green in front of this photoelectric conversion element.

また上記出力波形に代えてラスタを一定単位づつ移動さ
せる出力波形とし、ラスタの位置を検出することによっ
ても達成される。
This can also be achieved by replacing the above output waveform with an output waveform that moves the raster in fixed units and detecting the position of the raster.

〔作用〕[Effect]

カラーブラウン管の電子ビーム又はラスタを一定単位で
移動させていくと、電子ビーム又はラスタが拡大用レン
ズ及び光電変換素子の中心軸に達した時に光電変換素子
の出力は最大となる。そこで、各3原色に対応する電子
ビーム擾こついて充電変換出力が最大となった時の電子
ビーム又はラスタの位置関係からコンバーゼンスずれを
測定できる。
When the electron beam or raster of the color cathode ray tube is moved in fixed units, the output of the photoelectric conversion element reaches its maximum when the electron beam or raster reaches the central axis of the enlarging lens and the photoelectric conversion element. Therefore, the convergence shift can be measured from the positional relationship of the electron beams or rasters when the electron beams corresponding to each of the three primary colors reach their maximum charge conversion output.

また3色のフィルターを設けた光電変換素子は、各色別
に入力が可能であり、3色同時に測定することができる
Furthermore, the photoelectric conversion element provided with three color filters allows input for each color separately, and can measure the three colors at the same time.

上記の場合において、各電子ビーム又はラスタが一点に
集中、いわゆるコンバーゼンスが合っていれば、はぼ同
一位置で充電変換出力は最大となる。LカL、、ミスコ
ンバーゼンスであるとずれ量に応じて異なる位置に電子
ビームが達した時に最大となる。
In the above case, if each electron beam or raster is concentrated at one point, so-called convergence, the charging conversion output will be maximum at approximately the same position. If the misconvergence occurs, it will be at its maximum when the electron beam reaches different positions depending on the amount of deviation.

〔実施例〕〔Example〕

以F、本発明の一実施例を図により説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図に示すように、カラーブラウン管1には駆動電源
2により所定の電圧が印加される。カラーブラウン管1
壷こ装着された偏向ヨーク3には電子ビームを一定単位
づつ移動させることができる偏向電源4が接けされてい
る。またカラーブラウン管1の発光面の前面には拡大用
レンズ5が配置され、拡大用レンズ5の後方には光電変
換素子6が配置されている0光電変換索子6の充電変換
出力は処理装置7により処理され、また処理装置7から
は躯動電#、2及び偏向電源4を制御する制御信号7a
、7bが出力される。
As shown in FIG. 1, a predetermined voltage is applied to the color cathode ray tube 1 by a driving power source 2. As shown in FIG. color cathode ray tube 1
A deflection power source 4 capable of moving the electron beam in fixed units is connected to the deflection yoke 3 mounted on the pot. Further, a magnifying lens 5 is disposed in front of the light emitting surface of the color cathode ray tube 1, and a photoelectric conversion element 6 is disposed behind the magnifying lens 5. The charge conversion output of the photoelectric conversion element 6 is transferred to a processing device 7. The processing device 7 sends a control signal 7a for controlling the main power supply #, 2 and the deflection power supply 4.
, 7b are output.

前記光電変換素子6は、第2図ζこ示すようlこ1ケの
受光部8を有し、3色の螢光体ドツトJG、B(Rは赤
螢元体ドツト、Gは緑螢光体ドツト、Bは青畳光体ドツ
ト)の1組以上を囲うような大きさとなっている。
The photoelectric conversion element 6 has one light receiving section 8 as shown in FIG. The size is such that it surrounds one or more pairs of body dots (B is a blue light body dot).

次に測定方法について説明する。処理装!f7からの制
御信号7aによって駆動電源2を制御し、赤、縁、青の
3色のうち1色1例えば赤を発光させる。そして、処理
装置7の制御信号7bによって偏向電源4を制御し、偏
向電源4の出力波形を第3図に示すように制御する。即
ち、垂直偏向電流9の1段中に水平偏向電filoを数
万段階程度になるように制御すると、電子ビームは水平
偏向電filOによりカラーブラウン管1の発光面上を
横方向に移動し、垂直偏向電a9により縦方向に移動す
る。
Next, the measurement method will be explained. Processor! The drive power source 2 is controlled by the control signal 7a from f7, and one color 1, for example, red is emitted from among the three colors red, edge, and blue. Then, the deflection power source 4 is controlled by the control signal 7b of the processing device 7, and the output waveform of the deflection power source 4 is controlled as shown in FIG. That is, when the horizontal deflection current filo is controlled to be in tens of thousands of steps during one stage of the vertical deflection current 9, the electron beam moves laterally on the light emitting surface of the color cathode ray tube 1 due to the horizontal deflection current filO, and then vertically It moves in the vertical direction by the deflection electric current a9.

電子ビーム移動時の光電変換素子6の充電変換出力は処
理装置7に取り込まれ、光電変換出力が最大となる発光
位置又は第4図に示す赤色の重心位置■几が求められる
。他の2色についても同様の操作を行うと、同様に光電
変換出力が最大となる発光位置又は緑、青色の重心位置
NG、IBが求められる。この時の偏向電流の差が各色
のコンバーゼンスずれ清となる。即ち、G−RがG、ル
間のずれ、G−BがG、13間のずれ、ルーBがル。
The charge conversion output of the photoelectric conversion element 6 during the movement of the electron beam is taken into the processing device 7, and the light emission position at which the photoelectric conversion output is maximum or the center of gravity position shown in red in FIG. 4 is determined. If the same operation is performed for the other two colors, the light emission position at which the photoelectric conversion output is maximum or the center of gravity positions NG and IB of green and blue can be found in the same way. The difference in deflection current at this time becomes the convergence shift result for each color. That is, G-R is G, deviation between 13, G-B is G, deviation between 13, and B is 1.

8間のずれとなる。The difference will be between 8 and 8.

第5図は本発明の他の実施例を示す。前記実施例は1個
の受光部8を用いたが1本実施例は赤、緑、fのフィル
ターを設けた3個の受光部8几、8G、8Bを用いたも
のである。赤フィルターを介した光は、Iル、がIG、
、1B、に比べて光電変換出力が大きく、また緑フイル
タ−、肯フィルターを介した光はI O,、fB、の+
を変換出力が大きくなる。
FIG. 5 shows another embodiment of the invention. The previous embodiment used one light receiving section 8, but this embodiment uses three light receiving sections 8, 8G, and 8B provided with red, green, and f filters. The light passing through the red filter is Ile, IG,
, 1B, the photoelectric conversion output is larger than that of IO, , fB, and the light passing through the green filter and positive filter is
The conversion output becomes larger.

従って、前記実施例のように1色づつ発光させて充電変
換出力を得る必要はなく、3色同時に発光さゼて充電変
換出力を得ても、他色の影響を受けずに正確に各3色の
最大入力値又は重心位置が求められる。
Therefore, it is not necessary to emit light for each color one by one to obtain a charging conversion output as in the above embodiment, and even if three colors are emitted at the same time to obtain a charging conversion output, each of the three colors can be accurately illuminated without being affected by other colors. The maximum input value or centroid position of the color is determined.

このように、光電変換素子6の出力が最大あるいは重心
点における直流電流の段差からコンバーゼンスのずれが
求められるので、必要な読取り分解能まで直流電流の段
階波形のステップを小さくするだけでコンバーゼンスず
れを正確に求めることができる。また駆動電fA2、偏
向電源4、拡大用レンズ5、光電変換素子6及び処理装
置7を用いた簡単な構成よりなるので、安価な装置が得
られる。
In this way, the convergence shift can be determined from the step difference in the DC current at the maximum output of the photoelectric conversion element 6 or the center of gravity, so the convergence shift can be accurately determined by simply reducing the step of the step waveform of the DC current until the required reading resolution is achieved. can be asked for. Furthermore, since it has a simple configuration using the driving electric current fA2, the deflection power source 4, the magnifying lens 5, the photoelectric conversion element 6, and the processing device 7, an inexpensive device can be obtained.

なお、上記実施例においては、電子ビームを一定単位づ
つ移動させたが、信号によりラスタを発光させ、信号f
こよりラスタを移動さゼて光電変換出力を得るようにし
てもよい。
In the above embodiment, the electron beam was moved by a fixed unit, but the raster is emitted by the signal, and the signal f
The photoelectric conversion output may be obtained by moving the raster.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、安価な装置でコンバーゼンスずれを正
確に自動的に求めることができる。
According to the present invention, the convergence shift can be accurately and automatically determined using an inexpensive device.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例のコンバーゼンス測定装置の
概略構成図、第2図は螢光体ドツトと光電変換素子の受
光部との関係図、第3図は偏向電源の出力波形図を示し
、(a)は垂直偏向波形図、lblは水平偏向波形図、
第4図は光電変換出力と偏向電流の関係図、第5図は本
発明の他の実施例を示し、フィルタを介して人力を行な
った時の各色の光電変換出力の関係図である。 1 カラーブラウン管、   3・・偏向ヨーク、4・
偏向電源、       5・・拡大用レンズ、6 ・
 Xi変換素子、     7・・処理!!、8.81
(、,8G、8B・・受光部〇第1図 1;カフ−1うウン管 3:偏伺:l−7 4:(A句雪]私
Figure 1 is a schematic configuration diagram of a convergence measuring device according to an embodiment of the present invention, Figure 2 is a diagram of the relationship between the fluorescent dots and the light receiving section of the photoelectric conversion element, and Figure 3 is a diagram of the output waveform of the deflection power source. , (a) is a vertical deflection waveform diagram, lbl is a horizontal deflection waveform diagram,
FIG. 4 is a relationship diagram between photoelectric conversion output and deflection current, and FIG. 5 shows another embodiment of the present invention, and is a relationship diagram of photoelectric conversion output for each color when manually applied through a filter. 1 color cathode ray tube, 3...deflection yoke, 4...
Deflection power supply, 5. Magnifying lens, 6.
Xi conversion element, 7...processing! ! , 8.81
(,, 8G, 8B... Light receiving part〇Figure 1 1; Cuff-1 Down tube 3: Height: l-7 4: (A phrase) I

Claims (1)

【特許請求の範囲】 1、偏向ヨークが装着されたカラーブラウン管の発光面
の前面に配置された拡大用レンズと、この拡大用レンズ
の後方に配置され、該拡大用レンズで拡大されたカラー
ブラウン管の螢光体ドットのうち3色1組以上のドット
を囲う大きさの受光部を有する光電変換素子と、電子ビ
ームを一定単位づつ移動させる出力波形を前記偏向ヨー
クに出力する偏向電源と、前記光電変換素子の出力が最
大となる発光位置を検出すると共に、前記偏向電源を制
御する処理装置とを備えたコンバーゼンス測定装置。 2、請求項1記載のコンバーゼンス測定装置において、
上記出力波形に代えてラスタを一定単位づつ移動させる
出力波形とし、ラスタの位置を検出するコンバーゼンス
測定装置。
[Claims] 1. A magnifying lens placed in front of the light emitting surface of a color cathode ray tube to which a deflection yoke is attached, and a color cathode ray tube placed behind the magnifying lens and magnified by the magnifying lens. a photoelectric conversion element having a light-receiving portion having a size that surrounds at least one set of three colors of phosphor dots; a deflection power source that outputs an output waveform to the deflection yoke to move the electron beam in fixed units; A convergence measuring device comprising a processing device that detects a light emitting position where the output of a photoelectric conversion element is maximum and controls the deflection power source. 2. The convergence measuring device according to claim 1,
A convergence measurement device that detects the position of a raster by using an output waveform that moves the raster in fixed units in place of the output waveform described above.
JP3103989A 1989-02-13 1989-02-13 Convergence measuring instrument Pending JPH02213022A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3103989A JPH02213022A (en) 1989-02-13 1989-02-13 Convergence measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3103989A JPH02213022A (en) 1989-02-13 1989-02-13 Convergence measuring instrument

Publications (1)

Publication Number Publication Date
JPH02213022A true JPH02213022A (en) 1990-08-24

Family

ID=12320348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3103989A Pending JPH02213022A (en) 1989-02-13 1989-02-13 Convergence measuring instrument

Country Status (1)

Country Link
JP (1) JPH02213022A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835135A (en) * 1995-03-08 1998-11-10 Minolta Co., Ltd. Device for measuring a glow center of a display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5835135A (en) * 1995-03-08 1998-11-10 Minolta Co., Ltd. Device for measuring a glow center of a display device

Similar Documents

Publication Publication Date Title
US3723801A (en) Measuring the beam landing characteristic of a shadow-mask cathode-ray tube
JPS6132778B2 (en)
US4291256A (en) Alignment or correction of energy beam type displays
JPH0148553B2 (en)
JPH02213022A (en) Convergence measuring instrument
US4988857A (en) Misconvergence measuring apparatus
JPS6030155B2 (en) Convergence automatic adjustment device
KR970008570B1 (en) Color cathode-ray tuve
JP2839190B2 (en) Convergence deviation measuring device
EP0382308B1 (en) Improved CRT screen exposure device and method
JP2839189B2 (en) Horizontal convergence deviation measuring device
JP3366374B2 (en) Image quality measuring device
JPH08203437A (en) Electron beam decentering degree measuring apparatus
JPH01200538A (en) Measuring equipment of convergence aberration
JP2845895B2 (en) Convergence measurement method for color CRT
JP2947803B2 (en) Manufacturing method of color CRT
KR0129959B1 (en) Color picture tube of mis-convergence control equipment
Chung et al. Quality control system for deflection yoke of CDT
KR0123915B1 (en) Ferrite panel of matching method
KR920005023B1 (en) Measuring equipment of convergence aberration
JPS6182641A (en) Method and appratus for adjusting deflector of receiver with three electron guns
MXPA02005140A (en) Automated convergence in a projection display apparatus.
KR830001035B1 (en) Electronic Beam Convergence Measuring Device of Color Display Tube
KR200186984Y1 (en) A convergence measuring and regulating device capable of regulating and correcting
JPH03176941A (en) Purity measuring device for color cathode-ray tube