JPH0127920Y2 - - Google Patents

Info

Publication number
JPH0127920Y2
JPH0127920Y2 JP1983031644U JP3164483U JPH0127920Y2 JP H0127920 Y2 JPH0127920 Y2 JP H0127920Y2 JP 1983031644 U JP1983031644 U JP 1983031644U JP 3164483 U JP3164483 U JP 3164483U JP H0127920 Y2 JPH0127920 Y2 JP H0127920Y2
Authority
JP
Japan
Prior art keywords
tank
water
wastewater
mixing
mixing tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983031644U
Other languages
Japanese (ja)
Other versions
JPS59138497U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1983031644U priority Critical patent/JPS59138497U/en
Publication of JPS59138497U publication Critical patent/JPS59138497U/en
Application granted granted Critical
Publication of JPH0127920Y2 publication Critical patent/JPH0127920Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Degasification And Air Bubble Elimination (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は所謂デイープシヤフト形式の水処理設
備に関する。 下水、工場排水を生物学的に処理浄化するため
の装置として、所謂デイープシヤフト方式による
水処理設備が知られている。この設備は50〜150
mの深さをもつ竪型の曝気槽(デイープシヤフ
ト)を有し、この竪型曝気槽は槽の上部及び下部
で連通する上昇流路及び下降流路を有し、且つこ
の流路に散気装置を配したものであり、混合液
(廃水プラス活性汚泥)を下降流路から上昇流路
に循環させ生物学的処理を行うものである。また
この種の設備は、固液分離装置を有し、処理され
た液をこの固液分離装置に送り出し、ここで液を
処理水と活性汚泥とに分離した後、活性汚泥のみ
を上記竪型曝気槽に返送するようになつている。
ところで、このような設備では上記散気装置によ
り液中に空気を吹き込むため、曝気槽上部に泡が
大量に生じ、これを放置した場合、槽外に溢流し
て循環汚染を生ぜしめるという問題がある。また
設備に付随する原水受入槽や汚泥貯槽等において
も腐敗防止のため空気の吹込みがなされており、
これらの槽についても上記と同様発泡の問題を生
じている。この対策としては従来では、発泡場所
においてスプレーで散水することにより消泡を行
つているが、この方式では発泡場所毎にスプレー
装置を配設する必要があるとともに、散水用とし
て処理水そのものの約2割程度という大量の水を
必要とする難点がある。また、ヘツドタンクを密
閉型にし、このヘツドタンク内にガスにより背圧
を生じさせるようにした形式の曝気槽において、
例えば特開昭56−85282号にみられるように、上
部にガス通気孔を有する密閉型の加圧用水槽を設
け、ヘツドタンク上部に接続された通気導管を前
記加圧用水槽内に導き、その先端を加圧用水槽内
の所定水深に位置せしめ、ヘツドタンク内の背圧
が所定のレベルを超えた場合にだけ通気導管から
ガスが放出されるようにした構成が採用されてい
る。しかし、この設備でも、ヘツドタンク内で生
じた泡は通気導管を通じて加圧用水槽内に導かれ
るだけで、こんどは加圧用水槽内で大量に発泡現
象を生じてしまい散水しなければガス通気孔から
溢流してしまう。 本考案はこのような従来の難点を解消すべく考
案されたもので、竪型曝気槽等で生じた泡を消泡
用の特別な水を要することなく適切に消泡するこ
とができる設備の提供をその目的とする。 このため本考案は、廃水と固液分離槽からの返
送汚泥とを混合するための混合槽及びこれに流入
する廃水とを利用して消泡を行うことができるよ
うな構成を採用したもので、その基本的特徴とす
るところは、泡を生ずべき槽の上部を密閉すると
ともに、該槽の上部から混合槽内に泡導出管を導
き、泡導出管の先端位置とその上部の廃水流入部
位置との間には、廃水流入部から落下する廃水を
槽内の水面に散水するための多孔板を配設したこ
とにある。 以下、本考案を具体的に説明する。 竪型曝気槽を備えた水処理設備において、系外
から送られてくる廃水(原水)と固液分離槽で分
離され返送されてくる返送汚泥とを混合する混合
槽を備えた設備が知られているが、本考案はこの
ような混合槽を利倫して消泡を行うようにしたこ
とをその大きな特徴としている。 第1図及び第2図は本考案の一実施例を示すも
ので、1は竪型曝気槽、2は固液分離槽、3は混
合槽、4は加圧用水槽、5は竪型曝気槽の下降流
路、6は同じく上昇流路、7は上部のヘツドタン
クであり、上記下降流路5及び上昇流路6は槽下
端及び上記ヘツドタンク7で連通している。また
8は上昇流路6の途中から固液分離槽2に導かれ
る流出導管、9は混合槽3から上昇流路6内に導
かれ端部が上昇流路下部でU字状に立ち上つた流
入導管である。さらに、10は浮上汚泥のかき寄
せ装置、11はかき寄せられた活性汚泥を排出す
るための溝であり、本実施例では、該溝11内に
管路12を通じて系外から廃水が供給され、導管
13を通じて返送汚泥とともに混合槽3に送給さ
れる。 さらに、密閉型のヘツドタンク7内の背圧を一
定に維持するため、前記加圧用水槽4が設けら
れ、ヘツドタンク7上部から加圧用水槽4内に通
気導管14が導かれ、その先端が槽内の所定水深
に位置している。 以上のような構成において、加圧用水槽4はそ
の上部が密閉されるとともに、該密閉された槽の
上部から混合槽3内に泡導出管15が導かれ、混
合槽3内に加圧用水槽で生じた泡を送り出すよう
になつている。この泡導出管15の先端は、混合
槽内水面に達しないように位置せしめることが好
ましい。 前記導管13は泡導出管先端位置より上部の位
置で混合槽3に接続されているが、この導管13
による廃水流入部16位置に泡導出管先端位置の
中間には、多孔板17が配設され、廃水流入部1
6から落下する廃水(返送汚泥を含む)を槽内の
水面にスプレー状に散水できるようになつてい
る。なお、上記廃水流入部16及び多孔板17と
もに、混合槽3内の水面上方に位置すべきもので
あることは言うまでもない。 上記多孔板17は、本実施例では、混合槽3内
全面を覆うようにして槽内壁に取付けられ、泡導
出管15はこの多孔板17を貫いて下方に延出し
ている。また、本実施例では、多孔板17の上部
に消泡装置18が補助的に配設され、上記廃水に
よる消泡効果が十分でない場合に散水を行うこと
ができるようになつている。この消泡装置18と
してはスプレーノズル、上記と同様の多孔板等適
宜なものを用いることができる。 其他図面に示すものについて説明すると、19
は固液分離槽2下部と混合槽3間に設けられる底
部循環導管であり、固液分離槽2内下部に設けら
れたかき寄せ装置(図示せず)により沈降した活
性汚泥がかき寄せから、この底部循環導管19を
通じて混合槽3に返送される。また、20は汚泥
が分離された処理水の排出溝、21は竪型曝気槽
の下降流路5内と上昇流路6内でU字状に立ち上
つた流入導管9端部内でそれぞれ散気を行う散気
装置である。 また、前記かき寄せ装置10はスプロケツトホ
イール22,22、エンドレスチエン23及びこ
のエンドレスチエンに間隔的に付設されたかき取
り要素24とから構成されている。 なお、以上の実施例は本考案を加圧用水槽を有
する設備に適用した場合を示すものであるが、本
考案の実施例がこれに限定されるものでないこと
は言うまでもない。即ち、上記加圧用水槽4の有
無にかかわらず、ヘツドタンク7から直接混合槽
3に泡導出管を導くことができる。また前述した
ように、水処理設備において発泡する可能性のあ
る槽としては、上記竪型曝気槽、加圧用水槽の他
に、汚泥貯槽、原水受入槽等があり、これらにつ
いても上部を密閉し、これから泡導出管を混合槽
3まで導くようにすることができる。本考案の好
ましい実施例として、散水を必要とするような槽
を総て密閉構造とし、これらから混合槽3に泡導
出管15を導くような構成を採ることができ、こ
のようにすることにより水処理処備における発泡
対策を混合槽だけに限定することができる。 次に本考案の作用を説明する。 第1図及び第2図に示す設備では、散気装置2
1により廃水を酸化分解するための酸素源たる空
気が槽内に供給されるとともに、上昇流路6
The present invention relates to a so-called deep shaft type water treatment equipment. 2. Description of the Related Art A so-called deep shaft type water treatment facility is known as a device for biologically treating and purifying sewage and industrial wastewater. This equipment has 50 to 150
It has a vertical aeration tank (deep shaft) with a depth of m. It is equipped with an air system, and the mixed liquid (wastewater plus activated sludge) is circulated from the downward flow path to the upward flow path for biological treatment. In addition, this type of equipment has a solid-liquid separator, and the treated liquid is sent to this solid-liquid separator, where the liquid is separated into treated water and activated sludge, and only the activated sludge is transferred to the vertical type. It is designed to be sent back to the aeration tank.
By the way, in such equipment, air is blown into the liquid by the aeration device, so a large amount of foam is generated at the top of the aeration tank, and if left untreated, it can overflow outside the tank and cause circulation pollution. be. In addition, air is blown into the raw water receiving tank, sludge storage tank, etc. attached to the equipment to prevent rot.
These tanks also have the same foaming problem as above. Conventionally, as a countermeasure against this problem, foaming is eliminated by spraying water at the foaming location, but with this method, it is necessary to install a spray device at each foaming location, and the treated water itself is used for watering. The drawback is that it requires a large amount of water, about 20%. In addition, in an aeration tank in which the head tank is a closed type and back pressure is generated in the head tank by gas,
For example, as seen in JP-A No. 56-85282, a closed pressurized water tank with a gas vent at the top is provided, and a ventilation pipe connected to the top of the head tank is guided into the pressurized water tank, and its tip is connected to the top of the head tank. The vent conduit is located at a predetermined depth in the pressurized water tank, and gas is released from the vent conduit only when the back pressure in the head tank exceeds a predetermined level. However, even with this equipment, the bubbles generated in the head tank are only guided into the pressurizing water tank through the ventilation pipe, and a large amount of foaming occurs in the pressurizing water tank, and unless water is sprinkled, the bubbles will overflow from the gas vent. I'll wash it away. The present invention was devised to solve these conventional difficulties, and is a system that can properly defoamer foam generated in vertical aeration tanks, etc., without requiring special water for defoaming. Its purpose is to provide. For this reason, the present invention adopts a configuration in which defoaming can be performed using a mixing tank for mixing wastewater and sludge returned from the solid-liquid separation tank, and the wastewater flowing into the mixing tank. Its basic feature is that the upper part of the tank where bubbles are to be generated is sealed, and a foam outlet pipe is guided from the upper part of the tank into the mixing tank, and the waste water inflows from the tip of the foam outlet pipe and the upper part of the tank. A perforated plate is disposed between the tank and the tank to sprinkle wastewater falling from the wastewater inlet onto the water surface in the tank. The present invention will be explained in detail below. Among water treatment facilities equipped with vertical aeration tanks, equipment equipped with a mixing tank that mixes wastewater (raw water) sent from outside the system with returned sludge separated in a solid-liquid separation tank and sent back is known. However, the major feature of the present invention is that the mixing tank is heated to eliminate foam. Figures 1 and 2 show an embodiment of the present invention, in which 1 is a vertical aeration tank, 2 is a solid-liquid separation tank, 3 is a mixing tank, 4 is a water tank for pressurization, and 5 is a vertical aeration tank. 6 is also an upward flow path, and 7 is an upper head tank. The downward flow path 5 and the upward flow path 6 communicate with the lower end of the tank and the head tank 7. Further, 8 is an outflow conduit led from the middle of the ascending channel 6 to the solid-liquid separation tank 2, and 9 is an outflow conduit led from the mixing tank 3 into the ascending channel 6, and the end thereof rises in a U-shape at the bottom of the ascending channel. It is an inflow conduit. Furthermore, 10 is a floating sludge scraping device, 11 is a groove for discharging the scraped activated sludge, and in this embodiment, wastewater is supplied into the groove 11 from outside the system through a conduit 12, and a conduit 13 The sludge is sent to the mixing tank 3 together with the returned sludge through the sludge. Further, in order to maintain a constant back pressure in the closed type head tank 7, the pressurizing water tank 4 is provided, and a ventilation conduit 14 is led into the pressurizing water tank 4 from the upper part of the head tank 7, and its tip is connected to the inside of the tank. It is located at a predetermined depth. In the above configuration, the pressurizing water tank 4 has its upper part sealed, and the foam outlet pipe 15 is led into the mixing tank 3 from the upper part of the sealed tank, so that the pressurizing water tank 4 is connected to the mixing tank 3. It is designed to send out the bubbles that are generated. It is preferable that the tip of the foam outlet pipe 15 is positioned so as not to reach the water surface in the mixing tank. The conduit 13 is connected to the mixing tank 3 at a position above the tip of the foam outlet pipe;
A perforated plate 17 is disposed between the wastewater inlet 16 position and the foam outlet pipe tip position, and the wastewater inlet 1
The wastewater (including returned sludge) falling from the tank can be sprayed onto the water surface in the tank. It goes without saying that both the wastewater inlet 16 and the perforated plate 17 should be located above the water surface in the mixing tank 3. In this embodiment, the perforated plate 17 is attached to the inner wall of the mixing tank 3 so as to cover the entire inside of the mixing tank 3, and the bubble outlet pipe 15 extends downward through the perforated plate 17. Furthermore, in this embodiment, a defoaming device 18 is auxiliary disposed above the perforated plate 17, so that water can be sprinkled when the defoaming effect of the waste water is not sufficient. As this defoaming device 18, an appropriate device such as a spray nozzle or a perforated plate similar to that described above can be used. To explain what else is shown in the drawings, 19
is a bottom circulation conduit installed between the lower part of the solid-liquid separation tank 2 and the mixing tank 3, and the activated sludge settled by the scraping device (not shown) installed at the lower part of the solid-liquid separation tank 2 is scraped up and then collected at the bottom. It is returned to the mixing tank 3 via the circulation conduit 19. In addition, 20 is a discharge groove for treated water from which sludge has been separated, and 21 is aeration in the end of the inflow conduit 9 that rises in a U-shape in the downward flow path 5 and the upward flow path 6 of the vertical aeration tank. This is an air diffuser that performs The scraping device 10 is composed of sprocket wheels 22, 22, an endless chain 23, and scraping elements 24 attached at intervals to the endless chain. Note that, although the above-described embodiments show the case where the present invention is applied to equipment having a pressurized water tank, it goes without saying that the embodiments of the present invention are not limited thereto. That is, regardless of the presence or absence of the pressurizing water tank 4, the foam outlet pipe can be led directly from the head tank 7 to the mixing tank 3. In addition, as mentioned above, in addition to the vertical aeration tank and pressurized water tank, there are other tanks in water treatment equipment that may cause foaming, such as sludge storage tanks and raw water receiving tanks, and these should also be sealed at the top. From there, the foam outlet pipe can be led to the mixing tank 3. As a preferred embodiment of the present invention, it is possible to adopt a configuration in which all the tanks that require water sprinkling are of a closed structure, and the foam outlet pipe 15 is led from these to the mixing tank 3. Foaming countermeasures in water treatment can be limited to the mixing tank only. Next, the operation of the present invention will be explained. In the equipment shown in FIGS. 1 and 2, the air diffuser 2
1 supplies air as an oxygen source for oxidative decomposition of wastewater into the tank, and the ascending flow path 6

【流
入導管】中の散気によりその上部にエアリフトポ
ンプが形成され、廃水(混合液)は曝気槽内で上
昇、下降を繰り返しながら活性汚泥により酸化分
解される。系外からの廃水は溝11に流入し、さ
らに固液分離槽2からこの溝に排出される返送汚
泥とともに導管13を通じて混合槽3に流入す
る。さらに前記散気装置21からの散気によるエ
アリフト効果により流入導管9に引き込まれ、上
昇流路6に流入する。下降流路5を下降する液に
はその静水圧により散気による空気が多量に溶解
しており、この液の一部が処理済み液として流出
導管8を上昇して固液分離槽2に抜き出される。
この処理済み液の抜き出しは、図示するように液
中に未だ溶存気体量が多い状態にある上昇流路深
部で行われ、液中の溶存気体は主として固液分離
槽2において微小気泡として析出し、活性汚泥に
付着してこれを浮上せしめる。浮上した活性汚泥
はかき寄せ装置10によりかき寄せられ溝11に
排出される。また前述したように浮上せず固液分
離槽底部に沈降した汚泥は下部かき寄せ装置によ
りかき寄せられ、底部循環導部19を通じて混合
槽3に返送される。 以上のような処理の過程でヘツドタンク7内に
は加圧用水槽4の水により所定の背圧が与えら
れ、ヘツドタンク内の背圧が所定のレベルを超え
た場合にだけ、ヘツドタンク7内に放出される。
加圧用水槽4に溜つた泡は、泡導出管15を通じ
て混合槽側に導かれ、槽内水面に排出される。水
面上方の廃水流入部16からは返送汚泥が混入し
た廃水が流入しており、この廃水が多孔板17を
通ることによつて水面にスプレー状に散水され、
消泡が行われる。また、この廃水による消泡が十
分でない場合には、上部の消泡装置18から別途
散水が行われる。 また、他の槽に対して本考案を適用した場合も
同様に適切な消泡が行われることは言うまでもな
く、特に、水処理処備で散水を必要とするような
総ての槽に対して本考案を適用した場合には、発
泡対策が混合槽一箇所だけに限定されるという利
点が加わり、水処理設備全体としての発泡対策を
合理的且つ経済的に行うことができる。 以上述べた本考案によれば、泡を生ずべき槽の
上部を密閉するとともに、該槽の上部から混合槽
内に泡導出管を導き、混合槽内における泡導出管
の先端位置とその上部の廃水流入部位置との間に
は、廃水流入部から落下する廃水を槽内の水面に
散水するための多孔板を配設したので、竪型曝気
槽等に生じた泡を特別の散水を行うことなく、系
内に流入する廃水を利用して適切に消泡すること
ができ、水処理設備における発泡対策を合理的且
つ経済的に行うことができるという利点がある。
[Inflow conduit] An airlift pump is formed at the top by aeration inside the pipe, and wastewater (mixed liquid) is oxidized and decomposed by activated sludge while repeatedly rising and falling in the aeration tank. Wastewater from outside the system flows into the groove 11, and further flows into the mixing tank 3 through the conduit 13 together with the return sludge discharged into this groove from the solid-liquid separation tank 2. Furthermore, the air is drawn into the inflow conduit 9 due to the air lift effect caused by the air diffused from the air diffuser 21, and flows into the ascending channel 6. A large amount of air from aeration is dissolved in the liquid descending through the descending channel 5 due to its hydrostatic pressure, and a portion of this liquid ascends the outflow conduit 8 as a treated liquid and is discharged into the solid-liquid separation tank 2. Served.
As shown in the figure, this treated liquid is extracted from the deep part of the ascending channel where there is still a large amount of dissolved gas in the liquid, and the dissolved gas in the liquid is mainly precipitated as microbubbles in the solid-liquid separation tank 2. , adheres to activated sludge and causes it to float. The floated activated sludge is scraped up by the scraping device 10 and discharged into the groove 11. Further, as described above, the sludge that does not float and settles to the bottom of the solid-liquid separation tank is scraped up by the lower scraping device and returned to the mixing tank 3 through the bottom circulation guide 19. During the process described above, a predetermined back pressure is applied to the head tank 7 by the water in the pressurizing water tank 4, and only when the back pressure in the head tank exceeds a predetermined level is water released into the head tank 7. Ru.
The bubbles accumulated in the pressurizing water tank 4 are led to the mixing tank side through the foam outlet pipe 15 and are discharged to the water surface in the tank. Wastewater mixed with return sludge flows in from the wastewater inflow section 16 above the water surface, and as this wastewater passes through the perforated plate 17, it is sprayed onto the water surface.
Defoaming is performed. Moreover, if the defoaming by this waste water is not sufficient, water is separately sprinkled from the defoaming device 18 at the top. In addition, it goes without saying that when the present invention is applied to other tanks, appropriate defoaming will be performed in the same way, especially for all tanks that require water sprinkling for water treatment. When the present invention is applied, there is an additional advantage that the foaming countermeasure is limited to only one mixing tank, and the foaming countermeasure can be implemented rationally and economically for the entire water treatment facility. According to the present invention described above, the upper part of the tank where bubbles are to be generated is sealed, and the foam outlet pipe is led into the mixing tank from the upper part of the tank, and the tip position of the bubble outlet pipe in the mixing tank and its upper part are A perforated plate was installed between the wastewater inlet and the wastewater inlet to sprinkle the wastewater that falls from the wastewater inlet on the water surface in the tank, so that bubbles generated in the vertical aeration tank can be removed by special watering. There is an advantage that foaming can be appropriately eliminated using the wastewater flowing into the system without having to do so, and that foaming countermeasures in water treatment equipment can be taken rationally and economically.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本考案の一実施例を示すもので、第1図
は全体説明図、第2図は第1図中混合槽の部分拡
大説明図である。 図において、1は竪型曝気槽、2は固液分離
槽、3は混合槽、4は加圧用水槽、15は泡導出
管、16は廃水流入部、17は多孔板を各示す。
The drawings show one embodiment of the present invention, and FIG. 1 is an overall explanatory view, and FIG. 2 is a partially enlarged explanatory view of the mixing tank in FIG. 1. In the figure, 1 is a vertical aeration tank, 2 is a solid-liquid separation tank, 3 is a mixing tank, 4 is a pressurizing water tank, 15 is a foam outlet pipe, 16 is a wastewater inlet, and 17 is a perforated plate.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 廃水と固液分離槽からの返送汚泥とを混合する
ための混合槽を有し、該槽内の混合液を竪型曝気
槽に供給するようにしてなる水処理装置におい
て、泡を生ずべき槽の上部を密閉するとともに、
該槽の上部から混合槽内に泡導出管を導き、混合
槽内における泡導出管の先端位置とその上部の廃
水流入部位置との間には、廃水流入部から落下す
る廃水を槽内の水面に散水するための多孔板を配
設したことを特徴とする竪型曝気槽を備えた水処
理装置。
In a water treatment device that has a mixing tank for mixing wastewater and sludge returned from a solid-liquid separation tank, and is configured to supply the mixed liquid in the tank to a vertical aeration tank, there is a problem in which foam should be generated. While sealing the top of the tank,
A foam outlet pipe is led into the mixing tank from the top of the tank, and between the tip of the foam outlet pipe in the mixing tank and the wastewater inlet position above it, wastewater falling from the wastewater inlet is guided into the tank. A water treatment device equipped with a vertical aeration tank characterized by a perforated plate for sprinkling water on the water surface.
JP1983031644U 1983-03-07 1983-03-07 Water treatment equipment equipped with a vertical aeration tank Granted JPS59138497U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1983031644U JPS59138497U (en) 1983-03-07 1983-03-07 Water treatment equipment equipped with a vertical aeration tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1983031644U JPS59138497U (en) 1983-03-07 1983-03-07 Water treatment equipment equipped with a vertical aeration tank

Publications (2)

Publication Number Publication Date
JPS59138497U JPS59138497U (en) 1984-09-14
JPH0127920Y2 true JPH0127920Y2 (en) 1989-08-24

Family

ID=30162486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1983031644U Granted JPS59138497U (en) 1983-03-07 1983-03-07 Water treatment equipment equipped with a vertical aeration tank

Country Status (1)

Country Link
JP (1) JPS59138497U (en)

Also Published As

Publication number Publication date
JPS59138497U (en) 1984-09-14

Similar Documents

Publication Publication Date Title
JP4465047B2 (en) Equipment for biological purification of wastewater
US5766484A (en) Dissolved gas floatation device
US4618426A (en) Retrievable jet mixing systems
EP1335882B1 (en) Water treatment device
US4287070A (en) Method maintaining a constant gas to solids ratio in effluent from a long vertical shaft bioreactor
JPH03193988A (en) Device for deinking fibrous substance suspension
JPS5810160B2 (en) water biological purification equipment
US4883602A (en) Decanting apparatus and method
JPS6359760B2 (en)
NZ195076A (en) Activated sludge sewage disposal system adapted for marine use
JPH0127920Y2 (en)
US5264130A (en) Method and apparatus for recirculation of liquids
US3236767A (en) Waste treatment process
US5039404A (en) Oxygen permeable membrane used in wastewater treatment
US5259996A (en) Low profile cascade aerator
US2676919A (en) Treatment of sewage by biochemical action
JPH04210201A (en) Oil separating system
USRE24219E (en) Pirnie
CN219002428U (en) Desulfurizing, dedusting and purifying device for brickkiln flue gas
JP3659672B2 (en) Scum removal device for circulating water channel type aeration tank
KR970003585Y1 (en) Aspiration aerator
JPS56121689A (en) Fluid bed type wastewater treating apparatus
SU1031914A1 (en) Combination apparatus for biological treatment of effluents
RU38755U1 (en) BIOLOGICAL WASTE WATER TREATMENT PLANT
CA2076981A1 (en) Method and apparatus for recirculation of liquids