JPH01278932A - Superplastic forging - Google Patents

Superplastic forging

Info

Publication number
JPH01278932A
JPH01278932A JP10566688A JP10566688A JPH01278932A JP H01278932 A JPH01278932 A JP H01278932A JP 10566688 A JP10566688 A JP 10566688A JP 10566688 A JP10566688 A JP 10566688A JP H01278932 A JPH01278932 A JP H01278932A
Authority
JP
Japan
Prior art keywords
forging
superplastic
container
stock
inert gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10566688A
Other languages
Japanese (ja)
Inventor
Noboru Uenishi
昇 上西
Yoshinobu Takeda
義信 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10566688A priority Critical patent/JPH01278932A/en
Publication of JPH01278932A publication Critical patent/JPH01278932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To perform non-oxidizing superplastic forging by fixing a stock and forging dies in a sheet container having the same composition as the stock, discharging air in the container in a degree of vacuum exceeding a specified value, filling and closing the container with high-purity inert gas at a pressure exceeding a specified pressure for forging. CONSTITUTION:An alloy stock 11 is put between an upper die 2 and a lower die 3 and all of them are put in a container 4. They are heated by a heating mechanism to a specified temperature at which superplastic deformation is generated and the dies 2, 3 are compressed by punches 5, 6 for forging. The degree of vacuum in a discharging hole 7 exceeds 10<-5>Torr, inert gas having a purity >=99.99% is introduced to obtain a pressure exceeding 1.05 times the atmospheric pressure and protect the back flow of the atmosphere. A cavity part 8 makes a vacuum or an inert gas atmosphere. When a forging is performed in an indicated state, the volume of a superplastic alloy of initial charge is made larger than a die cavity. Accordingly, superplastic forging can be carried out to oxidizing stock such as Ti and Si base alloy without suffering from oxidation.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はジェットエンジン用一部品や高温高強度を要
する分野などに使用される金属材料の超塑性鍛造法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for superplastic forging of metal materials used in parts for jet engines, fields requiring high temperature and high strength, and the like.

〈従来の技術〉 従来、ジェットエンジン用部品や高温高強度を必要とす
る分りなどに使用される金属材料は超塑性鍛造用素材を
大気中で椴32!するか、またはAt 1Heなどの不
活性ガス雰囲気中で13Thする方法が行なわれていた
<Conventional technology> Conventionally, metal materials used for jet engine parts and parts that require high temperature and high strength are made of superplastic forging materials in the atmosphere. Alternatively, a method of performing 13Th in an inert gas atmosphere such as At 1He has been used.

即ち、鍛造用素材は大気に曝されたままで鍛造されるか
、又は雰囲気ガス中で鍛造用金型と素材が存在する状態
で素材の超塑性鍛造が行なわれていた。
That is, the forging material has been forged while being exposed to the atmosphere, or the material has been subjected to superplastic forging in the presence of a forging die and the material in an atmospheric gas.

このうち、Ar1Heなどの不活性ガス雰囲気中での鍛
造の例としては、通常加熱から鍛造までの一連の製造設
備を用いて行なわれている。
Among these, forging in an inert gas atmosphere such as Ar1He is usually carried out using a series of manufacturing equipment from heating to forging.

しかしながら、このような製造設備を用いた場合には設
備費が大変高く、しかも多品種少量生産には適していな
かった。
However, when such manufacturing equipment is used, the equipment cost is very high, and moreover, it is not suitable for high-mix, low-volume production.

〈発明が解決しようとする課題〉 上記した従来の大気中における[aでは当然素材は大気
に曝されるため、素材は酸化や窒化の影響を受けること
はまぬがれなかった。
<Problems to be Solved by the Invention> In the above-mentioned conventional atmosphere [a], since the material is naturally exposed to the atmosphere, it is inevitable that the material will be affected by oxidation and nitridation.

また不活性ガス雰囲気中で鍛造する場合においても、試
験片のような小型の素材の場合は別として、大型(〉φ
300)の素材の場合には、この大型素材と金型とを保
護雰囲気中におかねばならず、設備は保護チャンバーの
分だCプ大きくなり、設備コストは膨大であった。また
ガスの純度や気密性を大型設備において保持するのは困
難で、純度は悪くなりがちであった。
Also, when forging in an inert gas atmosphere, apart from the case of small materials such as test pieces, large (〉φ
In the case of the material No. 300), this large material and the mold had to be kept in a protective atmosphere, and the equipment became larger by the size of the protective chamber, resulting in an enormous equipment cost. Furthermore, it is difficult to maintain gas purity and airtightness in large equipment, and the purity tends to be poor.

このため、例えば冷合金を用いた金型においては昇化の
問題も生じ、金型寿命にとっては大きな問題であった。
For this reason, for example, in a mold using a cold alloy, a problem of elevation occurs, which is a big problem for the life of the mold.

く課題を解決するための手段〉 本発明者らは上記した従来の鍛造法の問題点を解決寸べ
く種々検討した結果、この発明に至ったものである。
Means for Solving the Problems> The present inventors have conducted various studies to solve the problems of the conventional forging method described above, and as a result, they have arrived at the present invention.

即ち、この発明は超塑性鍛造を行なう素材と同一の組成
または金属[織を有する薄板よりなる容器中に鍛造用素
材おJ:び鍛造用金型を固定し、該容器内部を1O−5
Torr以上の真空度に真空排気した後、純度99.9
9%以上の不活性ガスを大気圧の1.5倍以上の圧力に
なるまで充填して密封し、次いで該容器を鍛造すること
により鍛造用素材の変形を行なって傘属製品とすること
を特徴とする完全な保護雰囲気中における超塑性鍛造法
を提供するものである。
That is, this invention fixes a forging material and a forging die in a container made of a thin plate having the same composition or metal texture as the material to be superplastically forged, and the interior of the container is
Purity 99.9 after evacuating to a vacuum level of Torr or higher
The container is filled with an inert gas of 9% or more to a pressure of 1.5 times the atmospheric pressure or more and sealed, and then the container is forged to transform the forging material into an umbrella product. The present invention provides a superplastic forging method in a completely protective atmosphere with special characteristics.

く作用〉 この発明は5 A1 2.5 Sn  Tj、 6 #
−4V  Tし、13Cr −11V  3 N  T
L、4.5 Ml−5t%−L5 Cr −TLなどの
ように、2〜7%NとFe、Zn、t%、CILlTa
、SL、BL、Mn、Cr、Vの1種または2種以上を
1〜15%含有し、残部がT、である高Ti合金材の超
塑性鍛造として有用である。
Function> This invention has 5 A1 2.5 Sn Tj, 6 #
-4V T, 13Cr -11V 3N T
L, 4.5 Ml-5t%-L5Cr-TL etc., 2-7%N and Fe, Zn, t%, CILlTa
, SL, BL, Mn, Cr, and V in an amount of 1 to 15%, and the balance is T, which is useful as a superplastic forging of a high Ti alloy material.

この発明の特徴とするところは、l−1I P焼結や押
出しなどによってほぼ100%の理論密度を有する焼結
体の新しい加工方法を提供することである。
The feature of this invention is to provide a new method for processing a sintered body having approximately 100% theoretical density by l-1IP sintering, extrusion, etc.

即ち、この発明は第1図に示すように、上記したような
合金素材1を2分割された上金型2と下金型3の中に入
れ、その全体を容器4に入れる。
That is, in the present invention, as shown in FIG. 1, an alloy material 1 as described above is put into an upper mold 2 and a lower mold 3 which are divided into two parts, and the whole is put into a container 4.

そして図示していないが、加熱機構により全体を超塑性
変形が発生する温度、約800〜1100℃に加熱する
。または、加熱機構を有さずに予め加熱した素材を用い
てもよい。
Although not shown, the entire structure is heated by a heating mechanism to a temperature of about 800 to 1100° C. at which superplastic deformation occurs. Alternatively, a preheated material without a heating mechanism may be used.

然るのち、分割された上下の金型2と3をパンチ5と6
により圧縮して超塑性鍛造を行なうのである。
After that, punches 5 and 6 are used to punch the upper and lower molds 2 and 3.
The material is then compressed to perform superplastic forging.

図中7は排気用孔で鍛造前に1O−5Torr以上の真
空度に真空排気したのち、k等の不活性ガスが容器内に
導入される。この不活性ガスは大気圧の1.05@以上
充填することが必要であり、この理由は大気が逆流して
容器内に入り込まないようにするためである。
In the figure, reference numeral 7 indicates an exhaust hole, and after evacuation is performed to a degree of vacuum of 10-5 Torr or more before forging, an inert gas such as K is introduced into the container. It is necessary to fill the inert gas with an atmospheric pressure of 1.05@ or more, in order to prevent the atmosphere from flowing back into the container.

なお図中8は空洞部であって真空または不活性ガス雰囲
気となる。
Note that the reference numeral 8 in the figure is a cavity, which is in a vacuum or inert gas atmosphere.

第1図に示すような状態で鍛造する場合、初期装荷の超
塑性合金の体積は金型内の空隙より大きくならなければ
ならない。
When forging in the condition shown in FIG. 1, the volume of the initially loaded superplastic alloy must be larger than the void in the mold.

そうでない場合には金型内を超塑性材料で埋め切ること
ができないためである。多すぎる場合には金型の一部に
切欠き等を設けて余分な材料を金型の外部へ流出するよ
うな構造にしておくことが好ましい。
This is because if this is not the case, the inside of the mold cannot be completely filled with the superplastic material. If there is too much material, it is preferable to provide a notch or the like in a part of the mold so that the excess material flows out of the mold.

また金型の厚み方向の寸法精度があまり厳しくない場合
には第2図に示すような構造の金型を使用することがで
きる。
Further, if the dimensional accuracy of the mold in the thickness direction is not very strict, a mold having a structure as shown in FIG. 2 can be used.

この発明の目的とするところは、高温における超塑性合
金の酸化を防止しながら超塑性加工を容易にかつ安価に
実施することである。
An object of the present invention is to easily and inexpensively perform superplastic working while preventing oxidation of a superplastic alloy at high temperatures.

超塑性鍛造を行なう素材として前記したようなTi系の
超塑性合金を用いる場合には、金型材質としてはNLを
50%以上含有し、残部Cr、Co、Nlなどを含有す
るN1合金(例えばインターナショナルニッケルコーポ
レーション製IN −100、ユナイテッドテクノロジ
ーズコーポレーション製 ワスバロイ、スペシャルメタ
ルズコーポレーション製υdilet 100など)が
適している。またNL系の超耐熱合金を鍛造用素材とす
る場合には、さらに高温、高強度の重合金を用いるのが
好ましい。
When using a Ti-based superplastic alloy as described above as the material for superplastic forging, the mold material should be an N1 alloy containing 50% or more of NL and the balance containing Cr, Co, Nl, etc. IN-100 manufactured by International Nickel Corporation, Wasbaloy manufactured by United Technologies Corporation, υdilet 100 manufactured by Special Metals Corporation, etc.) are suitable. Furthermore, when a NL-based super heat-resistant alloy is used as a forging material, it is preferable to use a heavy alloy with higher temperature and strength.

即ち、金型材料に要求される特性としては、鍛造温度に
おいて超塑性素材より強度が高く、かつ耐摩耗性に富み
、さらに超塑性素材との反応が少なく、剥離しやすい材
質が好ましいのである。
That is, as for the characteristics required for the mold material, it is preferable that the material has higher strength than the superplastic material at the forging temperature, has high wear resistance, has little reaction with the superplastic material, and is easily peeled off.

この発明の超塑性鍛造法が特にすぐれているのは、NL
系超塑性合金のような場合である。
The superplastic forging method of this invention is particularly superior because of the NL
This is the case for superplastic alloys.

即ち、N、系超塑性合金に適した金型用材料としては、
冷系合金がよいが、この合金は酸化されやすく、大気や
酸素と高温で接触すると、表面に酸化層が形成され、金
型寿命は極めて短い。ところがこの発明のように密封す
ることによって酸化を防止することができる。
In other words, mold materials suitable for N-based superplastic alloys include:
A cold alloy is preferable, but this alloy is easily oxidized, and when it comes into contact with the atmosphere or oxygen at high temperatures, an oxidized layer is formed on the surface, resulting in an extremely short mold life. However, by sealing as in this invention, oxidation can be prevented.

またT、系超塑性合金の場合であっても、やはり酸化さ
れやすい木材であるため、大気中での超塑性加工は望ま
しくなく、この発明の方法が特に有効である。
Furthermore, even in the case of T-based superplastic alloys, since the wood is easily oxidized, superplastic processing in the atmosphere is not desirable, and the method of the present invention is particularly effective.

〈実施例〉 以下、実施例によりこの発明の詳細な説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

5重量%M−2,5重量%Sr、−TL素材からなるφ
40×40の円柱を同じ5重量%#−2,5重示%Sr
  TL組成の2間厚の薄板容器内に入れ、lN100
製の鍛造金型を上下に配して固定し、5 x 10”6
Torrに真空排気後、99.99%純度のにガスを大
気圧の1.12倍まで充填し密閉した。
φ made of 5 wt% M-2, 5 wt% Sr, -TL material
40×40 cylinder with the same 5% by weight #-2,5% Sr
Place it in a thin plate container of TL composition with a thickness of 2.
5 x 10”6
After evacuation to Torr, gas of 99.99% purity was filled to 1.12 times atmospheric pressure and sealed.

このようにして作成した複合体を800℃で荷重400
トンのプレスで20mm厚さまで圧縮した。変形歪速度
は2 x10’3−’とした。
The composite thus created was heated to 800℃ under a load of 400℃.
It was compressed to a thickness of 20 mm using a ton press. The deformation strain rate was 2 x 10'3-'.

圧縮材の酸素濃度は元と全く同じで0.12重量%であ
ったため、完全な保護雰囲気で超塑性鍛造ができたこと
が認められた。
Since the oxygen concentration of the compressed material was exactly the same as the original, 0.12% by weight, it was confirmed that superplastic forging was possible in a completely protective atmosphere.

なお上記実施例では容器内を真空排気した後Arガスで
置換する例について述べたが、必ずしも真空排気する必
要はなく、第2図のように排気孔7.7′として出入口
を各1ケ所有するような構造の容器の場合には常圧で容
器内のガスを置換することができてより好ましい。
In the above embodiment, an example was described in which the inside of the container was evacuated and then replaced with Ar gas, but it is not necessarily necessary to evacuate the inside of the container. In the case of a container having such a structure, gas in the container can be replaced at normal pressure, which is more preferable.

〈発明の効果〉 以上説明したように、この発明の方法によれば超塑性圧
縮を完全な保護雰囲気下で行なうことができるのでLや
NL基超超硬合金ような酸化しやすい素材の超塑性鍛造
も酸化のおそれな〈実施することができるのである。
<Effects of the Invention> As explained above, according to the method of the present invention, superplastic compression can be performed in a completely protective atmosphere, which improves the superplasticity of easily oxidized materials such as L- and NL-based cemented carbides. Forging can also be carried out without the risk of oxidation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の方法における超塑性圧縮加工の一例
を示す説明図、第2図は同じく他の例を示す説明図であ
る。 1・・・超塑性鍛造用素材    2・・・上金型3・
・・下金型         4・・・容器5.6・・
・パンチ       7.7′・・・排気孔出願人代
理人  弁理士  和  1)  昭第1TIA 第2図
FIG. 1 is an explanatory diagram showing an example of superplastic compression processing in the method of the present invention, and FIG. 2 is an explanatory diagram showing another example. 1... Superplastic forging material 2... Upper mold 3.
...Lower mold 4...Container 5.6...
・Punch 7.7'...Exhaust hole applicant's agent Patent attorney Kazu 1) Showa 1 TIA Figure 2

Claims (1)

【特許請求の範囲】[Claims] 超塑性鍛造を行なう素材と同一の組成または金属組織を
有する薄板よりなる容器中に鍛造用素材および鍛造用金
型を固定し、該容器内部を10^−^5Torr以上の
真空度に真空排気した後、純度99.99%以上の不活
性ガスを大気圧の1.05倍以上の圧力になるまで充填
して密閉し、次いで該容器を鍛造することにより鍛造用
素材の変形を行なつて金属製品を製造することを特徴と
する完全な保護雰囲気中における超塑性鍛造法。
A forging material and a forging die were fixed in a container made of a thin plate having the same composition or metal structure as the material to be superplastically forged, and the inside of the container was evacuated to a vacuum level of 10^-^5 Torr or more. After that, the container is filled with an inert gas with a purity of 99.99% or more until the pressure reaches 1.05 times the atmospheric pressure or more and sealed, and then the container is forged to deform the forging material and form the metal. Superplastic forging method in a completely protective atmosphere, characterized by the production of products.
JP10566688A 1988-04-27 1988-04-27 Superplastic forging Pending JPH01278932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10566688A JPH01278932A (en) 1988-04-27 1988-04-27 Superplastic forging

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10566688A JPH01278932A (en) 1988-04-27 1988-04-27 Superplastic forging

Publications (1)

Publication Number Publication Date
JPH01278932A true JPH01278932A (en) 1989-11-09

Family

ID=14413761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10566688A Pending JPH01278932A (en) 1988-04-27 1988-04-27 Superplastic forging

Country Status (1)

Country Link
JP (1) JPH01278932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217916A1 (en) * 2019-04-26 2020-10-29 日立金属株式会社 Forging device, and method for manufacturing forged product

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020217916A1 (en) * 2019-04-26 2020-10-29 日立金属株式会社 Forging device, and method for manufacturing forged product
CN113710390A (en) * 2019-04-26 2021-11-26 日立金属株式会社 Forging apparatus and method for manufacturing forged product
EP3960327A4 (en) * 2019-04-26 2022-06-22 Hitachi Metals, Ltd. Forging device, and method for manufacturing forged product
US11883875B2 (en) 2019-04-26 2024-01-30 Proterial, Ltd. Forging device and method for manufacturing forged product
CN113710390B (en) * 2019-04-26 2024-05-03 株式会社博迈立铖 Forging apparatus and method for manufacturing forged product

Similar Documents

Publication Publication Date Title
US5580516A (en) Powders and products of tantalum, niobium and their alloys
US4065302A (en) Powdered metal consolidation method
US4693863A (en) Process and apparatus to simultaneously consolidate and reduce metal powders
US6852273B2 (en) High-strength metal aluminide-containing matrix composites and methods of manufacture the same
US5561829A (en) Method of producing structural metal matrix composite products from a blend of powders
US3700435A (en) Method for making powder metallurgy shapes
US4851055A (en) Method of making titanium alloy articles having distinct microstructural regions corresponding to high creep and fatigue resistance
US4077109A (en) Hot working of metal powders
US4808249A (en) Method for making an integral titanium alloy article having at least two distinct microstructural regions
US4615735A (en) Isostatic compression technique for powder metallurgy
US4612162A (en) Method for producing a high density metal article
US5445787A (en) Method of extruding refractory metals and alloys and an extruded product made thereby
US4365996A (en) Method of producing a memory alloy
EP0707910B1 (en) Porous metal body and process for producing same
EP0203197B1 (en) Process for producing super-heat-resistant alloy material
Rabin et al. Microstructure and tensile properties of Fe 3 Al produced by combustion synthesis/hot isostatic pressing
EP0202886B1 (en) Canless method for hot working gas atomized powders
US4708742A (en) Production of nitride dispersion strengthened alloys
JPH01278932A (en) Superplastic forging
JP3113144B2 (en) Method for producing high density sintered titanium alloy
WO1996024455A1 (en) Processes for extruding powdered metals including tantalum and niobium
US3987658A (en) Graphite forging die
JPS5884901A (en) Production of heat resistant superalloy by powder metallurgical method
KR100197152B1 (en) Method for sintering heavy alloy of w-ni-mn system
JP2001279303A (en) METHOD OF MANUFACTURING Ti-Al INTERMETALLIC COMPOUND MEMBER