JPH01278207A - Controlling method for electric railcar - Google Patents

Controlling method for electric railcar

Info

Publication number
JPH01278207A
JPH01278207A JP63103792A JP10379288A JPH01278207A JP H01278207 A JPH01278207 A JP H01278207A JP 63103792 A JP63103792 A JP 63103792A JP 10379288 A JP10379288 A JP 10379288A JP H01278207 A JPH01278207 A JP H01278207A
Authority
JP
Japan
Prior art keywords
wheel
wheel diameter
output
circuit
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63103792A
Other languages
Japanese (ja)
Inventor
Teruo Ueno
上野 照雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP63103792A priority Critical patent/JPH01278207A/en
Publication of JPH01278207A publication Critical patent/JPH01278207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To eliminate a push-pull phenomemon which occurs between wheels having different diameters of an electric railcar by calculating a wheel diameter correction coefficient on the basis of the wearing amount of the tread faces of wheels, and multiplying it by the output of a current limiting value pattern generator. CONSTITUTION:A distance l between a wheel 10 to be measured and a strain gauge 9 secured to a bearing box an axle having an always constant relative position to the axial center of the wheel 10 is measured, and is output to a wheel diameter corrector 8. The corrector 8 calculates a real wheel diameter WD at that time, and outputs a wheel diameter correction coefficient. Further, the output of a current limiting value pattern generator 4 is multiplied by that of the corrector 8, and input to a comparator 5. The comparator 5 compares the input value with the value of the rear armature current of the output of a real armature current measuring circuit 7, and outputs a cam axis stage advancing command to a cam motor rotation instructing circuit 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電気車、特に鉄道車両用電気車の安全および定
時運行匿必要不可欠な制御器の制御方式の改良に関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in the control system of a controller essential for the safety and punctual operation of electric vehicles, particularly electric vehicles for railway vehicles.

〔従来の技術〕[Conventional technology]

電気車制御方法において、直流電動機を用いた抵抗制御
のガム軸進段制御方式が最も一般的である。
The most common electric vehicle control method is a resistance-controlled gum shaft advance control method using a DC motor.

第2図はカム軸進段制御方式採用の制御器の機能を示す
もので、1はカ行指令回路、2はブレーキ指令回路、3
は応荷重信号回路、4は限流値パターン発生回路、5は
比較器、6はカムモータ回転指令回路、7は実電機子電
流測定回路である。
Figure 2 shows the functions of the controller that employs the camshaft advance control method, where 1 is a forward command circuit, 2 is a brake command circuit, and 3 is a brake command circuit.
4 is a variable load signal circuit, 4 is a current limit value pattern generation circuit, 5 is a comparator, 6 is a cam motor rotation command circuit, and 7 is an actual armature current measuring circuit.

第2図において、限流値パターン発生回路4はカ行指令
回路・1またはブレーキ指令回路2の出力により必要な
限流値を計算し、この値と電気車の車輪を駆動する電動
機(図示せず)の実電機子電流測定回路7の値とを比較
器5で比較し、必要があればカムモータ回転指令回路6
にカム軸(図示せず)進段の指令を出力して電動機を制
御する。
In FIG. 2, a current limit value pattern generation circuit 4 calculates a necessary current limit value based on the output of the drive command circuit 1 or the brake command circuit 2, and uses this value and the electric motor (not shown) that drives the wheels of the electric vehicle. The comparator 5 compares the value of the actual armature current measuring circuit 7 of
The motor is controlled by outputting a command to advance the camshaft (not shown) to the motor.

応荷重信号回路3は、電気車積載荷重の増減に応じであ
る範囲で限流値パターン発生回路4の値を増減する指令
を出力する。したがって、電気車積載荷重に関係なく電
気車の加減速度が一定となる機能が果される。
The variable load signal circuit 3 outputs a command to increase or decrease the value of the current limit value pattern generation circuit 4 within a certain range in response to an increase or decrease in the load on the electric vehicle. Therefore, a function is achieved in which the acceleration/deceleration of the electric vehicle is constant regardless of the load carried by the electric vehicle.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

かよう1こして、従来の電気車制御方法においては車輪
径が常に一定であれば応荷重信号回路の機能が果される
だけで、電気車の加減速度を積載荷重に関係なく一定に
保つことができ、一定のランカーブで定時走行が可能で
ある。
Thus, in the conventional electric vehicle control method, if the wheel diameter is always constant, the function of the variable load signal circuit is only performed, and the acceleration/deceleration of the electric vehicle can be kept constant regardless of the load. It is possible to run on time with a certain run curve.

しかし、車輪径は使用中の摩耗1こより変化するために
車輪径が変化した場合、電動機のトルクを一定とすれば
車輪外周で発生する引張力は変化する◎したがって、車
輪が摩耗して車輪径が小さくなるに従い車輪外周の引張
力が増し、見掛は上節減速度が大きくなる。この現象に
より、電気車がある区間走行時間が変化したり、複数の
制御器を塔載したー編成の電気車では、押し引きといっ
た現象が発生するものとなっていた。
However, the wheel diameter changes due to wear during use, so if the wheel diameter changes, and the torque of the electric motor is constant, the tensile force generated at the outer circumference of the wheel will change. As becomes smaller, the tensile force on the outer circumference of the wheel increases, and the apparent upper deceleration increases. As a result of this phenomenon, the traveling time of electric cars in a certain section changes, and in electric cars that are equipped with multiple controllers, push-pull phenomena occur.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上述したような問題点を解消するためなされた
ものであり、電気車の車輪を駆動する電動機の制御出力
信号を得る制御器を備えるものにおいて、変位計を用い
て車輪の車輪踏面の摩耗量を測定するとともに、この変
位計の出力を車輪径補正回路に入力して車輪径補正係数
値を算出し、かつ限流値パターン発生回路の出力と掛は
算して車輪径補正された限流値を比較器に出力すること
により、比較器を経てカムモータ回転指令回路にカム軸
進段指令を与えるようにしたものである。
The present invention has been made to solve the above-mentioned problems, and is equipped with a controller that obtains a control output signal of an electric motor that drives the wheels of an electric vehicle. In addition to measuring the amount of wear, the output of this displacement meter was input to the wheel diameter correction circuit to calculate the wheel diameter correction coefficient value, and the output of the current limit value pattern generation circuit was multiplied to correct the wheel diameter. By outputting the current limit value to the comparator, a camshaft advancement command is given to the cam motor rotation command circuit via the comparator.

〔作 用〕[For production]

しかして本発明は、台車の一部に車輪踏面と対向する如
く変位計を設置するものとすれば、変位計と車輪踏面と
の距離を測定でき、変位計の出力を車輪径補正回路に入
力して車輪径補正係数が演算され、車輪補正係数と限流
値パターン発生回路出力の掛は算により限流値の車輪径
の補正が自動的に行える。
However, in the present invention, if a displacement meter is installed in a part of the truck so as to face the wheel tread, the distance between the displacement meter and the wheel tread can be measured, and the output of the displacement meter is input to the wheel diameter correction circuit. A wheel diameter correction coefficient is calculated, and the wheel diameter of the current limit value can be automatically corrected by multiplying the wheel correction coefficient and the output of the current limit value pattern generation circuit.

〔実 施 例〕〔Example〕

第1図は本発明が適用された電気車制御方法の一実施例
を示すプロ、り図で、第2図と同一の符号は同一機能を
有する部分を示し、8は車輪径補正回路、9は変位計、
10は車輪を示す。ここで、変位計9は非接触で被測定
物との間の距離を測定する装置であり、例えば内部にコ
イルを設けて高周波電流を流し、被測定物との距離の差
によって生じる電流変化を検出すること1こより、被測
定物の間の距離を測定するものである。そして、変位計
9を車輪10の踏面と対向するごとく・その車輪10の
車軸の軸受箱に固定設置することにより、車輪踏面の摩
耗量を測定し得ることは明らかである。
FIG. 1 is a diagram showing an embodiment of the electric vehicle control method to which the present invention is applied, in which the same reference numerals as in FIG. 2 indicate parts having the same functions, 8 is a wheel diameter correction circuit, 9 is a displacement meter,
10 indicates a wheel. Here, the displacement meter 9 is a device that measures the distance between the object to be measured and the object to be measured in a non-contact manner. By detecting the object, the distance between the objects to be measured is measured. It is clear that the amount of wear on the wheel tread can be measured by fixing the displacement meter 9 to the bearing box of the axle of the wheel 10 so as to face the tread of the wheel 10.

すなわち、測定すべき車軸10の車軸中心との相対位置
が常に一定な車軸の軸受組番ζ固定された変位計9と車
輪10との間の距離1を測定し、変位計9は車輪径補正
回路8へ電気信号を送る。ここに、車輪径補正回路8は
その時の実車輪径WDを正確lこ算出し、電気車車両性
能を決定した際に設定した車両径との比を車輪径補正係
数として出力する。
In other words, the distance 1 between the wheel 10 and the displacement meter 9 whose bearing assembly number ζ of the axle whose relative position with respect to the axle center of the axle 10 to be measured is always constant is fixed is measured, and the displacement meter 9 is used to correct the wheel diameter. Send an electrical signal to circuit 8. Here, the wheel diameter correction circuit 8 accurately calculates the actual wheel diameter WD at that time, and outputs the ratio with the vehicle diameter set when determining the electric car vehicle performance as a wheel diameter correction coefficient.

さらに、限流値パターン発生回路4の出力と車輪径補正
回路8の出力とを掛は算して比較器5に入力する。比較
器5ではこの入力値と実電機子電流測定回路7出力の実
電機子電流の値を比較する。
Further, the output of the current limit value pattern generation circuit 4 and the output of the wheel diameter correction circuit 8 are multiplied and input to the comparator 5. The comparator 5 compares this input value with the value of the actual armature current output from the actual armature current measuring circuit 7.

したがって、かかる比較器から、カムモータ回転指令回
路6に必要があればカム軸進段の指令を出し、電気車の
車軸駆動電動機を制御できる。
Therefore, if necessary, the comparator issues a command to advance the camshaft to the cam motor rotation command circuit 6, thereby controlling the axle drive motor of the electric vehicle.

なお、本実施例では1個の変位計を測定すべき車輪の車
軸中心との相対位置が常に一定な車軸の軸受箱に固定設
置することにより、車輪径WDを測定するように構成し
たが、複数個の変位計を測定すべき車輪の複数方向から
その踏面に対向せしめて設置し、それらの踏面との距離
1を数学的に処理して車輪径WDを算出する方法を用い
るようにしてもよい。そして、車輪との相対位置が走行
中に変動する台車部分に変位計を設置しても、同様な効
果を得ることが可能である。
In this embodiment, the wheel diameter WD is measured by fixing one displacement meter to the bearing box of the axle whose relative position to the axle center of the wheel to be measured is always constant. Even if a method is used in which a plurality of displacement meters are installed facing the tread of the wheel to be measured from multiple directions, and the distance 1 between the wheels and the tread is processed mathematically to calculate the wheel diameter WD. good. A similar effect can be obtained even if a displacement meter is installed at a portion of the bogie whose relative position with the wheels changes during travel.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、車輪径検出の変位
計を備えるよう1こした車輪径補正回路を設け、併せて
応荷重信号回路を用いることにより、電気車の積載荷重
および車輪径の変化に関係することなく一定の加減速度
になる電気車制御が実現できるとともに、車輪径の違う
電気車車両間に発生する押し引きといった現象および車
輪駆動電動機の負荷のアンバランスなどが解消できる。
As explained above, according to the present invention, a wheel diameter correction circuit is provided which is equipped with a displacement meter for detecting the wheel diameter, and a variable load signal circuit is also used. It is possible to realize electric vehicle control that maintains constant acceleration/deceleration regardless of changes, and it also eliminates phenomena such as push-pull that occurs between electric vehicles with different wheel diameters and unbalanced loads on wheel drive motors.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明が適用された一実施例を示すブロック図
、第2図は一般的な直流電動機を用いた抵抗制御のカム
軸進段方式採用の制御器の機能を示すブロック図である
。 1・・・・・・力行指令回路、2・・・・・・ブレーキ
指令回路、3・・・・・・応荷重信号回路、4・・・・
−限流値パターン発生回路、5・−・・−・比較器、6
・・−・・・カムモータ回転指令回路、7・・・・・−
実電機子電流測定回路、8・・・・・・車輪径補正回路
FIG. 1 is a block diagram showing an embodiment to which the present invention is applied, and FIG. 2 is a block diagram showing the functions of a controller that uses a resistance-controlled camshaft advancement method using a general DC motor. . 1... Power running command circuit, 2... Brake command circuit, 3... Load variable signal circuit, 4...
- Current limit value pattern generation circuit, 5.--Comparator, 6
...--Cam motor rotation command circuit, 7...-
Actual armature current measurement circuit, 8...Wheel diameter correction circuit.

Claims (1)

【特許請求の範囲】[Claims]  電気車の車輪を駆動する電動機の制御出力信号を得る
制御器を備えるようにした電気車制御方法において、変
位計により車輪径の変化を測定し、その変化の変位信号
を前記制御器に入力して演算処理することにより、前記
電動機の制御出力を得るようにしたことを特徴とする電
気車制御方法。
In an electric vehicle control method including a controller that obtains a control output signal of an electric motor that drives wheels of an electric vehicle, a change in wheel diameter is measured by a displacement meter, and a displacement signal of the change is input to the controller. An electric vehicle control method characterized in that a control output of the electric motor is obtained by performing arithmetic processing on the electric vehicle.
JP63103792A 1988-04-28 1988-04-28 Controlling method for electric railcar Pending JPH01278207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63103792A JPH01278207A (en) 1988-04-28 1988-04-28 Controlling method for electric railcar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63103792A JPH01278207A (en) 1988-04-28 1988-04-28 Controlling method for electric railcar

Publications (1)

Publication Number Publication Date
JPH01278207A true JPH01278207A (en) 1989-11-08

Family

ID=14363251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63103792A Pending JPH01278207A (en) 1988-04-28 1988-04-28 Controlling method for electric railcar

Country Status (1)

Country Link
JP (1) JPH01278207A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694905A (en) * 1979-12-28 1981-07-31 Mitsubishi Electric Corp Controlling method for electric vehicle chopper

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5694905A (en) * 1979-12-28 1981-07-31 Mitsubishi Electric Corp Controlling method for electric vehicle chopper

Similar Documents

Publication Publication Date Title
KR950015169B1 (en) Control system for induction motor driven electric car
US6152546A (en) Traction vehicle/wheel slip and slide control
US10780904B2 (en) Method for controlling and possibly recovering the adhesion of the wheels of a controlled axle of a railway vehicle
US6148269A (en) Wheel diameter calibration system for vehicle slip/slide control
US6208097B1 (en) Traction vehicle adhesion control system without ground speed measurement
WO2014128820A1 (en) Brake control device, and brake control method
US11359997B2 (en) Chassis dynamometer for testing a two wheel drive vehicle, control method for the same, and chassis dynamometer program for testing a two wheel drive vehicle
EP0078655A2 (en) Wheel slip control system
US6828746B2 (en) Method and system using traction inverter for locked axle detection
US20200369305A1 (en) Vehicle control system
US10688878B2 (en) Variable-gauge-train control device
WO2014156928A1 (en) Controller of independently-driven-wheel truck
JP3089256B2 (en) Vehicle running and braking adjustment device
JPH01278207A (en) Controlling method for electric railcar
JP3677104B2 (en) Composite test apparatus and electric inertia control method thereof
JP4083697B2 (en) Electric vehicle control device and electric vehicle control method
JPH11103507A (en) Speed controller for car
CN113002317A (en) Drive system, method for operating a drive system and vehicle having a drive system
JP2000358306A (en) Method and apparatus for controlling electric rolling stock while moving at constant speed
JP3639170B2 (en) Electric brake control method and apparatus
JPH07118841B2 (en) Braking method of electric car
JP3636894B2 (en) Electric brake control method and apparatus
US9764750B1 (en) Apparatus and method of reducing slip/slide of railcar
JP2021102503A (en) Control device of suspension-type crane and inverter device
JP6422752B2 (en) Vehicle braking force control device