JPH01277754A - Detecting apparatus for chromatograph - Google Patents

Detecting apparatus for chromatograph

Info

Publication number
JPH01277754A
JPH01277754A JP10821088A JP10821088A JPH01277754A JP H01277754 A JPH01277754 A JP H01277754A JP 10821088 A JP10821088 A JP 10821088A JP 10821088 A JP10821088 A JP 10821088A JP H01277754 A JPH01277754 A JP H01277754A
Authority
JP
Japan
Prior art keywords
peak
absorption spectrum
spectrum data
chromatogram
absorbance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10821088A
Other languages
Japanese (ja)
Other versions
JP2661133B2 (en
Inventor
Mitsuo Kitaoka
北岡 光夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP63108210A priority Critical patent/JP2661133B2/en
Publication of JPH01277754A publication Critical patent/JPH01277754A/en
Application granted granted Critical
Publication of JP2661133B2 publication Critical patent/JP2661133B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To execute precise discrimination as to whether a peak of a chromatogram is one of a single component or an incompletely separated one, by monitoring said peak for an actually continuous time and by comparing mutually the whole of an absorption spectrum of a prescribed wavelength band. CONSTITUTION:A liquid flowing out from a liquid chromatograph L is made to circulate through a flow cell F, while a light emitted from a light source P and transmitted through the flow cell F is made to enter a spectroscope M. This incident light is dispersed by a diffraction grating G and the spectral image thereof is formed on a photodiode array D. An output of the diode array D is converted into an absorbance signal through an absorbance conversion circuit Ad. CPW samples the signal obtained through the absorbance conversion, at a prescribed time interval. Then, as to one chromatogram peak, a correlation value of absorption spectrum data at a certain time point with absorption spectrum data of the same peak at another time point is calculated with the former absorption spectrum data used as a basis. This correlation value is displayed on a time base by an appropriate display means.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はクロマトグラフの分光的検出装置に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a chromatographic spectroscopic detection device.

(従来の技術) クロマトグラフ検出方法として分光的方法を用いると1
1(に)1ラム流出酸分のピーク検出だけでなくカラム
流出成分が完全に単離されているか否を判別することが
できる。このような分光的検出方法として従来行われて
いる方法としては、三波長を使うもの、吸光スペクトル
を測定するもの等がある。
(Prior art) When a spectroscopic method is used as a chromatographic detection method, 1
In addition to detecting the peak of 1 (in) 1 ram effluent acid content, it is also possible to determine whether the column effluent components have been completely isolated. Conventional methods for such spectroscopic detection include those that use three wavelengths and those that measure absorption spectra.

三波長を用いる方法は二つの波長の光に対するカラム流
出流体の吸光度の変化を記録する他、三波長の吸光度の
比を記録するものである。クロマトグラムビークが単一
成分のものであれば、三波長の吸光度の比はピークの全
期間を通して一定であるから、吸光度比の記録は第2図
Aに示すように矩形波となる。ピークが二成分の不完全
分離のピークであるときは、二つの成分のピーク間には
多少の時間的ずれがあるから、三波長の吸光度比はピー
クの経過中に変化し、比の記録は第2図Bに示すように
上辺が曲りだ形の記録となり、比の記録が矩形が非矩形
であるかによってクロマトグラムのピークが単一成分の
ピークか不完全分離ピークかが判定できる。この方法に
は幾つかの問題がある。その一つは二つの波長の吸光度
のうち比の分母になる側の吸光度が二成分何れに対して
も0に近いときは比の値が大きくなり記録がスケールオ
ーバして比の変化が記録に現れなくなる。逆に分子にな
る側が二成分とも小さいときは比の値が小さくなり、記
録の」−で比の変化を認め難くなる。もう一つは二つの
成分で三波長の吸光度の比が偶々略々等しい場合、記録
上比の変化を認めるのが困難になって単一成分のピーク
と誤認ずろことになる。
The three-wavelength method not only records the change in absorbance of the column effluent fluid to two wavelengths of light, but also records the ratio of the absorbances of the three wavelengths. If the chromatogram peak is of a single component, the absorbance ratio of the three wavelengths is constant throughout the peak period, so the absorbance ratio record becomes a square wave as shown in FIG. 2A. When a peak is the peak of incomplete separation of two components, there is a slight time lag between the peaks of the two components, so the absorbance ratio of the three wavelengths changes during the course of the peak, and the recording of the ratio is As shown in FIG. 2B, the upper side is a curved record, and depending on whether the ratio record is rectangular or non-rectangular, it can be determined whether the peak of the chromatogram is a single component peak or an incompletely separated peak. This method has several problems. One of them is that when the absorbance of the two wavelengths that becomes the denominator of the ratio is close to 0 for both components, the value of the ratio becomes large, the recording scales over, and the change in the ratio is recorded. It stops appearing. On the other hand, when the two components on the molecule side are small, the ratio value becomes small, and it becomes difficult to recognize the change in the ratio in the recording. Another problem is that if two components happen to have approximately the same absorbance ratio at three wavelengths, it will be difficult to recognize the change in the ratio on the record, and the peak will be mistaken for a single component peak.

吸光スペクトルを測定する方法はクロマトグラフから試
料成分が流出している間に数回例えば流出の始まり(ピ
ークの立上)からピークトッププまでの間に一回、ピー
クトップで一回、ピークトップからピーク終端までの間
に一回の三回波長走査を行って吸収スペクトルを測定し
、それらの吸収スペクトルを重ねてMl jlする。こ
の際吸収スペクトルの最大値が1になるようにして記録
すると分り易くなる。クロマトグラムピークが単一成分
であれば3つの吸収スペクトルの記録は一致するが、二
成分の不完全ピークであれば、三つの吸収スペクトルは
互いに一致しないから、単一成分のピークでないことが
分る。この方法は多数の波長における吸光度の比を見て
いることになり、三波長の場合にあったような問題はな
くなるが、一つのピークについて時間軸上の数点でデー
タを採取しているに過ぎないから、二つのデータ採取時
点の中間に介在したような小さなピークを見落すことが
あり、この点では時間的に連続してクロマトグラムビー
クを観察している三波長方式に劣っている。
The absorption spectrum is measured several times while the sample components are flowing out from the chromatograph, for example, once from the beginning of the flow (rise of the peak) to the top of the peak, once at the top of the peak, and once at the top of the peak. The absorption spectrum is measured by performing one wavelength scan three times between the peak and the end of the peak, and these absorption spectra are superimposed and Ml jl is performed. At this time, it is easier to understand if the maximum value of the absorption spectrum is recorded to be 1. If the chromatogram peak is a single component, the three absorption spectra records will match, but if it is an incomplete peak of two components, the three absorption spectra will not match each other, indicating that the peak is not a single component peak. Ru. This method involves looking at the ratio of absorbances at multiple wavelengths, which eliminates the problem that existed in the case of three wavelengths, but data is collected at several points on the time axis for one peak. Because of this, small peaks such as those located between two data collection points may be overlooked, and in this respect, the method is inferior to the three-wavelength method, which observes chromatogram peaks continuously over time.

(発明が角り決しようとする課題) 三波長の光を用いる方式の欠点である単一成分ピークか
不完全分離ピークかのfq別の不完全性を改善し、かつ
吸収スペクトル間室方式の欠点である時間軸上の測定点
の粗さを改善して事実上連続的に吸収スペクトルを測定
しているのと同じ結果を得ようとするものである。
(Problem to be solved by the invention) It is possible to improve the imperfection of each fq, whether it is a single component peak or an incompletely separated peak, which is a drawback of the method using light of three wavelengths, and to solve the problem of the absorption spectrum inter-chamber method. The aim is to improve the roughness of measurement points on the time axis, which is a drawback, and to obtain the same results as actually measuring absorption spectra continuously.

(課題を解決するための手段) カラム流出流体の吸収スペクトルデータを適当な時間間
隔で一次元撮像素子を用いてサンプリングし、一つのク
ロマトグラムビークについて、或る時点での吸収スペク
トルデータを基準にしてその吸収スペクトルデータと同
ピークの他の時点での吸収スペクトルデータとの相関値
を算出し、その相関値を適当な表示手段で時間軸上に表
示するようにした。
(Means for solving the problem) The absorption spectrum data of the fluid flowing out of the column is sampled at appropriate time intervals using a one-dimensional imaging device, and the absorption spectrum data at a certain point in time is used as a reference for one chromatogram peak. Then, the correlation value between the absorption spectrum data and the absorption spectrum data at other times of the same peak was calculated, and the correlation value was displayed on the time axis using an appropriate display means.

(作用) クロマトグラムのピークの立上り時点の吸収スペクトル
のデータをAI(λ)、同ピークの任意のサンプリング
タイムにおける吸収スペクトルのサンプリングデータを
A2(λ)とする。これらは何れも吸収スペクトルのデ
ータであるから波長の関数で、ピークが単一成分のピー
クであれば、定数Kを適当に決めると、A1(λ)=K
A2(λ)となる。AI(λ)とA2(λ)の相関Rは
例えば で計算される。ピークが単一成分の場合Δ1(λ)=K
A2(λ)であるから相関値Rは1となり、ピークが不
完全分離ピークであるときはA2(λ)はサンプリング
時点によって異り、この場合AI(λ) −KA2 (
λ)となるようなKは存在せず、このときはRはO≦R
<1となり、二つの吸収スペクトルの差異が大なる程R
は小さな値となる。従って一つのピークについて相関関
係Rを経時的に記録すれば、単一成分ピークであればR
はピークの全期間を通じて1を示し、成分不完全分離の
ピークであればRは1より小で時間的に変動するから直
に判別することができる。
(Operation) Let AI(λ) be the data of the absorption spectrum at the time of the rise of the peak of the chromatogram, and let A2(λ) be the sampling data of the absorption spectrum at an arbitrary sampling time of the same peak. Since these are absorption spectrum data, they are functions of wavelength. If the peak is a single component peak, then if the constant K is determined appropriately, A1 (λ) = K
A2(λ). For example, the correlation R between AI(λ) and A2(λ) is calculated. If the peak is a single component, Δ1(λ)=K
Since A2(λ), the correlation value R is 1, and when the peak is an incompletely separated peak, A2(λ) varies depending on the sampling time, and in this case AI(λ) −KA2 (
λ), and in this case R is O≦R
<1, and the larger the difference between the two absorption spectra, the more R
is a small value. Therefore, if the correlation R is recorded over time for one peak, if it is a single component peak, R
shows 1 throughout the entire period of the peak, and if it is a peak due to incomplete component separation, R is smaller than 1 and changes over time, so it can be directly identified.

(実施例) 第1図に本発明の一実施例を示す。■、は液体クロマト
グラフでFはフローセルであり、液体クロマトグラフ■
、からの流出液が流通さゼである。Pは光源で、フロー
セルFを透過した光源Pからの光が分光器Mに入射せし
められる。この光は回折格子Gで分散され、フォトダイ
オードアレーD上にフローセル透過光のスペクトル像を
形成する。
(Example) FIG. 1 shows an example of the present invention. ■, is a liquid chromatograph, F is a flow cell, and liquid chromatograph■
, the effluent from is distributed. P is a light source, and the light from the light source P that has passed through the flow cell F is made to enter the spectroscope M. This light is dispersed by the diffraction grating G and forms a spectral image of the flow cell transmitted light on the photodiode array D.

CPUは中央処理装置で各種のm1r御および演算を行
っている。ROMは中央処理装置が行う各種制御および
演算のプログラムを格納しであるROMである。フォト
ダイオードアレーDの出力は吸光度変換回路Δbを通し
て吸光度信号に変換される。CPUは一定の時間間隔で
吸光度変換されたフォトダイオードアレーDの出力信号
をザンブリングし、A/D変換器AI)でA/D変換し
て取込み、通常はこの取込んだ吸収スペクトルを波長軸
方向に積分しており、この積分値へが一定しベルΔAを
超えたらクロマトグラフから試料成分の流出が始まった
(クロマトダラムのピークの立上り〉と判断して、その
時点′1゛0におけろ吸収スペクトルのデータΔ0(λ
)をメモリInに格納する。以後も引続き吸収スペクI
・ルデータの゛す°ンブリングを行い、吸収スペクトル
の積分を行うと共に、ザンブリングした吸収スペクトル
データA1(λ)、八2(λ)・・・をメモリmに格納
して行く。他方TO特点の吸収スペクトルAo(λ)と
以後の各サンプリング時点での吸収スペクトルAi(λ
)との相関値Rをリアルタイムで算出して記録計■(に
出力して相関値Rを記録紙上に記録させる。相関値Rの
計算は(1)式では積分形で書いているが、CI’Uで
行う場合具体的には波長の測定範囲をΔλ毎に区分して
、区分点の波長をλ0とするとき(n”0.1+ 2・
・・p)によってRを求めている。上述した動作を吸収
スペクトルの積分が所定レベルΔΔ以下になる迄続ける
。この動作は別のクロマトグラムピークにおいても行わ
れる。
The CPU is a central processing unit that performs various m1r controls and calculations. The ROM is a ROM that stores various control and calculation programs performed by the central processing unit. The output of the photodiode array D is converted into an absorbance signal through an absorbance conversion circuit Δb. The CPU zumbling the output signal of the photodiode array D whose absorbance has been converted at regular time intervals, A/D converting it using an A/D converter (AI), and importing the absorbed absorption spectrum in the wavelength axis direction. When this integral value becomes constant and exceeds Bell ΔA, the sample components begin to flow out from the chromatograph (it is judged as the rise of the chromatograph peak), and at that point '1゛0. Absorption spectrum data Δ0(λ
) is stored in memory In. Absorption Spec I will continue from now on.
- Performs embedding of all data, integrates the absorption spectrum, and stores the embedded absorption spectral data A1(λ), 82(λ), etc. in memory m. On the other hand, the absorption spectrum Ao(λ) of the TO feature point and the absorption spectrum Ai(λ) at each subsequent sampling point
) is calculated in real time and output to the recorder () to record the correlation value R on the recording paper.The calculation of the correlation value R is written in integral form in equation (1), but CI When using 'U', specifically, when the wavelength measurement range is divided by Δλ and the wavelength of the dividing point is λ0 (n"0.1+2・
...p) to find R. The above-described operation is continued until the integration of the absorption spectrum becomes equal to or less than a predetermined level ΔΔ. This operation is also performed on other chromatogram peaks.

相関値Rはり、アルタイムで計算し表示する場合にはク
ロマトグラムビークの立」ユリ時点TOにおける吸収ス
ペクトルを基準にして他のサンプリング時点における吸
収スペクトルとの相関を求めることになるが、メモリm
内のデータで時後的にRを計算し表示する場合には例え
ばビークトップにおける吸収スペクトルを基孕にして他
のサンプリング時点の吸収スペクトルとの間の相関を計
算して表示するようにしてもよい。
When the correlation value R is calculated and displayed in real time, the absorption spectrum at the top of the chromatogram peak is used as a reference to calculate the correlation with the absorption spectrum at other sampling times.
When calculating and displaying R over time using the data within, for example, it is possible to calculate and display the correlation between the absorption spectrum at other sampling points based on the absorption spectrum at the top of the peak. good.

(発明の効果〉 本発明によればクロマトグラムのピークを時間的に事実
上連続して監視し、かつ一定の波長域の吸収スペクトル
全体を相互比較しているので1.Illに三波長におけ
る連続監視或はクロマトグラムピーク内の数点における
吸収スペクトルの比較を行うのに比し、波長軸上でも時
間軸−Lでも従来例に比し遥かに高密度に監視が行われ
ており、クロマトグラムビークが単一成分のものか不完
全分離の複数成分のピークかの判定が従来法より遥かに
容易確実となる。更に三波長にけおる吸光度比を記録す
る方式では前述したように三波長の選び方によっては比
の値が記録装置でスゲールオーバしたり、小さ過ぎたり
して判定が困難になるので、波長選択が困難であったが
、本発明によればそのような波長選定の面倒さがな(、
相関値Rは最大値が1であるから記録計のレンジ設定が
簡単であり、相関値Rの大きさがクロマトダラムのピー
クの純度に関係した数値を示すので、その数値を様々な
自動化に利用することができ、またクロマトグラムビー
クの純度の経時的変化の様子を直観的に把握することが
容易となる。
(Effects of the Invention) According to the present invention, the peaks of the chromatogram are monitored virtually continuously in time, and the entire absorption spectra in a certain wavelength range are mutually compared. Compared to monitoring or comparing absorption spectra at several points within a chromatogram peak, monitoring is performed at a much higher density on the wavelength axis and on the time axis -L compared to conventional methods, and the chromatogram It is much easier and more reliable to determine whether a peak is a single component or an incompletely separated peak of multiple components than with conventional methods.Furthermore, with the method of recording the absorbance ratio across three wavelengths, as mentioned above, Depending on the method of selection, the ratio value may scale over the recording device or be too small, making it difficult to judge, so wavelength selection has been difficult, but the present invention eliminates such troublesome wavelength selection. (,
Since the maximum value of the correlation value R is 1, it is easy to set the range of the recorder, and the magnitude of the correlation value R indicates a value related to the purity of the chromatodarum peak, so that value can be used for various automations. In addition, it becomes easy to intuitively understand how the purity of the chromatogram peak changes over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例装置の構成を示すくブロック
図)、第2図は三波長法の問題点を説明する図である。 L・・・液体クロマトグラフ、M・・・分光器、F・・
・フローセル、P・・・光源、G・・・回折格子、D・
・・フォトダイオードアレー、Δd・・・吸光度変換回
路、CI)U・・・中央処理装置、m・・・メモリ、■
り・・・記録計。 代理人  弁理士 縣  浩 介
FIG. 1 is a block diagram showing the configuration of an apparatus according to an embodiment of the present invention, and FIG. 2 is a diagram illustrating the problems of the three-wavelength method. L...Liquid chromatograph, M...Spectrometer, F...
・Flow cell, P... light source, G... diffraction grating, D...
...Photodiode array, Δd...Absorbance conversion circuit, CI)U...Central processing unit, m...Memory, ■
ri...Recorder. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] カラム流出流体の吸収スペクトルデータを一次元撮像素
子を用いて適当に短い時間間隔でサンプリングし、一つ
のクロマトグラムピークについて、或る時点での吸収ス
ペクトルデータを基準にして、その吸収スペクトルデー
タと同ピークの他の時点での吸収スペクトルデータとの
相関値を算出し、その相関値を適宜表示手段で時間軸上
に表示するようにしたことを特徴とするクロマトグラフ
検出装置。
The absorption spectrum data of the fluid flowing out of the column is sampled at appropriately short time intervals using a one-dimensional imaging device, and for one chromatogram peak, the absorption spectrum data at a certain point in time is used as a reference, and the same absorption spectrum data is obtained. A chromatographic detection device characterized in that a correlation value between a peak and absorption spectrum data at other points in time is calculated, and the correlation value is appropriately displayed on a time axis by a display means.
JP63108210A 1988-04-30 1988-04-30 Chromatographic detector Expired - Fee Related JP2661133B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63108210A JP2661133B2 (en) 1988-04-30 1988-04-30 Chromatographic detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63108210A JP2661133B2 (en) 1988-04-30 1988-04-30 Chromatographic detector

Publications (2)

Publication Number Publication Date
JPH01277754A true JPH01277754A (en) 1989-11-08
JP2661133B2 JP2661133B2 (en) 1997-10-08

Family

ID=14478813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63108210A Expired - Fee Related JP2661133B2 (en) 1988-04-30 1988-04-30 Chromatographic detector

Country Status (1)

Country Link
JP (1) JP2661133B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251016A (en) * 1996-03-15 1997-09-22 Tosoh Corp Data processing method for diagnostic device using liquid chromatography
JP2002286704A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Data processing device for chromatograph

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410755A (en) * 1977-06-26 1979-01-26 Hasumi Ritsuo Wide band digital spectrometer
JPS5744823A (en) * 1980-08-30 1982-03-13 Shimadzu Corp Fourier spectroscope device
JPS585651A (en) * 1981-06-30 1983-01-13 Shimadzu Corp Display device for processing of chromatograph

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5410755A (en) * 1977-06-26 1979-01-26 Hasumi Ritsuo Wide band digital spectrometer
JPS5744823A (en) * 1980-08-30 1982-03-13 Shimadzu Corp Fourier spectroscope device
JPS585651A (en) * 1981-06-30 1983-01-13 Shimadzu Corp Display device for processing of chromatograph

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09251016A (en) * 1996-03-15 1997-09-22 Tosoh Corp Data processing method for diagnostic device using liquid chromatography
JP2002286704A (en) * 2001-03-28 2002-10-03 Shimadzu Corp Data processing device for chromatograph
JP4586288B2 (en) * 2001-03-28 2010-11-24 株式会社島津製作所 Chromatographic data processor

Also Published As

Publication number Publication date
JP2661133B2 (en) 1997-10-08

Similar Documents

Publication Publication Date Title
US4403861A (en) Photometric analyzer for automatically studying complex solutions
JPS6218859B2 (en)
Griffiths et al. Interferometers vs monochromators: separating the optical and digital advantages
EP0682242A1 (en) Method of and apparatus for measuring absorbance, component concentration or specific gravity of liquid sample
US4699514A (en) Multibeam measuring device
JPH07218491A (en) Detector for chromatograph
JPH1030982A (en) Method for analysing multicomponent aqueous solution
JPH01277754A (en) Detecting apparatus for chromatograph
US8830474B2 (en) External/internal optical adapter with reverse biased photodiodes for FTIR spectrophotometry
JPH0374794B2 (en)
JPH04157350A (en) Fluorescent measurement apparatus
Stark et al. NIR instrumentation technology
JP2003139512A (en) Thickness and moisture measuring method and thickness and moisture measuring device
US20050280812A1 (en) Numerical data processing dedicated to an integrated microspectrometer
JPH035538B2 (en)
US3211051A (en) Optical measuring device for obtaining a first derivative of intensity with respect to wavelength
JP2924267B2 (en) Chromatographic data processor
JPS62172261A (en) Method for removing background shift from peak spectrum in chromatogram using multiwavelength detector
JP2650363B2 (en) Chromatography equipment
JPS63243822A (en) Data processing method for array type detector
KR100406838B1 (en) Fast Scanning Double Beam Spectrophotometer for Multichannel Spectroscopy
JP3128163U (en) Spectrophotometer
JP2659398B2 (en) Atomic absorption photometer
JPS63317763A (en) Optical detector
JPH10206235A (en) Method and apparatus for standardizing spectral information and computer readable storage medium for utilization of standardized spectral information

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees