JPH0127763B2 - - Google Patents

Info

Publication number
JPH0127763B2
JPH0127763B2 JP57126537A JP12653782A JPH0127763B2 JP H0127763 B2 JPH0127763 B2 JP H0127763B2 JP 57126537 A JP57126537 A JP 57126537A JP 12653782 A JP12653782 A JP 12653782A JP H0127763 B2 JPH0127763 B2 JP H0127763B2
Authority
JP
Japan
Prior art keywords
phase
gas phase
gas
valve
control valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57126537A
Other languages
Japanese (ja)
Other versions
JPS5916508A (en
Inventor
Hiroyasu Aida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OBARA KIKI KOGYO KK
Original Assignee
OBARA KIKI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OBARA KIKI KOGYO KK filed Critical OBARA KIKI KOGYO KK
Priority to JP57126537A priority Critical patent/JPS5916508A/en
Publication of JPS5916508A publication Critical patent/JPS5916508A/en
Publication of JPH0127763B2 publication Critical patent/JPH0127763B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0042Degasification of liquids modifying the liquid flow
    • B01D19/0052Degasification of liquids modifying the liquid flow in rotating vessels, vessels containing movable parts or in which centrifugal movement is caused

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Degasification And Air Bubble Elimination (AREA)
  • Filtration Of Liquid (AREA)

Description

【発明の詳細な説明】 この発明は石炭重油混合燃料(以下COMと呼
ぶ)等のように粉体を含む高粘度流体を移送する
際、この高粘度流体中に含まれる規定以上の大き
さの粉体を取り除き、且つ気相分を自動的に分離
排除すると共に高粘度流体の移送状態に対応して
気相分を効率よく排出するようにした相分離シス
テムに関する。
[Detailed Description of the Invention] This invention provides a method for transporting a high viscosity fluid containing powder such as coal/heavy oil mixed fuel (hereinafter referred to as COM). The present invention relates to a phase separation system that removes powder, automatically separates and eliminates gas phase components, and efficiently discharges gas phase components in accordance with the transfer state of high viscosity fluid.

COMは石油燃料の節約と、石炭資源の見直し
から、石炭の微粉炭と重油とをほぼ等重量比で混
合し、分散を高める目的で微量の界面活性剤を注
入したものである。このような組成のために
COMは非常に高粘度であり、混入された気相分
は除去されにくい。しかし、燃料の使用効率の向
上は燃料転換の目的から見ても至上命題であり、
且つこれらCOMの取引の為の正確な量目計量は
絶対的な問題である。
In order to save petroleum fuel and review coal resources, COM is a mixture of pulverized coal and heavy oil in an almost equal weight ratio, and a small amount of surfactant is injected to improve dispersion. For such a composition
COM has a very high viscosity, and the mixed gas phase is difficult to remove. However, improving fuel usage efficiency is paramount from the perspective of fuel conversion.
And accurate weighing for these COM transactions is an absolute problem.

高粘度流体の高精度な計量は容積型流量計が現
状では最適であることから、COMの計量にも容
積型流量計の適用が考えられるがCOM中に含ま
れる微粉炭の大きなものは回転子に噛込み、回転
を停止することがあるとか、COMがビンガム流
的な挙動を示すことがあるなどのため、COMに
適用する容積型流量計に対しては種々な対策が施
されている。しかし、対策を施した容積型流量計
であつても、許容される一定大きさ以上の粒子が
含まれることは許されないので取除く必要があ
る。また、容積型流量計で計量する場合でないと
きでもCOM中に含まれる気相分は除去する必要
がある。この目的のため、相分離装置が用いられ
るが、タンカーなどにより燃料を陸上の貯蔵タン
クなどに移送する際には大量の空気が混入される
場合が多いので、気相分を効率よく取除く必要が
ある。
Since positive displacement flowmeters are currently optimal for high-precision measurement of high-viscosity fluids, positive displacement flowmeters can also be considered for measuring COM. Various countermeasures have been taken for positive displacement flowmeters that are used with COMs, such as when they get stuck in the flowmeter and stop rotation, or when the COM exhibits Bingham-like behavior. However, even if a positive displacement flowmeter is equipped with countermeasures, it is not allowed to contain particles larger than a certain allowable size, so they must be removed. Furthermore, even when not measuring with a positive displacement flowmeter, it is necessary to remove the gaseous phase contained in the COM. A phase separation device is used for this purpose, but since large amounts of air are often mixed in when fuel is transferred to onshore storage tanks by tankers, etc., it is necessary to efficiently remove the gas phase. There is.

ところで、気相分の多寡に相応した分離能力を
有する相分離装置を使用条件にあわせて、その都
度、設置することは得策ではない。しかしながら
タンカーなどにより燃料を貯蔵タンクに移送する
場合、タンカーの積載量、移送配管の容量あるい
は相分離装置の能力等により高粘度流体中に含ま
れる気相分の量は変化するものの、移送配管を流
れる流量の変化状態はほぼ一定している。この点
に着目して、移送配管に装着した相分離装置を効
率よく作動できるようにした相分離システムを提
供することが、本発明の目的である。
By the way, it is not a good idea to install a phase separator having a separation capacity corresponding to the amount of gas phase content each time according to the usage conditions. However, when fuel is transferred to a storage tank by a tanker, etc., the amount of gas phase contained in the high viscosity fluid varies depending on the tanker's loading capacity, the capacity of the transfer piping, the capacity of the phase separation device, etc. The state of change in the flow rate is almost constant. In view of this point, it is an object of the present invention to provide a phase separation system in which a phase separation device attached to a transfer pipe can be operated efficiently.

以下、本発明の構成を第1図に示す一実施例に
基づいて説明する。
The configuration of the present invention will be described below based on an embodiment shown in FIG.

1は相分離装置である。2は流入口3、流出口
4および濾過物取出しのための排出口5をそれぞ
れ開口した処理タンクであつて、高粘度流体を移
送する流路6に設けられている。7は処理タンク
2の上方に形成される貯溜部、8は排出口であ
る。9は処理タンク2の上部外側に取付けられた
モータで、回転軸9aが処理タンク2の中心部を
縦通してストレーナ機構Aのスクレーパ10を
過筒体11の外側に沿つて回転させてフイルタ篩
目に吸着した粗大粒子を除去できるようになつて
いる。過筒体11は所望の篩目を備えた多孔構
造体であつて、たとえば、ワイヤーメツシユ、パ
ンチングボードあるいは多段に配設されたリング
エレメント間の多段環状スリツトなど好みの濾過
面を備えるもので、その構成は何等特定されな
い。12は気相分離装置である。気相分離装置1
2はタンク13内にフロート14に連結された回
転棒15の弁棒16と連結された弁17が接続さ
れ排気口18を開閉できるようになつており、タ
ンク13内の液面変化によるフロート14の上下
動を利用した弁開閉を制御する構成を備えてい
る。19は排気口18に接続された排気流路、2
0は該排気流路に設けられた調節弁である。調節
弁はポジシヨナーを備える構成とすれば、弁開度
を任意に設定できるので、便利である。21は該
調節弁に操作信号を与えて弁開度を制御する制御
装置である。22は設定器で、該制御装置21に
設定信号を与えるためのもので、たとえば、プロ
グラムタイマーを用いる。
1 is a phase separation device. Reference numeral 2 denotes a processing tank having an inlet 3, an outlet 4, and an outlet 5 for taking out filtrate, and is provided in a flow path 6 for transferring high-viscosity fluid. 7 is a reservoir formed above the processing tank 2, and 8 is a discharge port. Reference numeral 9 denotes a motor attached to the outside of the upper part of the processing tank 2, and the rotating shaft 9a passes vertically through the center of the processing tank 2, and rotates the scraper 10 of the strainer mechanism A along the outside of the tube body 11 to remove the filter sieve. It is designed to remove coarse particles that stick to the eyes. The filter body 11 is a porous structure having a desired sieve mesh, and may be provided with a desired filtration surface such as a wire mesh, a punching board, or multi-stage annular slits between ring elements arranged in multiple stages. , its composition is not specified in any way. 12 is a gas phase separation device. Gas phase separator 1
2, a valve 17 connected to a valve stem 16 of a rotary rod 15 connected to a float 14 is connected in a tank 13 so that an exhaust port 18 can be opened and closed, and the float 14 is connected to a valve 17 connected to a valve stem 16 of a rotating rod 15 connected to a float 14 so that an exhaust port 18 can be opened and closed. It is equipped with a configuration that controls the opening and closing of the valve using the vertical movement of the valve. 19 is an exhaust flow path connected to the exhaust port 18;
0 is a control valve provided in the exhaust flow path. It is convenient if the control valve is equipped with a positioner because the valve opening degree can be set arbitrarily. Reference numeral 21 denotes a control device that applies an operation signal to the control valve to control the valve opening degree. Reference numeral 22 denotes a setting device for giving a setting signal to the control device 21, and uses, for example, a program timer.

叙上の構成ならびに第2図に示す流量変化に基
づいて本発明の作用を説明する。
The operation of the present invention will be explained based on the above configuration and the flow rate changes shown in FIG.

ポンプ(図示せず)を始動し、移送配管の弁
(図示せず)を開くと、移送開始直後においては
流路6内は空気で満たされている。したがつて、
この始動初期においては調節弁19が全開となる
ように設定しておくと、気相(ほとんど空気)は
相分離装置1を通つて排気流路19の調節弁20
を介して盛んに排出される。つぎに流体が流れ、
相分離装置に到達する時間t1は経験的に判つてい
るので、プログラムタイマーを設定しておくと、
時刻t1に達したとき調節弁20は、たとえば開度
が1/2に調節される。この状態で、処理タンク2
の流入口3よりCOMがストレーナ機構Aを備え
た濾過筒体11の外側に導入されると、濾過面に
COMが衝突し粗大粒子は濾過面に捕捉されると
共に濾過面を通過したCOMは濾過篩目の大きさ
で規定された大きさより小さい粒子分を含んだ
COMは通過して流出口4に流出する。COMが濾
過面に衝突すると、この濾過面にはCOM中に含
まれる気相分が捕捉されて気泡となり、更にスク
レーパ10により濾過面を摺動する際、前記気泡
が集束されスクレーパ10に沿つて浮上し貯溜部
7に液相分と共に貯溜され、気相分離装置12に
移送される。そして、気相分離装置の上部に気相
分が貯溜され、液位が低下するとフロート14は
下降し、これに伴ない弁17も下降し、排気口1
8は開口して気相分は排気流路19へ排出される
と共に液位は上昇して再び弁17は排気口18を
閉じる。一方、濾過面に捕捉された粗大粒子はス
クレーパ10を回転駆動することで、その引掻作
用により下方に落下し、排出口5より排出され
る。
When the pump (not shown) is started and the valve (not shown) of the transfer piping is opened, the flow path 6 is filled with air immediately after the start of transfer. Therefore,
If the control valve 19 is set to be fully open at this initial stage of startup, the gas phase (mostly air) will pass through the phase separator 1 to the control valve 20 in the exhaust flow path 19.
It is actively excreted through the Then the fluid flows,
Since the time t 1 for reaching the phase separation device is known empirically, by setting a program timer,
When time t1 is reached, the opening degree of the control valve 20 is adjusted to 1/2, for example. In this state, processing tank 2
When COM is introduced to the outside of the filter cylinder 11 equipped with the strainer mechanism A through the inlet 3 of the
When the COM collides, coarse particles are captured by the filtration surface, and the COM that passes through the filtration surface contains particles smaller than the size specified by the size of the sieve mesh.
COM passes through and flows out to outlet 4. When the COM collides with the filtration surface, the gas phase contained in the COM is captured by the filtration surface and becomes bubbles.Furthermore, when the COM is slid on the filtration surface by the scraper 10, the bubbles are converged and moved along the scraper 10. It floats up, is stored together with the liquid phase in the storage section 7, and is transferred to the gas phase separation device 12. Then, when the gas phase is stored in the upper part of the gas phase separator and the liquid level decreases, the float 14 descends, and accordingly the valve 17 also descends, and the exhaust port 1
8 is opened, the gaseous phase is discharged to the exhaust passage 19, the liquid level rises, and the valve 17 closes the exhaust port 18 again. On the other hand, by rotating the scraper 10, the coarse particles captured on the filter surface fall downward due to the scratching action and are discharged from the discharge port 5.

以上の作用によりCOM中の粗大粒子は連続し
て除去され、濾過差圧を常に小さい状態に保つて
使用されるとともに気相分は除去され、排気流路
19の調節弁20より排気される。したがつて、
流出口4より得られる清浄な流体は流量計(図示
せず)により精度よく計測されて貯蔵タンク(図
示せず)に移送される。
Due to the above-described action, coarse particles in the COM are continuously removed, and the COM is used while keeping the filtration differential pressure at a low level at all times, and the gaseous phase is removed and exhausted from the control valve 20 of the exhaust flow path 19. Therefore,
The clean fluid obtained from the outlet 4 is accurately measured by a flow meter (not shown) and transferred to a storage tank (not shown).

引き続いて、時刻T2において流量は最大で送
液される。さらに送輸操作終了近くになり、プロ
グラムタイマに設定された時刻T3において、調
節弁20は、たとえば1/2に開度調節され、時刻
T4において閉弁される。
Subsequently, at time T2 , the liquid is fed at the maximum flow rate. Further, near the end of the transport operation, at time T3 set in the program timer, the opening of the control valve 20 is adjusted to, for example, 1/2, and the opening of the control valve 20 is adjusted to 1/2.
The valve is closed at T 4 .

以上説明した調節弁20の弁開度調整は、一般
に液体移送において設定された流量を正しく移送
するに当たつて、流体の静電障害の除去、流体慣
性による流量超過をなくす目的で定められたフロ
ーパターンであり、COMのような粘性混相流に
対しても同一思想に基づいて第2図の如きフロー
パターンが適用される。而して粘性混相流におい
ては気相である気泡は粘性のため浮上しにくく、
従つて分離困難である。前記相分離装置上は過
筒体11に対して噴入することによる気泡を結合
促進して浮上する浮上効果を利用して気相を分離
する原理を利用したものであるが、更に気相分離
効果を向上させるために、前記フローパターンで
流入するCOMに含まれる気相分が流速の小さい
ときに多く、流速の大きいときに少ないことを利
用して、気相分離装置に流入する気相をCOM流
量に対応した弁開度で調節弁20を開閉するもの
で、小形の相分離装置上により満足した気相分離
ができる。
The valve opening adjustment of the control valve 20 described above is generally determined for the purpose of eliminating electrostatic interference of the fluid and eliminating excess flow rate due to fluid inertia when transferring a set flow rate correctly in liquid transfer. Based on the same idea, the flow pattern shown in Fig. 2 is also applied to viscous multiphase flow such as COM. Therefore, in a viscous multiphase flow, bubbles in the gas phase are difficult to float due to their viscosity.
Therefore, separation is difficult. The above-mentioned phase separation device utilizes the principle of separating the gas phase by utilizing the flotation effect of promoting the bonding of air bubbles by injecting them into the tube body 11. In order to improve the effectiveness, we take advantage of the fact that the gas phase contained in the inflowing COM in the flow pattern is large when the flow rate is low and small when the flow rate is high. The control valve 20 is opened and closed according to the valve opening degree corresponding to the COM flow rate, allowing for satisfactory gas phase separation on a small phase separation device.

叙上の如く、本発明に係る相分離システムによ
れば、タンカー等より陸上の貯蔵タンクへの燃料
受入れに対し、簡易な構造で、移送流路の流量状
態あるいは気相分の多寡に対応して気相分の分
離、排除が適切に行なわれるので、相分離装置の
分離機能の向上が図れると共に流量計による計量
精度の向上が図れる効果を有する。
As described above, the phase separation system according to the present invention has a simple structure and can respond to the flow rate state of the transfer channel or the amount of gas phase when receiving fuel from a tanker or the like to a storage tank on land. Since the gas phase component is appropriately separated and removed, the separation function of the phase separator can be improved, and the measurement accuracy of the flowmeter can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す構成図、第2
図は本発明の動作説明図である。 1……相分離装置、6……移送流路、19……
排気流路、20……調節弁、21……制御装置、
22……設定器。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is an explanatory diagram of the operation of the present invention. 1... Phase separation device, 6... Transfer channel, 19...
Exhaust flow path, 20... control valve, 21... control device,
22...Setting device.

Claims (1)

【特許請求の範囲】[Claims] 1 固・液・気相からなる粘性混相流から個別に
固相、気相を分離し液相を求める相分離システム
であつて、該相分離システムを流入した粘性混相
流における液相を分離する円筒状のフイルタとフ
イルタ外周面に付着した固相分を排除するスクレ
ーパとフイルタ外周面より浮上した気相を貯蔵可
能とする筒状の相分離装置と、該相分離装置上部
の気相貯溜部に連通し、該貯溜部に貯蔵された気
相を導入し、気相中に含まれる液相を重力により
分離し該液相の液面に応じて浮上するフロートに
連動する弁を介して気相を排出する気相分離装置
と該気相分離装置における気相を排出する排気流
路に介装された調節弁と該調節弁の開閉を制御駆
動する制御装置と該制御装置に粘性混相流流量の
タイムチヤートに応じて前記調節弁の弁開度を指
令する設定器とから構成し、前記設定器を粘性混
相流の流量が小さいときに弁開度を大とし、流量
が大きいときに弁開度を小さく設定したことを特
徴とする相分離システム。
1 A phase separation system that separately separates solid and gas phases from a viscous multiphase flow consisting of solid, liquid, and gas phases to obtain a liquid phase, which separates the liquid phase in the viscous multiphase flow that flows into the phase separation system. A cylindrical filter, a scraper for removing the solid phase adhering to the outer circumferential surface of the filter, a cylindrical phase separator that can store the gas phase floating from the outer circumferential surface of the filter, and a gas phase storage section in the upper part of the phase separator. The gas phase stored in the storage section is introduced into the reservoir, and the liquid phase contained in the gas phase is separated by gravity, and the gas is passed through a valve linked to a float that rises according to the liquid level of the liquid phase. A gas phase separator for discharging a gas phase, a control valve installed in an exhaust flow path for discharging a gas phase in the gas phase separator, a control device for controlling and driving the opening and closing of the control valve, and a viscous multiphase flow control device for controlling the opening and closing of the control valve. and a setting device that commands the valve opening of the control valve according to the time chart of the flow rate, and the setting device increases the valve opening when the flow rate of the viscous multiphase flow is small, and sets the valve opening when the flow rate is large. A phase separation system characterized by a small opening.
JP57126537A 1982-07-19 1982-07-19 Phase separating system Granted JPS5916508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57126537A JPS5916508A (en) 1982-07-19 1982-07-19 Phase separating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57126537A JPS5916508A (en) 1982-07-19 1982-07-19 Phase separating system

Publications (2)

Publication Number Publication Date
JPS5916508A JPS5916508A (en) 1984-01-27
JPH0127763B2 true JPH0127763B2 (en) 1989-05-30

Family

ID=14937648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57126537A Granted JPS5916508A (en) 1982-07-19 1982-07-19 Phase separating system

Country Status (1)

Country Link
JP (1) JPS5916508A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7207910B2 (en) * 2018-09-03 2023-01-18 日本特殊陶業株式会社 Particle extraction device, particle extraction method

Also Published As

Publication number Publication date
JPS5916508A (en) 1984-01-27

Similar Documents

Publication Publication Date Title
CA2615556C (en) Method and apparatus to optimize the mixing process
MXPA06011753A (en) A gravity separator for a multi-phase effluent.
US5525042A (en) Liquid pump with compressed gas motive fluid
CS206656B1 (en) Apparatus for conversion of pulverized or powder containing rigid substances into system of higher pressure
CA1053588A (en) Cleaning and pumping apparatus for oil well production
JP2001009204A (en) Oil separating device
JPH0127763B2 (en)
EP1260259B1 (en) Arrangement and method for cleaning fine solid particles from a continuously flowing liquid suspension
CN112302965B (en) Slurry pump performance detection method and device
JPH0610400A (en) Device having cylindrical wall-shaped separating surface having liquid permeability and removing separating substance from liquid
CN106526224B (en) A kind of solid-liquid two-phase flow speed measuring device and method
EP2170520A1 (en) A method of using a separator and a separator
KR20050083782A (en) Separating device, particularly for separating solids from liquids
JPS644804B2 (en)
JPH0333612B2 (en)
JPH08187403A (en) Gas/liquid separation device
US2515202A (en) Gas and liquid separator
RU2131027C1 (en) Device for measuring production rate of oil wells
JPH0144362B2 (en)
JPH0159316B2 (en)
JP3266946B2 (en) Gas-liquid separation device and liquid supply device
JPS5916507A (en) Phase separating system
CN219416684U (en) Experimental device for be used for aassessment swirler separation efficiency
JPH0131407B2 (en)
JPS595920A (en) Flow rate measuring system for burning line of com