JPH01276707A - Coil cooling device, normal conducting magnet provided with same and manufacture thereof - Google Patents

Coil cooling device, normal conducting magnet provided with same and manufacture thereof

Info

Publication number
JPH01276707A
JPH01276707A JP63106283A JP10628388A JPH01276707A JP H01276707 A JPH01276707 A JP H01276707A JP 63106283 A JP63106283 A JP 63106283A JP 10628388 A JP10628388 A JP 10628388A JP H01276707 A JPH01276707 A JP H01276707A
Authority
JP
Japan
Prior art keywords
coil
cooling plate
aluminum
cooling device
adhesion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63106283A
Other languages
Japanese (ja)
Inventor
Makoto Takahashi
良 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GE Healthcare Japan Corp
Original Assignee
Yokogawa Medical Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Medical Systems Ltd filed Critical Yokogawa Medical Systems Ltd
Priority to JP63106283A priority Critical patent/JPH01276707A/en
Publication of JPH01276707A publication Critical patent/JPH01276707A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

PURPOSE:To improve overall heat transfer coefficient at adhesion surface and to simplify adhesion operation to a coil section by applying anodic oxidation treatment to an adhesion side of coil of a cooling plate which is bonded to an edge surface of a normal conducting coil. CONSTITUTION:A coil 1 is formed by laminating a long stripe of a conductive copper or aluminum tape and an electrically insulating tape or by winding up an oxidized aluminum tape in a concentric circle to an electrically insulating tubed bobbin 8, and the side thereof is finished in a flat face by machining. A cooling plate 2 is composed of an aluminum or aluminum alloy and oxidation treatment is applied to the adhesion surface of the cooling plate 2 and the coil 1 to form an aluminum oxide coating 12. Since the coating 12 is highly insulating, the coil 1 and the cooling plate 2 are adhered through one layer of a thermal compound 6. The overall heat transfer coefficient at an adhesion surface can be improved and adhesion operation to a coil section can be simplified in this way.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、IIHR−CT等の高磁場を発生する常伝導
コイル端面に、密着手段を介してその側面が密着される
冷却板と、前記コイルによって発生ずる熱を水冷管等で
熱交換を行う放熱手段とを備えたコイル冷却装置に関し
、更に詳しくは、前記密着面の熱伝達効率を向上したコ
イル冷却装置、このコイル冷却装置を備えた常伝導磁石
及びこのコイル冷却装置を備えた常伝導磁石の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a cooling plate whose side surface is closely adhered to the end face of a normal conducting coil that generates a high magnetic field such as in IIHR-CT via an adhesive means; It relates to a coil cooling device equipped with a heat dissipation means for exchanging heat generated by the coil with a water-cooled pipe or the like, and more specifically, a coil cooling device with improved heat transfer efficiency of the contact surface, and a coil cooling device equipped with this coil cooling device. The present invention relates to a normal conducting magnet and a method for manufacturing the normal conducting magnet equipped with a coil cooling device.

(従来の技術) NHR−CT等で用いられる常伝導磁石は、導電コイル
に大電流を流すことによって高磁場を発生している、従
って、このコイル部には電流と抵抗の2乗の積に比例し
たジュール熱が発生し、温度上昇による抵抗率やコイル
体積変化などにより磁場強度が不安定になるなどの悪影
響が生じる。このため、直接コイル導線を水等で冷却す
る直接冷却方式、又は、コイル両側面に冷却手段を密着
する間接冷却方式によりコイル部の放熱が行われる。第
2図は、従来例の間接冷却型のコイル冷却装置とコイル
の概略図である。第2図において、1は高磁場を発生す
る常伝導磁石のコイル、2は熱伝導性の良好なアルミニ
ウムで構成され、内部に放熱用の水路3を備えた冷却板
である。このような冷却板2は、サーマルコンパウンド
等の密着手段を介してコイル1の側面に密着される。コ
イル1で発生した熱は、給水口4から給水され水路3を
循環し、排水口5から排水される冷却液によって奪われ
放出される。第3図は、従来例のコイル冷却装置をコイ
ルに取付けた状態での断面図である。
(Prior art) A normal conducting magnet used in NHR-CT etc. generates a high magnetic field by passing a large current through a conductive coil. Proportional Joule heat is generated, and adverse effects such as magnetic field strength becoming unstable are caused by changes in resistivity and coil volume due to temperature rise. For this reason, heat radiation from the coil portion is performed by a direct cooling method in which the coil conducting wire is directly cooled with water or the like, or an indirect cooling method in which cooling means are brought into close contact with both sides of the coil. FIG. 2 is a schematic diagram of a conventional indirect cooling type coil cooling device and a coil. In FIG. 2, reference numeral 1 indicates a coil of a normal conducting magnet that generates a high magnetic field, and reference numeral 2 indicates a cooling plate made of aluminum having good thermal conductivity and having a heat radiation water channel 3 inside. Such a cooling plate 2 is closely attached to the side surface of the coil 1 through an adhesive means such as a thermal compound. The heat generated in the coil 1 is removed and released by the coolant that is supplied from the water supply port 4, circulates through the water channel 3, and is drained from the drain port 5. FIG. 3 is a sectional view of a conventional coil cooling device attached to a coil.

第3図において、第2図と同じものは同一の記号を用い
る。第3図において、6はコイル1及び冷却板2の密着
される端面(以後密着面と呼ぶ)に塗布されたサーマル
コンパウンド、7は前記密着面のサーマルコンパウンド
間に挾まれ、コイル1と水冷板2との電気的絶縁を行う
フィルム状のマイラである。この様な構成のコイル冷却
装置においては、コイル1で発生する熱は、コイル1側
面→サーマルコンパウンド6→マイラ7→サーマルコン
パウンド6→冷却板2側面→水路3→排水口5の順番で
伝達され放出されることにより、コイル1の温度上昇を
抑える。
In FIG. 3, the same symbols are used for the same parts as in FIG. 2. In FIG. 3, 6 is a thermal compound applied to the end surfaces of the coil 1 and the cooling plate 2 that are in close contact (hereinafter referred to as the contact surface), and 7 is a thermal compound that is sandwiched between the thermal compound on the contact surface, and the coil 1 and the water cooling plate are This is a film-like mylar film that provides electrical insulation between the two. In a coil cooling device with such a configuration, the heat generated in the coil 1 is transferred in the following order: side of the coil 1 → thermal compound 6 → mylar 7 → thermal compound 6 → side of cooling plate 2 → water channel 3 → drain port 5. By being released, the rise in temperature of the coil 1 is suppressed.

(発明が解決しようとする課題) 一般的に、上記のように構成されたコイル冷却装置の密
着面においては、冷却効率を高めるために、コイルから
冷却板へ高い熱透過率が望まれる。
(Problems to be Solved by the Invention) Generally, in the close contact surface of the coil cooling device configured as described above, high heat transmittance from the coil to the cooling plate is desired in order to improve cooling efficiency.

しかし、従来では、電気的絶縁に用いられているマイラ
の熱伝導率が金属等に比べて極めて低く、この部分が大
きな熱抵抗となってしまう、又、コイル側と冷却板側の
両方の端面に密着手段を塗布しなければならず、この密
着手段の厚みら熱抵抗となり、コイルから冷却板への熱
通過率を低下させている。この結果、冷却効率の低下か
ら、コイル部の温度上昇に起因する磁場強度ドリフトや
、温度安定までの立ち上がり時間が長くなり、安定した
高磁場が得られるまでの電力コストが高価になる等の問
題が生じる。又、フィルム状のマイラは傷つき易いため
、密着させる際の作業も慎重を要する作業となっていた
However, conventionally, the thermal conductivity of Mylar, which is used for electrical insulation, is extremely low compared to metals, etc., and this part has a large thermal resistance. It is necessary to apply an adhesion means to the coil, and the thickness of this adhesion means becomes a thermal resistance, reducing the rate of heat passage from the coil to the cooling plate. As a result, problems such as decreased cooling efficiency, magnetic field strength drift due to temperature rise in the coil section, longer rise time until the temperature stabilizes, and higher power costs until a stable high magnetic field is obtained. occurs. In addition, the film-like Mylar is easily damaged, so the work of adhering it tightly requires careful work.

本発明は、コイルと冷却板との密着面における熱通過率
を向上させることにより、前記問題点を解消し、冷却効
率を向上し、且つ、コイル部への密着作業の容易なコイ
ル冷却装置、このコイル冷却装置を備えた常伝導磁石及
びこのコイル冷却装置を備えた常伝導磁石の製造方法を
提供することを目的とする。
The present invention solves the above-mentioned problems by improving the heat transfer rate at the contact surface between the coil and the cooling plate, and provides a coil cooling device that improves cooling efficiency and that is easy to work in close contact with the coil part. It is an object of the present invention to provide a normal conducting magnet equipped with this coil cooling device and a method for manufacturing a normal conducting magnet equipped with this coil cooling device.

(課題を解決するための手段) アルミニウム又はアルミニウム合金で構成され、高磁場
を発生する常伝導コイルの端面に密着手段を介して側面
が密着される冷却板と、前記コイルによって発生する熱
を放出する放熱手段とを備えたコイル冷却装置、このコ
イル冷却装置を備えた常伝導磁石及びこのコイル冷却装
置を備えた常伝導磁石の製造方法において、前記冷却板
のコイル密着側面に陽極酸化表面処理を施すことを特徴
とする。
(Means for Solving the Problems) A cooling plate made of aluminum or an aluminum alloy and whose side surface is closely attached to the end face of a normal conducting coil that generates a high magnetic field via an adhesive means, and dissipates the heat generated by the coil. A coil cooling device equipped with a heat dissipation means, a normal conduction magnet equipped with this coil cooling device, and a method for manufacturing a normal conduction magnet equipped with this coil cooling device, in which the side surface of the cooling plate in close contact with the coil is anodized surface treated. It is characterized by applying.

(作用) コイルと冷却板との電気的絶縁として、従来のものより
も高い電気絶縁性と熱伝導率を持ち、又、冷却板との熱
の伝達が金属結合による熱伝導であるアルミニウム陽極
酸化表面処理による酸化アルミニウム被膜を用いるなめ
、コイルから冷却板への密着面での熱通過率が向上する
と共に、絶縁手段のfil的強度が従来よりも強くなり
コイル部への密着作業が容易になる。
(Function) As electrical insulation between the coil and the cooling plate, aluminum anodization has higher electrical insulation and thermal conductivity than conventional ones, and heat transfer to the cooling plate is conducted through metal bonding. By using an aluminum oxide film through surface treatment, the heat transfer rate on the contact surface from the coil to the cooling plate is improved, and the film strength of the insulating means is stronger than before, making it easier to adhere to the coil part. .

(実施例) 以下、図面を参照して本発明について詳細に説明する。(Example) Hereinafter, the present invention will be explained in detail with reference to the drawings.

第1図は本願発明の一実施例のコイル冷却装置をコイル
に取付けた状態での断面図である。
FIG. 1 is a sectional view of a coil cooling device according to an embodiment of the present invention attached to a coil.

第1図において、第3図と同じものは同一の記号を用い
ている。第1図において、コイル1は長い帯状の導電性
の銅又はアルミニウムテープと電気絶縁性のテープ、例
えばノーメックス紙やマイラ又はカプトン等を重ねるか
、又は、アルミニウムテープを酸化処理したものを、電
気絶縁性で円筒形のボビン8に同心円状に巻き上げて作
られたシー l−ワインディング型コイルで、その側面
が機械加工などで平面に仕上げられている。水冷ジャケ
ット(冷却板)2はアルミニウム又はアルミニウム合金
で構成され、水冷ジャケット2のコイル1との密着面側
は拡大図に示すように、表面に陽極酸化表面処理が施さ
れており、酸化アルミニウム被111(Al□0.)1
2が生成されている。この酸化アルミニウム被膜12は
、高い電気絶縁性を持つため、従来のマイラが不要とな
り、このためコイル1と水冷ジャケット2の間は、1層
のサーマルコンパウンド6を介して密着されている。水
冷ジャケット2は密着面の反対側から、ボルト11によ
ってボビン8に固定された押えブロック10及び、水冷
ジャケット2と押えブロック10の間に挾まれたゴムス
ポンジ又は板ばねからなる弾性材9により、密着面方向
に押し付けられ、固定されている。ここで、酸化アルミ
ニウム被膜12の機械的強度が、従来の電気的絶縁手段
であるマイラよりも強いため、密着作業における取扱い
が容易である。
In FIG. 1, the same symbols are used for the same parts as in FIG. 3. In Fig. 1, a coil 1 is made of a long strip of conductive copper or aluminum tape and an electrically insulating tape such as Nomex paper, Mylar or Kapton, or an oxidized aluminum tape. This is a winding type coil made by winding it concentrically around a cylindrical bobbin 8, and its sides are finished flat by machining. The water cooling jacket (cooling plate) 2 is made of aluminum or aluminum alloy, and as shown in the enlarged view, the surface of the water cooling jacket 2 that comes in close contact with the coil 1 is anodized and coated with aluminum oxide. 111(Al□0.)1
2 has been generated. Since this aluminum oxide coating 12 has high electrical insulation properties, conventional mylar is not required, and therefore the coil 1 and the water cooling jacket 2 are closely bonded through one layer of thermal compound 6. The water-cooling jacket 2 is secured to the bobbin 8 by a bolt 11 from the opposite side, and an elastic member 9 made of a rubber sponge or a leaf spring is sandwiched between the water-cooling jacket 2 and the presser block 10. It is pressed and fixed in the direction of the contact surface. Here, since the mechanical strength of the aluminum oxide film 12 is stronger than Mylar, which is a conventional electrical insulating means, it is easy to handle in the adhesion work.

以上の構成において、本実施例のコイル冷却装置の動作
を説明する。コイル1に電流を流すとジュール熱が発生
する。この熱は、コイル1側面→サーマルコンパウンド
6→酸化アルミニウム被膜12→水冷ジャゲット2側面
→水路3→排水口5の順番で伝達され放出される。ここ
で、酸化アルミニウム被II!12層は、従来の絶縁手
段〈マイラ)よりも約100倍高い熱伝導率を持ち、又
、水冷ジャケット2との熱の伝達が金属結合による熱伝
導であるため、電気絶縁層での熱伝導及び熱伝達効率が
向上する。又、前記のように、密着のためのサーマルコ
ンパウンド5がIN省略できる分薄くなり、密着層にお
ける熱抵抗が低下し、密着層での熱伝導効率が向上する
。従って、コイル1から水冷ジャケット2への熱通過率
が向上する。
In the above configuration, the operation of the coil cooling device of this embodiment will be explained. When a current is passed through the coil 1, Joule heat is generated. This heat is transmitted and released in the order of the side surface of the coil 1 → the thermal compound 6 → the aluminum oxide coating 12 → the side surface of the water cooling jacket 2 → the water channel 3 → the drain port 5. Here, aluminum oxide II! The 12 layers have a thermal conductivity that is about 100 times higher than conventional insulation means (Mylar), and since heat is transferred to the water cooling jacket 2 through metal bonding, heat conduction in the electrical insulation layer is improved. and heat transfer efficiency is improved. Further, as described above, the thermal compound 5 for adhesion becomes thinner because IN can be omitted, the thermal resistance in the adhesion layer is reduced, and the heat conduction efficiency in the adhesion layer is improved. Therefore, the heat transmission rate from the coil 1 to the water cooling jacket 2 is improved.

尚、本発明は上記実施例に限定するものではなく、特許
請求の範囲内で種々の変形が可能である。
Note that the present invention is not limited to the above embodiments, and various modifications can be made within the scope of the claims.

例えば、放熱手段は水冷管によるものでなく、油等の池
の液体等によるものにしても良い。又、固定手段は、接
着材などを用い密着手段に兼ねさせても良い、更に、シ
ートワインディング型のコイルに限らず、例えば導電線
材を巻いた他の常伝導磁石のコイルの冷却に用いても良
い。
For example, the heat dissipation means may not be a water-cooled pipe, but may be a pond liquid such as oil. In addition, the fixing means may also be used as a close contact means using an adhesive or the like.Furthermore, it can be used not only for sheet winding type coils but also for cooling other normal conductive magnet coils wound with conductive wire material. good.

(発明の効果) 以上の説明の通り、本発明のコイル冷却装置、このコイ
ル冷却装置を備えた常伝導磁石及びこのコイル冷却装置
を備えた常伝導磁石の製造方法によれば、以下の効果が
得られる。即ち、高磁場を発生する常伝導コイルによっ
て発生する熱を放出する放熱手段と、コイルの端面に密
着手段を介して側面が密着されるアルミニウム又はアル
ミニウム合金で構成された冷却板を備えたコイル冷却装
置、このコイル冷却装置を備えた常伝導磁石及びこのコ
イル冷却装置を備えた常伝導磁石の製造方法において、
冷却板のコイル密着面に陽極酸化表面処理を施し、酸化
アルミニウム被膜をコイルと冷却板との電気的絶縁手段
とする。これにより、(1)酸化アルミニウム被膜は、
高い熱伝導率を有し、冷却板との熱の伝達が金属結合に
よる熱伝導であるため、従来より電気絶縁層での熱伝導
及び熱伝達効率が向上する。又、密着手段をコイル側と
冷却板側の両面に塗布する必要がなくなるため、密着層
も1層で済むため薄くなり、密着手段における熱抵抗が
低下し、密着層での熱伝導効率が向上する。
(Effects of the Invention) As explained above, according to the coil cooling device, the normal conducting magnet equipped with this coil cooling device, and the manufacturing method of a normal conducting magnet equipped with this coil cooling device of the present invention, the following effects can be achieved. can get. In other words, a coil cooling device is equipped with a heat dissipation means for releasing heat generated by a normal conduction coil that generates a high magnetic field, and a cooling plate made of aluminum or aluminum alloy whose side surface is closely attached to the end face of the coil via an adhesive means. A device, a normal magnet equipped with this coil cooling device, and a method for manufacturing a normal magnet equipped with this coil cooling device,
The coil-adhering surface of the cooling plate is subjected to anodizing surface treatment, and the aluminum oxide coating is used as an electrical insulation means between the coil and the cooling plate. As a result, (1) the aluminum oxide film is
Since it has high thermal conductivity and heat is transferred to the cooling plate through metal bonding, the heat conduction and heat transfer efficiency in the electrical insulating layer are improved compared to the conventional method. In addition, since it is no longer necessary to apply the adhesion means to both the coil side and the cooling plate side, the adhesion layer is thinner because only one layer is required, the thermal resistance in the adhesion means is reduced, and the heat conduction efficiency in the adhesion layer is improved. do.

従って、コイルから冷却板への熱通過率が向上し、コイ
ル冷却装置の冷却効率が向上する。この結果、コイルの
温度上昇に起因する磁場強度ドリフトを防ぎ、安定した
高磁場が得られ、コイルの信頼性及び性能が向上すると
共に、温度安定までの立ち上がり時間が短くなり、電力
コストを安価にすることができる。
Therefore, the heat transmission rate from the coil to the cooling plate is improved, and the cooling efficiency of the coil cooling device is improved. As a result, magnetic field strength drift caused by coil temperature rise is prevented, a stable high magnetic field is obtained, the reliability and performance of the coil are improved, and the rise time until temperature stabilization is shortened, reducing power costs. can do.

(2)酸化アルミニウム被膜の機械的強度が従来のマイ
ラによるものよりも強く、電気的絶縁手段の取扱いが容
易で、コイルと冷却板とを密着させる際の作業が容易に
なる。
(2) The mechanical strength of the aluminum oxide coating is stronger than that of conventional mylar, and the electrical insulation means is easy to handle, making it easier to work when bringing the coil and cooling plate into close contact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の一実施例のコイル冷却装置をコイル
に取付けな状態での断面図、第2図は従来例の間接冷却
型のコイル冷却装置とコイルの概略図、第3図は従来例
のコイル冷却装置をコイルに取付けた状態での断面図で
ある。 1・・・コイル、2・・・冷却板、3・・・水路、4・
・・給水口、5・・・排水口、
Fig. 1 is a sectional view of a coil cooling device according to an embodiment of the present invention without being attached to the coil, Fig. 2 is a schematic diagram of a conventional indirect cooling type coil cooling device and a coil, and Fig. 3 is a conventional example. FIG. 2 is a cross-sectional view of an example coil cooling device attached to a coil. 1...Coil, 2...Cooling plate, 3...Waterway, 4...
...Water supply port, 5...Drain port,

Claims (3)

【特許請求の範囲】[Claims] (1)アルミニウム又はアルミニウム合金で構成され、
高磁場を発生する常伝導コイルの端面に密着手段を介し
てその側面が密着される冷却板と、前記コイルによって
発生する熱を放出する放熱手段とを備えたコイル冷却装
置において、前記冷却板のコイル密着側面は陽極酸化表
面処理が施されていることを特徴とするコイル冷却装置
(1) Made of aluminum or aluminum alloy,
A coil cooling device comprising: a cooling plate whose side surface is closely attached via an adhesive means to an end face of a normal conducting coil that generates a high magnetic field; and a heat dissipation means for discharging heat generated by the coil. A coil cooling device characterized by anodized surface treatment on the side surface of the coil.
(2)高磁場を発生する常伝導コイルと、このコイルに
よって発生する熱を放出する放熱手段及びアルミニウム
又はアルミニウム合金からなり、前記コイルの端面に密
着手段を介して密着される側面が陽極酸化表面処理され
ている冷却板で構成されたコイル冷却装置とを備えるこ
とを特徴とするコイル冷却装置を備えた常伝導磁石。
(2) Consisting of a normal conduction coil that generates a high magnetic field, a heat dissipation means that releases heat generated by the coil, and aluminum or an aluminum alloy, the side surface that is closely attached to the end surface of the coil via the adhesive means has an anodized surface. 1. A normal conducting magnet with a coil cooling device, characterized in that the coil cooling device comprises a treated cooling plate.
(3)アルミニウム又はアルミニウム合金で構成された
冷却板のコイル側面との密着端面に陽極酸化表面処理を
施す第1の工程と、前記冷却板の密着端面、又は、前記
コイル側面に密着手段を塗布する第二の工程と、前記コ
イル側面と冷却板端面とを密着させ固定する第3の工程
からなるコイル冷却装置を備えた常伝導磁石の製造方法
(3) A first step of applying anodizing surface treatment to the end surface of the cooling plate made of aluminum or aluminum alloy that is in close contact with the coil side surface, and applying an adhesion means to the contact end surface of the cooling plate or the coil side surface. and a third step of bringing the side surface of the coil and the end surface of the cooling plate into close contact with each other and fixing the same.
JP63106283A 1988-04-28 1988-04-28 Coil cooling device, normal conducting magnet provided with same and manufacture thereof Pending JPH01276707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63106283A JPH01276707A (en) 1988-04-28 1988-04-28 Coil cooling device, normal conducting magnet provided with same and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63106283A JPH01276707A (en) 1988-04-28 1988-04-28 Coil cooling device, normal conducting magnet provided with same and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01276707A true JPH01276707A (en) 1989-11-07

Family

ID=14429742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63106283A Pending JPH01276707A (en) 1988-04-28 1988-04-28 Coil cooling device, normal conducting magnet provided with same and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01276707A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921537A2 (en) * 1997-12-05 1999-06-09 Picker Nordstar Inc. Magnet coil assembly
JP2007137661A (en) * 2005-11-22 2007-06-07 Sumitomo Heavy Ind Ltd Lifting magnet
JP2013542748A (en) * 2010-05-26 2013-11-28 シーメンス ピーエルシー Solenoid magnet consisting of several axially aligned coils
JP2018178250A (en) * 2018-02-27 2018-11-15 堺ディスプレイプロダクト株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic el display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921537A2 (en) * 1997-12-05 1999-06-09 Picker Nordstar Inc. Magnet coil assembly
EP0921537A3 (en) * 1997-12-05 2000-04-12 Picker Nordstar Inc. Magnet coil assembly
JP2007137661A (en) * 2005-11-22 2007-06-07 Sumitomo Heavy Ind Ltd Lifting magnet
JP2013542748A (en) * 2010-05-26 2013-11-28 シーメンス ピーエルシー Solenoid magnet consisting of several axially aligned coils
US9536659B2 (en) 2010-05-26 2017-01-03 Siemens Plc Solenoidal magnets composed of multiple axially aligned coils
JP2018178250A (en) * 2018-02-27 2018-11-15 堺ディスプレイプロダクト株式会社 Vapor deposition apparatus, vapor deposition method and method for manufacturing organic el display device

Similar Documents

Publication Publication Date Title
US6002318A (en) Device for dissipating heat from ferrite cores of inductive components
JP4411543B2 (en) Magnetic parts
US5936502A (en) Magnet coils for MRI
JPH01276707A (en) Coil cooling device, normal conducting magnet provided with same and manufacture thereof
US2941045A (en) Magnetic recording
US4413160A (en) Ribbon-type loudspeaker
JPS6213010A (en) Superconductive electromagnet
JP2001094024A (en) Electronic module and manufacturing method thereof
JP2017184294A (en) Motor controller
JPS6362084B2 (en)
JPH104008A (en) Plane coil and manufacture thereof
JPS59114802A (en) Fluid cooling type resistor
JPH0582687A (en) Cooling device of heat generating element
JPS6142312Y2 (en)
JP2758248B2 (en) Electromagnetic thrust device
JPS6215803A (en) Superconductive coil
JP2002150633A (en) Magnetic head device
KR101605072B1 (en) High temperature superconducting current lead having a terminal that has been anodized and superconducting magnet including thereof
JPH05184122A (en) Voice-coil motor
JP2994886B2 (en) Bias magnetic field applying device
JPH0289301A (en) Coil
JPS586617Y2 (en) soldering iron
JP2940245B2 (en) Rotating machine stator core
JPH0831634A (en) Superconductive coil
JPH11276048A (en) Heating head and mosquito repelling device