JPH01275660A - Fiber-reinforced composite material and its production - Google Patents

Fiber-reinforced composite material and its production

Info

Publication number
JPH01275660A
JPH01275660A JP10577688A JP10577688A JPH01275660A JP H01275660 A JPH01275660 A JP H01275660A JP 10577688 A JP10577688 A JP 10577688A JP 10577688 A JP10577688 A JP 10577688A JP H01275660 A JPH01275660 A JP H01275660A
Authority
JP
Japan
Prior art keywords
reinforcing material
fiber
matrix polymer
reinforced composite
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10577688A
Other languages
Japanese (ja)
Inventor
Hitoshi Miyata
仁 宮田
Takashi Konishi
小西 孝
Takashi Ito
孝 伊藤
Hiroshi Sakabe
寛 坂部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP10577688A priority Critical patent/JPH01275660A/en
Publication of JPH01275660A publication Critical patent/JPH01275660A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a fiber-reinforced composite material improved in cutting strength and modulus, by mixing a matrix polymer with a specified reinforcing material, and molding and stretching the mixture to orient the molecular chains of the reinforcing material in the direction of stretching. CONSTITUTION:A mixture is obtained by mixing a solution of a matrix polymer (A) having spherulites (e.g., low-density PE) with 10-80wt.% reinforcing material (B) comprising single crystals or fibril crystals of a polymer (e.g., high-density PE) other then component A at an intermediate temperature between the melting temperatures of components A and B. This mixture is spun and stretched to orient the molecular chains of component B in the direction of stretching.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は繊維強化複合体及びその製造方法に係り、マト
リックス重合体内に予め成形した単結晶又はフィブリル
結晶等の補強材が含まれ、このマトリックス重合体内で
該補強材の分子鎖が所定方向に配向されている繊維強化
複合体及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a fiber-reinforced composite and a method for producing the same, which includes a reinforcing material such as a single crystal or fibril crystal preformed within a matrix polymer. The present invention relates to a fiber-reinforced composite in which the molecular chains of the reinforcing material are oriented in a predetermined direction within the polymer, and a method for producing the same.

(従来技術) 磁気テープ、電気絶縁材、文具、包装用等に使用される
樹脂フィルムは使用目的に応じて強靭的な機械的強度を
必要とされている。また、ローブ、繊維シート等の農業
、土木建築、水産及び一般産業用、またはテグス、セー
ルクロス等のレジャー産業用に使用される繊維は高モジ
ュラス、寸法安定性等の性質が必要であり、このため繊
維もしくはフィルム自身の高モジユラス化のために、ポ
リマー自身の分子量を高くするか、もしくは分子配向性
を高める手段として繊維に延伸を施していた。
(Prior Art) Resin films used for magnetic tapes, electrical insulation materials, stationery, packaging, etc. are required to have strong mechanical strength depending on the purpose of use. In addition, fibers used in agriculture, civil engineering, construction, fisheries, and general industry, such as robes and fiber sheets, and leisure industries, such as strings and sail cloth, must have properties such as high modulus and dimensional stability. Therefore, in order to increase the modulus of the fiber or film itself, the molecular weight of the polymer itself has been increased, or the fiber has been stretched as a means of increasing molecular orientation.

しかし、繊維に限ればこれらの手段では紡糸された繊維
の特性を生かしながら、後加工によって更に優れた特性
が得られる半面、後加工後の繊維の経時収縮に伴う分子
鎖の収縮によってモジュラスの低下をきたすとともに寸
法安定性の面で問題が生じていた。
However, when it comes to fibers, these methods take advantage of the properties of the spun fibers and provide even better properties through post-processing, but on the other hand, the modulus decreases due to shrinkage of the molecular chains as the fibers shrink over time after post-processing. This caused problems in terms of dimensional stability.

そのため、最近では繊維中に無機充填材、例えばウィス
カーを添加したウィスカー強化繊維及びその製造方法が
提案されている(例えば、特開昭52−121523号
参照)。
Therefore, recently, a whisker-reinforced fiber in which an inorganic filler such as a whisker is added to the fiber and a method for producing the same have been proposed (see, for example, Japanese Patent Laid-Open No. 121523/1983).

(発明が解決しようとする問題点) しかし、このウィスカー強化繊維の場合、マトリックス
繊維とウィスカーのぬれ性が悪く切断強力が低下するた
めに目的を十分達成することができない問題点があった
(Problems to be Solved by the Invention) However, in the case of this whisker-reinforced fiber, the wettability between the matrix fiber and the whisker is poor, and the cutting strength is reduced, so that the purpose cannot be fully achieved.

本発明はこのような問題点を改善するものであり、マト
リックス重合体内に含有する新規な補強材を選定し、こ
れを用いて切断強力を向上させると共に高モジユラス化
した繊維強化複合体及びその製造方法を提供することを
目的とする。
The present invention aims to improve these problems, by selecting a new reinforcing material contained in the matrix polymer, and using this to improve cutting strength and high modulus, a fiber-reinforced composite and its production. The purpose is to provide a method.

(問題点を解決するための手段) 上記目的を達成するために、本発明の繊維強化複合体に
おいては、マトリックス重合体内に予め調製した重合体
の単結晶あるいはフィブリル結晶から選ばれてなる少な
くとも一つの補強材を混合し、この混合物を延伸成形す
ることによって上記補強材の分子鎖を延伸方向に配向し
たものである。
(Means for Solving the Problems) In order to achieve the above object, in the fiber reinforced composite of the present invention, at least one monocrystal or a fibril crystal of a polymer prepared in advance is added to the matrix polymer. By mixing two reinforcing materials and stretching the mixture, the molecular chains of the reinforcing materials are oriented in the stretching direction.

また、上記繊維強化複合体の製造方法は球晶を含むマト
リックス重合体の溶液と、このマトリックス重合体と異
なる重合体の単結晶あるいはフィブリル結晶からなる補
強材を、マトリックス重合体と補強材の融解温度の中間
温度で混合し、これによって得られた混合物を紡糸、延
伸成形することにより上記マトリックス重合体中の補強
材の分子鎖を延伸方向に配向するものである。
In addition, the method for manufacturing the fiber-reinforced composite described above involves melting a solution of a matrix polymer containing spherulites and a reinforcing material consisting of a single crystal or fibril crystal of a polymer different from the matrix polymer, and melting the matrix polymer and the reinforcing material. The mixture is mixed at an intermediate temperature, and the resulting mixture is spun and stretched to orient the molecular chains of the reinforcing material in the matrix polymer in the stretching direction.

本発明によると、補強材である単結晶あるいはフィブリ
ル結晶がマトリックス重合体中に混入され、更にこの混
合物が後延伸成形によってこの延伸方向に補強材の分子
鎖が配向するために、得られた繊維強化複合体は高モジ
ュラスあるいは引張強度の高いものになり、従来の機械
的なブレンドによる樹脂あるいは繊維よりも優れた機械
的性質を有する。
According to the present invention, a single crystal or fibril crystal as a reinforcing material is mixed into a matrix polymer, and this mixture is further stretched and formed so that the molecular chains of the reinforcing material are oriented in the stretching direction. The reinforced composites can be of high modulus or tensile strength and have superior mechanical properties to conventional mechanically blended resins or fibers.

本発明で使用するマトリックス重合体は熱によって融解
可能な重合体で且つ溶剤によって球晶の製造可能なもの
であり、例えばナイロン6、ナイロン66等の種々のポ
リアミド、共重合体ポリアミド、ポリエチレン、ポリプ
ロピレン、ポリエチレンテレフタレート等である。
The matrix polymer used in the present invention is a polymer that can be melted by heat and capable of producing spherulites using a solvent, such as various polyamides such as nylon 6 and nylon 66, copolymer polyamides, polyethylene, and polypropylene. , polyethylene terephthalate, etc.

また、上記マトリックス重合体に混入する補強材は単結
晶あるいはフィブリル結晶(Extended Cha
in Crystal )であり、熱によって融解可能
で且つ溶剤によって単結晶あるいはフィブリル結晶の製
造可能なものであり、例えばナイロン6、ナイロン66
等の種々のポリアミド、共重合ポリアミド、ポリエチレ
ン、ポリプロピレン、ポリエチレンテレフタレート等で
ある。
In addition, the reinforcing material mixed into the matrix polymer is single crystal or fibril crystal (Extended Cha
(in Crystal), which can be melted by heat and can be produced into single crystals or fibril crystals by using a solvent. For example, nylon 6, nylon 66
These include various polyamides such as, copolyamides, polyethylene, polypropylene, polyethylene terephthalate, etc.

上記マトリックス重合体と補強材は分子量、融点等にお
いて異なる重合体であり、例えばマトリックス重合体と
しては融点の低い球晶の懸濁液、他方補強材としては融
点の高い重合体で単結晶あるいはフィブリル結晶の懸濁
液が使用される。
The above-mentioned matrix polymer and reinforcing material are polymers that differ in molecular weight, melting point, etc. For example, the matrix polymer is a suspension of spherulites with a low melting point, while the reinforcing material is a polymer with a high melting point, such as single crystals or fibrils. A suspension of crystals is used.

まず本発明の製造工程では、マトリックス重合体を溶剤
で溶解した濃厚溶液から結晶化させた球晶懸濁液を作製
し、他方補強材として他の重合体を溶剤で溶解した希薄
溶液から単結晶もしくは濃厚溶液からフィブリル結晶の
懸濁液を作製して2つの溶液を混合し、十分に撹拌した
後、懸濁液を吸引濾過、脱溶媒、減圧乾燥を行って原品
物と単結晶もしくはフィブリル結晶の補強体の混在した
粉末試料を作製する。
First, in the manufacturing process of the present invention, a spherulite suspension is prepared by crystallizing a matrix polymer from a concentrated solution dissolved in a solvent, and on the other hand, a single crystal is prepared from a dilute solution in which another polymer is dissolved in a solvent as a reinforcing material. Alternatively, create a suspension of fibril crystals from a concentrated solution, mix the two solutions, stir thoroughly, and then filter the suspension with suction, remove the solvent, and dry under reduced pressure to separate the original product and single crystals or fibril crystals. Prepare a powder sample containing a mixture of reinforcing bodies.

次いで、この粉末試料を補強材の単結晶もしくはフィブ
リル結晶が融解せず、そしてマトリックス重合体の球晶
が融解する温度で溶融成型もしくは紡糸し、後延伸によ
って延伸方向に補強材の分子鎖が配向された繊維強化複
合体が得られる。本発明の方法によるとマトリックス重
合体と補強材とを溶液状態で容易に混合することができ
るため補強材が均一に分散される。
Next, this powder sample is melt-molded or spun at a temperature at which the single crystals or fibril crystals of the reinforcing material do not melt, but the spherulites of the matrix polymer melt, and the molecular chains of the reinforcing material are oriented in the drawing direction by post-stretching. A fiber-reinforced composite is obtained. According to the method of the present invention, the matrix polymer and the reinforcing material can be easily mixed in a solution state, so that the reinforcing material is uniformly dispersed.

この場合、補強材の添加量は成形する複合体の構造によ
って異なり、フィルム成形する場合には10〜80重量
%であり、他方繊維構造に成形する場合には1〜25重
量%である。
In this case, the amount of reinforcing material added varies depending on the structure of the composite to be molded, and ranges from 10 to 80% by weight when molded into a film, and from 1 to 25% by weight when molded into a fibrous structure.

繊維構造をもつ複合体を得る場合には、延伸することに
より補強材の単結晶は分子鎖が解きほぐしを受け、また
フィブリル結晶は延伸配向され、マトリックス重合体中
にあっては、これらの補強材は繊維軸方向に直鎖状に配
列される。
In order to obtain a composite with a fibrous structure, the molecular chains of the single crystal of the reinforcing material are loosened by stretching, and the fibril crystals are stretched and oriented, and in the matrix polymer, these reinforcing materials are are arranged linearly in the fiber axis direction.

更に、フィルム構造をもつ複合体を得るには、多軸延伸
であり、この場合補強材のうち単結晶は分子鎖が解きほ
ぐしを受け、他方フィブリル結晶は延伸配向によって延
伸方向に直鎖状に配列される。
Furthermore, in order to obtain a composite with a film structure, multiaxial stretching is required. In this case, the molecular chains of the single crystal of the reinforcing material are unraveled, while the fibril crystals are arranged linearly in the stretching direction due to the stretching orientation. be done.

(実施例) 次に本発明の具体的な実施態様を以下に示す。(Example) Next, specific embodiments of the present invention will be shown below.

(実施例1) 低密度ポリエチレン(密度0.927g/cm3、融点
105℃、以下LDPEと略す)を132℃のP−キシ
レン中で濃度1wt%で完全に溶解し、室温まで除冷、
結晶化し球晶を析出させた。他方、高密度ポリエチレン
(密度0 、953 g/cm3、融点130℃、以下
HDPRと略す)を132℃のP−キシレン中にQ、1
wt%の濃度で完全に融し、室温まで徐冷、結晶化させ
て単結晶の析出した懸濁液を作製した。
(Example 1) Low density polyethylene (density 0.927 g/cm3, melting point 105°C, hereinafter abbreviated as LDPE) was completely dissolved in P-xylene at 132°C at a concentration of 1 wt%, and slowly cooled to room temperature.
It was crystallized and spherulites were precipitated. On the other hand, high-density polyethylene (density 0, 953 g/cm3, melting point 130°C, hereinafter abbreviated as HDPR) was dissolved in P-xylene at 132°C with Q, 1
It was completely melted at a concentration of wt%, slowly cooled to room temperature, and crystallized to prepare a suspension in which a single crystal was precipitated.

LDPEの結晶懸濁液とHDPEの単結晶懸濁液とを単
結晶混合率が10,30.50.70.80wt%とな
る割合で混合撹拌後、吸引濾過し、集積物をアセトン及
び水により洗浄、脱溶媒を行なって0.1〜Q、 2T
orrの圧力下で24時間減圧乾燥してHDPEの単結
晶とLDPEの球晶物が混ざり合った粉末試料を得た。
LDPE crystal suspension and HDPE single crystal suspension were mixed and stirred at a single crystal mixing ratio of 10, 30, 50, 70, 80 wt%, filtered with suction, and the accumulated material was dissolved in acetone and water. Wash and remove solvent to 0.1~Q, 2T
The powder sample was dried under a pressure of 24 hours under reduced pressure to obtain a powder sample in which HDPE single crystals and LDPE spherulites were mixed.

次いで、LDPRのみが溶解する110℃の温度でプレ
ス成形を行ない厚みQ、5mmのフィルムを作製して、
それぞれ実施例1−1(HDPE/LDPR=10/9
0’)、実施例1−2(HDPE/LDPE=33/7
0)、実施例1−3(HDPE/LDPE=50150
)、実施例1−4(HDPR/LDPE=70/30 
)、実施例1−5 (HDPE/LDPE=80/20
 )とした。
Next, press molding was performed at a temperature of 110 ° C. where only LDPR melted to produce a film with a thickness Q of 5 mm.
Example 1-1 (HDPE/LDPR=10/9)
0'), Example 1-2 (HDPE/LDPE=33/7
0), Example 1-3 (HDPE/LDPE=50150
), Example 1-4 (HDPR/LDPE=70/30
), Example 1-5 (HDPE/LDPE=80/20
).

そしてこのフィルムの応力−歪曲線を求め、その結果を
第1図に示す。比較例としてLDPE単独(比較例1−
1)の試料を併記した。
The stress-strain curve of this film was then determined, and the results are shown in FIG. As a comparative example, LDPE alone (Comparative Example 1-
The sample of 1) is also shown.

続いて、巾5mm、厚0.5mmの実施例1−1、比較
例1−1、HDPEベレット/LDPEベレット=10
/90の試Nを手動延伸機にゲージ間距離20mmに設
置し、110℃ギアオーブン中で1時間熱処理後300
%の延伸を施し各々実施例1−(1)、比較例1−(1
)、1−(2)の試料とした。延伸後試料の応力−歪曲
線を第2図に示す。
Subsequently, Example 1-1 with a width of 5 mm and a thickness of 0.5 mm, Comparative Example 1-1, HDPE pellet/LDPE pellet = 10
/90 test N was installed in a manual stretching machine with a distance between gauges of 20 mm, and after heat treatment for 1 hour in a gear oven at 110°C,
% stretching, Example 1-(1) and Comparative Example 1-(1).
), 1-(2). The stress-strain curve of the sample after stretching is shown in FIG.

実施例1−(1)の単結晶混入試料はLDPR単独試料
(比較例1−(1))、HDPEとLDPEの機械ブレ
ンド試料(比較例1−(2))に比べて著しくヤング率
が増加し、顕著な補強効果を示している。
The single crystal mixed sample of Example 1-(1) has a significantly increased Young's modulus compared to the LDPR single sample (Comparative Example 1-(1)) and the mechanical blend sample of HDPE and LDPE (Comparative Example 1-(2)). It shows a remarkable reinforcing effect.

(実施例2) 実施例1と同様な方法でHDPEの単結晶とLDPEの
球晶物が10wt%の単結晶混合率となる割合で混合し
た粉末試料を作製し、紡糸浴中で125〜128℃でL
DPEの球晶を溶解しHDPEの単結晶が均一分散され
た状態として紡糸ノズルより押し出し、更に110℃の
ギアオーブン中で1時間の熱処理後、110℃雰囲気下
で300%の後延伸を行ない補強繊維体(実施例2−1
)を作製した。
(Example 2) A powder sample in which HDPE single crystals and LDPE spherulites were mixed at a ratio of 10 wt % single crystal mixture was prepared in the same manner as in Example 1, and the powder sample was mixed in a spinning bath with 125 to 128 L at °C
DPE spherulites are melted and HDPE single crystals are extruded into a uniformly dispersed state through a spinning nozzle, and then heat treated in a gear oven at 110°C for 1 hour and then post-stretched by 300% in an atmosphere of 110°C for reinforcement. Fibrous body (Example 2-1
) was created.

また、LDPRベレットとHDPRベレットを140℃
の紡糸浴中で融解混合し、紡糸ノズルより押し出し、更
に110℃ギアオーブン中で1時間の熱処理後、110
℃雰囲気下で300%の後延伸を行ない比較用ブレンド
繊維(比較例2−1)を作製した。
In addition, LDPR pellets and HDPR pellets were heated to 140°C.
The mixture was melted and mixed in a spinning bath of
A comparative blend fiber (Comparative Example 2-1) was prepared by post-stretching at 300% in an atmosphere of .degree.

第3図は実施例2−1(単結晶混入IQwt%)補強繊
維体と比較例2−1 (HDPE/LDPE=10/9
0ブレンド繊維)の応力−歪曲線を示す。本発明の補強
繊維体は切断強力、切断伸度がブレンド繊維に比べて小
さくなるが、切断までのモジュラスが高く、工業用繊維
として有効な性能を有している。
Figure 3 shows Example 2-1 (single crystal mixed IQwt%) reinforcing fiber body and Comparative Example 2-1 (HDPE/LDPE=10/9
0 blend fiber) is shown. Although the reinforcing fibers of the present invention have lower cutting strength and cutting elongation than blended fibers, they have a high modulus until cutting and have effective performance as industrial fibers.

(効果) 以上のように本発明の繊維強化複合体においては、補強
材である単結晶あるいはフィブリル結晶がマトリックス
重合体中に混入し、しかもこの混合物が延伸されて単結
晶の分子鎖が解きほぐしを受け、他方フィブリル結晶も
直鎖状に配列されているために、複合体を十分に補強、
強化して優れた高切断強度、高モジュラスに仕上げ、ま
た製造方法においても前記補強材とマトリックス重合体
とが共に溶液状態で混合し、共に重合体であるために補
強材を均一に分散させることも可能になる。
(Effects) As described above, in the fiber-reinforced composite of the present invention, the single crystal or fibril crystal that is the reinforcing material is mixed into the matrix polymer, and when this mixture is stretched, the molecular chains of the single crystal are loosened. On the other hand, since the fibril crystals are also arranged in a straight chain, the composite is sufficiently reinforced and
The reinforcing material is reinforced to achieve excellent high cutting strength and high modulus, and in the manufacturing method, the reinforcing material and the matrix polymer are both mixed in a solution state, and since they are both polymers, the reinforcing material is uniformly dispersed. It also becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は繊維強化複合体である非延伸のフィルムにおけ
る応力−歪曲線を示し、第2図は前記フィルムを延伸処
理した場合の応力−歪曲線を示し、更に第3図は繊維強
化複合体である繊維の応力−歪曲線を示す。 宮1) 仁 民力  (kg/mm )
FIG. 1 shows a stress-strain curve for an unstretched film that is a fiber-reinforced composite, FIG. 2 shows a stress-strain curve when the film is stretched, and FIG. 3 shows a stress-strain curve for an unstretched film that is a fiber-reinforced composite. The stress-strain curve of the fiber is shown. Miya 1) Benin power (kg/mm)

Claims (1)

【特許請求の範囲】 1、マトリックス重合体内に予め調製した他の重合体の
単結晶あるいはフィブリル結晶から選ばれた少なくとも
一つ以上の補強材を混合し、この混合物を延伸成形する
ことにより、前記補強材の分子鎖を延伸方向に配向させ
てなることを特徴とする繊維強化複合体。 2、マトリックス重合体内に混入された補強材の添加量
が10〜80重量%であるフィルム状の複合体である請
求項1記載の繊維強化複合体。 3、マトリックス重合体内に混入された補強材の添加量
が1〜25重量%である繊維状の複合体である請求項1
記載の繊維強化複合体。 4、球晶を形成したマトリックス重合体の溶液と、この
マトリックス重合体と異なる重合体の単結晶あるいはフ
ィブリル結晶からなる補強材を、マトリックス重合体と
補強材の融解温度の中間温度で混合し、これによって得
られた混合物を紡糸し、延伸成形することにより前記補
強材の分子鎖を延伸方向へ配向させたことを特徴とする
繊維強化複合体の製造方法。
[Scope of Claims] 1. By mixing at least one reinforcing material selected from a single crystal or fibril crystal of another polymer previously prepared in the matrix polymer, and stretching and forming the mixture, A fiber-reinforced composite characterized by having the molecular chains of a reinforcing material oriented in the stretching direction. 2. The fiber-reinforced composite according to claim 1, which is a film-like composite in which the amount of reinforcing material mixed into the matrix polymer is 10 to 80% by weight. 3. Claim 1, which is a fibrous composite in which the amount of reinforcing material mixed into the matrix polymer is 1 to 25% by weight.
Fiber-reinforced composite as described. 4. Mixing a solution of a matrix polymer that has formed spherulites and a reinforcing material consisting of a single crystal or fibril crystal of a polymer different from the matrix polymer at a temperature intermediate between the melting temperatures of the matrix polymer and the reinforcing material, A method for producing a fiber-reinforced composite, characterized in that the resulting mixture is spun and stretch-molded to orient the molecular chains of the reinforcing material in the stretching direction.
JP10577688A 1988-04-28 1988-04-28 Fiber-reinforced composite material and its production Pending JPH01275660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10577688A JPH01275660A (en) 1988-04-28 1988-04-28 Fiber-reinforced composite material and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10577688A JPH01275660A (en) 1988-04-28 1988-04-28 Fiber-reinforced composite material and its production

Publications (1)

Publication Number Publication Date
JPH01275660A true JPH01275660A (en) 1989-11-06

Family

ID=14416558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10577688A Pending JPH01275660A (en) 1988-04-28 1988-04-28 Fiber-reinforced composite material and its production

Country Status (1)

Country Link
JP (1) JPH01275660A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248090A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Resin composition and filament

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008248090A (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Co Ltd Resin composition and filament
WO2008123593A1 (en) * 2007-03-30 2008-10-16 Sumitomo Chemical Company, Limited Resin compositions and filaments

Similar Documents

Publication Publication Date Title
DE3752071T2 (en) Process for the production of polyvinyl alcohol fibers with high modulus and high strength
DE60036207T2 (en) REINFORCED POLYMERS
EP0055001B1 (en) Filaments with high tensile strength and modulus and process for the production thereof
KR100985938B1 (en) Polyethylene Fiber and Process for Producing the Same
JPH06102846B2 (en) Method for producing ultra-high molecular weight polyethylene stretched product
JP2588579B2 (en) Polyvinyl alcohol fiber excellent in hot water resistance and method for producing the same
DE1938282A1 (en) New fiber-reinforced composites
US5512368A (en) Fibers reinforced with inorganic whiskers
JP2770328B2 (en) Manufacturing method of nylon resin composite
JPH01275660A (en) Fiber-reinforced composite material and its production
JP2008266871A (en) Polypropylene yarn excellent in heat resistance
KR960007471B1 (en) Method for molding liquid crystal resin composite
JPS62156928A (en) Manufacture of polyethylene film
JP3034934B2 (en) High molecular weight polyethylene molecular orientation molding
Chung The effect of lithium chloride on polybenzimidazole and polysulfone blend fibers
JP2001146637A (en) Polyimide fiber for binder and method for producing the same
JPS61268430A (en) Manufacture of drawn crystalline polymer
JPH0253860A (en) Improvement in tenacity of molten molded article
JPH10315319A (en) Biaxially oriented polyamide film
JPH0278523A (en) Stretched molding material and fiber of polyacetal
DE1964514C3 (en) Polyester thread as a reinforcement insert in rubber products
JPS5865629A (en) Novel polyester fiber or film and manufacture of the same
JPH03124730A (en) Single crystal-reinforced film and its preparation
Mishra et al. * Indian Institute of Space Science and Technology, Thiruvananthapuram, Kerala, India
JPS63243315A (en) Organic composite fiber and production thereof