JPH01275498A - Production of diamond film - Google Patents

Production of diamond film

Info

Publication number
JPH01275498A
JPH01275498A JP10189888A JP10189888A JPH01275498A JP H01275498 A JPH01275498 A JP H01275498A JP 10189888 A JP10189888 A JP 10189888A JP 10189888 A JP10189888 A JP 10189888A JP H01275498 A JPH01275498 A JP H01275498A
Authority
JP
Japan
Prior art keywords
substrate
diamond film
thermionic
temperature
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10189888A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukushima
和彦 福島
Akihiko Ikegaya
池ケ谷 明彦
Masaaki Tobioka
正明 飛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10189888A priority Critical patent/JPH01275498A/en
Publication of JPH01275498A publication Critical patent/JPH01275498A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To form carbon seeds having high activity and to deposit a diamond film having high crystallinity on a substrate by leaving a prescribed interval or above between a thermoelectron emitting material and the substrate, heating the emitting material to a prescribed temp. or above and passing starting materials through the emitting material. CONSTITUTION:The interval between a thermoelectron emitting material 4 and a substrate 2 is regulated to >=30mm. The material 4 is heated to >=2,300 deg.C and a hydrocarbon compd. 5 and hydrogen 6 as starting materials are heated and excited by passing through the material 4. A diamond film having high crystallinity is deposited on the substrate 2.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は硬度、熱伝導率、耐腐食性に非常にすぐれた
特性を有し、切削工具や放熱基板として有効であるダイ
ヤモンドを気相合成法にて基板上に析出させるダイヤモ
ンド膜の製造方法の改良に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> This invention utilizes vapor phase synthesis of diamond, which has excellent properties in hardness, thermal conductivity, and corrosion resistance, and is effective as a cutting tool and heat dissipation substrate. This invention relates to an improvement in a method for producing a diamond film deposited on a substrate by a method.

〈従来の技術〉 従来、ダイヤモンドの合成方法としては炭化水素と水素
との混合ガスを熱電子放射材により加熱した後、500
〜1300℃に加熱した基板表面に導入して基材上にダ
イヤモンドを析出せしめる技術が特開昭58−9110
0号により知られている。
<Conventional technology> Conventionally, the method of synthesizing diamond is to heat a mixed gas of hydrocarbon and hydrogen with a thermionic emitter, and then
Japanese Patent Laid-Open No. 58-9110 describes a technique for depositing diamond on the substrate surface heated to ~1300°C.
Known by No. 0.

〈発明が解決しようとする課題〉 上記した公知技術においては、基材と熱電子放射材の距
離は10mm程度であるため(即ち、この距離が1on
+mをこえると成膜速度が極度に低下する)、熱電子放
射材の温度は2100℃までしか上げることができない
という問題があった。なぜならば、熱電子放射材の温度
を2100℃以上に上げると、基材温度が上りすぎてダ
イヤモンド析出温度(500〜1300℃)から外れて
しまい、ダイヤモンドが成膜しなくなる。従って、熱電
子放射材の温度は2100℃以下に抑えなければならな
いが、その際原料源である炭化水素および水素の活性を
促進するには原料ガスの加熱が充分とはいえず、ダイヤ
モンドと同時に無定形炭素やグラファイトが生成すると
いう問題がある。
<Problem to be solved by the invention> In the above-mentioned known technology, since the distance between the base material and the thermionic emitting material is about 10 mm (that is, this distance is 1 on
(If the temperature exceeds +m, the film formation rate is extremely reduced), and the temperature of the thermionic emitting material can only be raised to 2100°C. This is because if the temperature of the thermionic emission material is raised to 2100° C. or higher, the base material temperature rises too much and deviates from the diamond precipitation temperature (500 to 1300° C.), making it impossible to form a diamond film. Therefore, the temperature of the thermionic emissive material must be kept below 2100°C, but the heating of the raw material gas is not sufficient to promote the activity of the hydrocarbons and hydrogen that are the raw material sources, There is a problem that amorphous carbon and graphite are generated.

く課題を解決するための手段〉 本発明者らは上記従来のダイヤモンド合成方法における
問題を解消することができるダイヤモンド膜の製造方法
を得るべく検討の結果この発明に至ったものである。
Means for Solving the Problems> The present inventors have arrived at the present invention as a result of their studies to obtain a method for manufacturing a diamond film that can solve the problems in the conventional diamond synthesis methods described above.

即ち、この発明は炭化水素化合物および水素を2300
℃以上の高温に加熱した熱電子放射材を通過せしめ、基
材上にダイヤモンド膜を析出せしめる際に、熱電子放射
材と基材の間隔を301T1m以上とすることを特徴と
するダイヤモンド膜の製造方法を提供するものである。
That is, this invention can convert hydrocarbon compounds and hydrogen into 2300
Production of a diamond film, characterized in that the distance between the thermionic emissive material and the base material is 301 T1 m or more when the thermionic emissive material heated to a high temperature of ℃ or higher is passed through and the diamond film is deposited on the base material. The present invention provides a method.

く作用〉 従来の熱電子放射材を使用したダイヤモンド膜の製造方
法においては、上述したように基材と熱電子放射材との
距離は1011m以下と短かく、また熱電子放射材の温
度は2100℃までしかあげることはできない。この温
度を2100℃以上に上げると、基材温度が1300℃
以上になり、その場合にはダイヤモンドは析出しなくな
る。
In the conventional method for producing a diamond film using a thermionic emitter, the distance between the base material and the thermionic emitter is as short as 1011 m or less, and the temperature of the thermionic emitter is 2100 m or less, as described above. It can only be raised up to ℃. When this temperature is increased to 2100°C or higher, the base material temperature increases to 1300°C.
In this case, diamond will no longer precipitate.

これに対してこの発明では熱電子放射材と基板との距離
を3011m以上離すことにより、熱電子放射材の温度
を2300℃以上にすることができるのである。
On the other hand, in the present invention, the temperature of the thermionic emitter can be increased to 2,300° C. or more by separating the thermionic emitter and the substrate at a distance of 3,011 m or more.

また、2300℃以上に熱電子放射材の温度を上げるこ
とにより、高活性な炭素種を生成することができ、基材
上により結晶度の高いダイヤモンド膜を析出させること
ができるのである。
Furthermore, by raising the temperature of the thermionic emitter to 2300° C. or higher, highly active carbon species can be generated, and a diamond film with higher crystallinity can be deposited on the substrate.

この発明で2300℃以上の高温に耐えられる熱電子放
射材の材質としては炭素フィラメント、タンタルフィラ
メントが好ましい。
In this invention, carbon filaments and tantalum filaments are preferable as materials for the thermionic radiation material that can withstand high temperatures of 2300° C. or higher.

炭化水素化合物としてはメタン、エタンなどの炭化水素
やメチルアルコール、アセトンなどのアルコール、ケト
ン類が挙げられる。また水素にはアルゴン等の不活性ガ
スを加えてもよい。
Examples of hydrocarbon compounds include hydrocarbons such as methane and ethane, alcohols such as methyl alcohol and acetone, and ketones. Further, an inert gas such as argon may be added to hydrogen.

炭化水素化合物と水素の流量比は炭化水素化合物/水素
=115〜1/1000が好ましく、この比が115以
下ではグラファイトの析出が問題であり、1/1000
以上では成膜速度が小さすぎて好ましくない。
The flow rate ratio of hydrocarbon compound and hydrogen is preferably hydrocarbon compound/hydrogen = 115 to 1/1000. If this ratio is less than 115, precipitation of graphite becomes a problem, and 1/1000
Above this value, the film formation rate is too low, which is not preferable.

基材温度は800℃以下では無定形炭素を生じ、130
0℃以上ではダイヤモンドが析出しないので800〜1
300℃の範囲が適当である。
When the substrate temperature is below 800°C, amorphous carbon is formed, and 130
Diamonds do not precipitate at temperatures above 0°C, so the temperature is 800-1.
A range of 300°C is suitable.

次にこの発明の方法を実施するに使用する装置の一例を
第1図に示した。同図において、1は反応室であり、該
反応室1内には基材2、基材支持台3および熱電子放射
材4が内蔵されている。5は炭化水素化合物供給装置、
6は水素供給装置であって夫々から所要量がバイブ7に
より反応室1へ供給される。8は熱電子放射材用加熱電
源であって、これによって反応室1内の熱電子放射材4
の温度がコントロールされる。9は排気装置、10は排
気口である。
Next, an example of the apparatus used to carry out the method of this invention is shown in FIG. In the figure, 1 is a reaction chamber, and the reaction chamber 1 contains a base material 2, a base material support 3, and a thermionic radiation material 4. 5 is a hydrocarbon compound supply device;
Reference numeral 6 denotes a hydrogen supply device, from which the required amount is supplied to the reaction chamber 1 via a vibrator 7. Reference numeral 8 denotes a heating power source for the thermionic emitting material, which heats the thermionic emitting material 4 in the reaction chamber 1.
temperature is controlled. 9 is an exhaust device, and 10 is an exhaust port.

〈実施例〉 以下、実施例によりこの発明の詳細な説明する。<Example> Hereinafter, this invention will be explained in detail with reference to Examples.

実施例1 第1図に示すダイヤモンド膜作製装置を用い、基材2と
して市を使用した。原料としてメタン、水素を夫々1c
c/nin、  100cc/lin反応室1に供給し
た。
Example 1 The diamond film production apparatus shown in FIG. 1 was used, and diamond was used as the base material 2. 1 c each of methane and hydrogen as raw materials
c/nin, 100 cc/lin was supplied to the reaction chamber 1.

熱電子放射材4としてタンタルフィラメントを使用し、
その温度を2400℃、フィラメントと基材間の距離を
35+nmとし、基材温度870℃、反応室内の圧力を
20Torrに調整して4時間の成膜を行なった。
A tantalum filament is used as the thermionic radiation material 4,
Film formation was carried out for 4 hours at a temperature of 2400° C., a distance between the filament and the substrate of 35+ nm, a substrate temperature of 870° C., and a pressure in the reaction chamber of 20 Torr.

その結果、基材2上に5μm厚の炭素膜を析出した。こ
の膜の評価方法として(a−Kct、線によるX線回折
を行なったところ、2θ=43.9°付近に鋭いピーク
を検出し、この膜がダイヤモンド膜であると同定できた
As a result, a 5 μm thick carbon film was deposited on the base material 2. As a method for evaluating this film, (a-Kct) X-ray diffraction was performed, and a sharp peak was detected near 2θ=43.9°, and this film was identified as a diamond film.

実施例2 第1図の装置を使用し、エタノールと水素を原料として
使用した。そして水素を200cc/ nin 1エタ
ノールを10 vo1%(inH2)反応室内に供給し
た。
Example 2 The apparatus shown in FIG. 1 was used, and ethanol and hydrogen were used as raw materials. Then, 200 cc/nin of hydrogen and 10 vol 1% (inH2) of ethanol were supplied into the reaction chamber.

熱電子放射材としてタンタルフィラメントを使用し、そ
の温度を2440℃とした。基材としてC−8,を使用
し、基材とフィラメント間の距離を4(Lnm、基材温
度850℃、圧力10Torrで8時間の成膜を行なっ
た。
A tantalum filament was used as the thermionic emitting material, and its temperature was set at 2440°C. C-8 was used as the base material, and the film was formed for 8 hours at a distance between the base material and the filament of 4 (L nm), a base material temperature of 850° C., and a pressure of 10 Torr.

その結果、10μ汎の炭素膜を得た。As a result, a 10μ wide carbon film was obtained.

得られた膜の評価方法としてレーダーラーマン分光法を
使用したところ、1333cx1−1付近に鋭いピーク
を検出し、ダイヤモンド膜と同定できた。
When radar Raman spectroscopy was used to evaluate the obtained film, a sharp peak was detected near 1333cx1-1, and it was identified as a diamond film.

実施例3 第1図の装置を使用し、原料どしてメタン、水素を夫々
1cc/lin 、 200cc/iin供給した。
Example 3 Using the apparatus shown in FIG. 1, methane and hydrogen were supplied as raw materials at a rate of 1 cc/lin and 200 cc/iin, respectively.

熱電子放射材としてタンタルフィラメントを使用し、そ
の温度を2420℃とした。またフィラメントと基材間
の距離は15mmとし、基材としては−を使用した。そ
して基材温度1000℃、25Torrの圧力で3時間
の成膜を行なった。
A tantalum filament was used as the thermionic emitting material, and its temperature was set at 2420°C. Further, the distance between the filament and the base material was 15 mm, and - was used as the base material. Then, film formation was performed for 3 hours at a substrate temperature of 1000° C. and a pressure of 25 Torr.

その結果、膜厚2μ汎の炭素膜を析出した。この炭素膜
をラマン分光法にて調べたところ、1370α−1およ
び1510■−1付近に緩やかなピークを検出し、グラ
フ1イト膜であると同定できた。
As a result, a carbon film with a thickness of about 2 μm was deposited. When this carbon film was examined by Raman spectroscopy, gentle peaks were detected near 1370α-1 and 1510■-1, and it was identified as a graphite film.

以上実施例1乃至3によって得た炭素膜を切削工具に被
覆して切削テストを行なった。
A cutting test was conducted by coating cutting tools with the carbon films obtained in Examples 1 to 3 above.

被覆層厚は何れも4μmとし、切削チップとしては5N
HN 120408を使用した。
The coating layer thickness was 4μm in both cases, and the cutting tip was 5N.
HN 120408 was used.

また比較としてCVD法を用いて〃20.コーティング
を行なったチップおよびコーティング無しのチップを使
用した。
In addition, for comparison, using the CVD method, 20. Coated and uncoated chips were used.

その結果は第1表に示した。The results are shown in Table 1.

なお、切削条件′は次の通りである。Note that the cutting conditions' are as follows.

被剛材 AC8A−T6 (12%SL −#合金)切
削速度  800m /1ain 送     リ      0.1mm/reV切り込
み  0.2mm 第    1    表 上表からこの発明の方法による実施例1および2がすぐ
れていることが認められた。
Rigid material AC8A-T6 (12%SL-# alloy) Cutting speed 800m/1ain Feed 0.1mm/reV depth of cut 0.2mm From the table above, Examples 1 and 2 using the method of this invention are superior. This was recognized.

また、実施例1の方法で得られるダイヤモンド膜を被覆
した耐摩工具およびT、Cコーティングを行なったもの
、コーティング無しのものによって被剛材  18SL
−#合金 チップ  5EGN 120304 切削速度    1200m /1ain乾式%式% の切削条件でアルミニウム合金旋削における耐摩耗特性
を調べたところ第2図に示す結果が得られ、この発明の
方法によるものは非常にすぐれた耐摩耗性を示すことが
認められた。
In addition, a wear-resistant tool coated with a diamond film obtained by the method of Example 1, a tool with T and C coatings, and a tool without coating were used to improve the rigidity of the 18SL material.
-#Alloy tip 5EGN 120304 Cutting speed: 1200m/1ain Dry type % We investigated the wear resistance properties in aluminum alloy turning under the cutting conditions of It was observed that the material exhibited excellent abrasion resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

・ 第1図はこの発明の方法を実施するに使用する装置
の1例を示す態様図、第2図は耐摩耗特性を示す線図で
ある。 1・・・反応室        2・・・基材3・・・
基材支持台      4・・・熱電子放射材5・・・
炭化水素化合物供給装置 6・・・水素供給装置     7・・・バイブ8・・
・熱電子放射材用加熱電源 9・・・排気装置10・・・排気口 出願人代理人  弁理士  和  1)  昭逃1f面
摩耗量Vs(mm)
- Fig. 1 is a diagram showing an example of an apparatus used to carry out the method of the present invention, and Fig. 2 is a diagram showing wear resistance characteristics. 1... Reaction chamber 2... Base material 3...
Base material support stand 4... Thermionic emission material 5...
Hydrocarbon compound supply device 6...Hydrogen supply device 7...Vibe 8...
・Heating power source for thermionic radiation material 9...Exhaust device 10...Exhaust port applicant's agent Patent attorney Kazu 1) Showa 1f surface wear amount Vs (mm)

Claims (2)

【特許請求の範囲】[Claims] (1)原料の炭化水素化合物および水素を2300℃以
上に加熱した熱電子放射材を通過させて加熱励起するこ
とにより基板上にダイヤモンドを生成するダイヤモンド
膜の製造に際し、前記熱電子放射材と基板との間隔を3
0mm以上としたことを特徴とするダイヤモンド膜の製
造方法。
(1) When manufacturing a diamond film in which diamond is produced on a substrate by passing a thermionic emitting material heated to 2300° C. or higher through the raw material hydrocarbon compound and hydrogen and excitation by heating, the above-mentioned thermionic emitting material and the substrate are heated and excited. The distance between
A method for producing a diamond film, characterized in that the thickness is 0 mm or more.
(2)原料である炭化水素化合物と水素の流量比が1/
5〜1/1000であることを特徴とする請求項(1)
記載のダイヤモンド膜の製造方法。
(2) The flow rate ratio of the raw material hydrocarbon compound and hydrogen is 1/
Claim (1) characterized in that the ratio is 5 to 1/1000.
A method of manufacturing the described diamond film.
JP10189888A 1988-04-25 1988-04-25 Production of diamond film Pending JPH01275498A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10189888A JPH01275498A (en) 1988-04-25 1988-04-25 Production of diamond film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10189888A JPH01275498A (en) 1988-04-25 1988-04-25 Production of diamond film

Publications (1)

Publication Number Publication Date
JPH01275498A true JPH01275498A (en) 1989-11-06

Family

ID=14312738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10189888A Pending JPH01275498A (en) 1988-04-25 1988-04-25 Production of diamond film

Country Status (1)

Country Link
JP (1) JPH01275498A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056744A (en) * 2004-08-19 2006-03-02 Tokyo Univ Of Agriculture & Technology Diamond synthesis method and device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006056744A (en) * 2004-08-19 2006-03-02 Tokyo Univ Of Agriculture & Technology Diamond synthesis method and device

Similar Documents

Publication Publication Date Title
US5491028A (en) Enhanced adherence of diamond coatings
EP0413834B1 (en) Diamond-covered member and process for producing the same
JP2010533122A (en) Diamond film deposition
US4264682A (en) Surface hafnium-titanium compound coated hard alloy material and method of producing the same
US6558742B1 (en) Method of hot-filament chemical vapor deposition of diamond
JPH01275498A (en) Production of diamond film
JPH05254808A (en) Preparation of boron nitride
JP2501589B2 (en) Vapor-phase synthetic diamond and its synthesis method
Baranauskas et al. Development of tubes of micro-crystalline diamond and diamond-like carbon
Weissenbacher et al. Interactions of Ta-filaments during hot-filament CVD of BCN-layers
JP2568542B2 (en) Low pressure synthesis of diamond
JPH0328373A (en) Diamond-coated member and its production
JPS6333570A (en) Diamond coated cutting tool
JPH0255294A (en) Method for synthesizing diamond by vapor process
JP2585342B2 (en) Diamond vapor phase synthesis
Lai et al. Deposition of diamond films in a closed hot filament CVD system
JPS60152677A (en) Cubic boron nitride coated hard material and its production
Baranauskas et al. Growth of self-supported diamond tubes in the hot-filament chemical vapor deposition system
JPS60112699A (en) Manufacture of diamond
JPH02239191A (en) Multilayer diamond film and its production
JP2754259B2 (en) Combustion Flame Synthesis Method for Transparent Diamond
JP3980138B2 (en) Diamond manufacturing method
Tyndall et al. KrF laser-induced chemical vapor deposition of diamond
JPS60114572A (en) Sintered hard alloy member having very hard coating layer
LEE et al. Nucleation enhancement and adherence of diamond film coated on tungsten wire by two-stage microwave plasma CVD