JPH01274070A - Optical zero-phase current transformer - Google Patents

Optical zero-phase current transformer

Info

Publication number
JPH01274070A
JPH01274070A JP63104895A JP10489588A JPH01274070A JP H01274070 A JPH01274070 A JP H01274070A JP 63104895 A JP63104895 A JP 63104895A JP 10489588 A JP10489588 A JP 10489588A JP H01274070 A JPH01274070 A JP H01274070A
Authority
JP
Japan
Prior art keywords
magnetic
zero
phase current
current transformer
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63104895A
Other languages
Japanese (ja)
Inventor
Makoto Tago
誠 田子
Yoichi Azuma
洋一 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63104895A priority Critical patent/JPH01274070A/en
Publication of JPH01274070A publication Critical patent/JPH01274070A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

PURPOSE:To improve the detecting sensitivity of a zero-phase current to a large extent, by shielding the outer surface part of a magnetic core with a magnetic shield member which is formed by laminating high-permeability magnetic materials having the different operating magnetic fields. CONSTITUTION:Magnetic fields are generated by three positive-phase currents through three-phase conductors which are provided through the inside of a zero-phase current transformer 1. The magnetic fields are attenuated through magnetic shielding layers gradually from the outside. The magnetic fields reaching a magnetic core 5 become very small. Meanwhile, when the zero-phase current flows through any one of the three-phase conductors due to the occurrence of a grounding fault, magnetic flux is induced in the magnetic core 5. A coil 6 detects this fact and sends a signal to an optical voltage sensor 4. The optical voltage sensor 4 detects the signal highly sensitively without induction and outputs an optical signal.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光零相変流器に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to an optical zero-phase current transformer.

(従来の技術) 零相変流器は三相交流回路の地絡事故を検出するために
、平衡状態では現れず地絡の際にのみ大地に流れる零相
電流を取り出すものである。送配電線に地絡事故が発生
した場合に零相変流器によって大地に向かって流れる零
相電流を検出して回路を遮断し、事故の拡大を防止する
。例えば、第7図に示す電力会社の6.6 (KV)配
電系統において、#1フィーダから#3フィーダのうち
例えば#3フィーダのT相に地絡事故が発生した場合に
、変電所内の零相変流器ZCTが地絡事故時に流れる数
A程度の零相電流!。を検出して地絡方向継電器DCを
作動させ、回路を遮断する。符号GPTは接地変圧器で
ある。電力会社の架空線配電系統の場合には各フィーダ
の長さは約10klあるため地絡事故点の速やかな探知
が迅速な事故復旧のために不可欠であり、このため各電
力会社、電力機器メーカーは配電系統運用上洛フィーダ
の途中に零相変流器を設置することを基本としている。
(Prior Art) In order to detect a ground fault in a three-phase AC circuit, a zero-phase current transformer extracts a zero-phase current that does not appear in an equilibrium state but flows to the ground only in the event of a ground fault. When a ground fault occurs on a power transmission/distribution line, a zero-sequence current transformer detects the zero-sequence current flowing toward the ground and interrupts the circuit to prevent the fault from spreading. For example, in the 6.6 (KV) distribution system of a power company shown in Figure 7, if a ground fault occurs in the T phase of feeder #3 among feeders #1 to #3, A zero-sequence current of several amperes flows through the phase current transformer ZCT when a ground fault occurs! . Detects this and activates the ground fault directional relay DC to interrupt the circuit. The symbol GPT is a grounding transformer. In the case of electric power companies' overhead line distribution systems, the length of each feeder is approximately 10kl, so prompt detection of the ground fault point is essential for quick accident recovery. The basic idea is to install a zero-phase current transformer in the middle of the feeder for power distribution system operation.

通常、零相変流器としては第8図に基本構造を示すレー
ストラック形磁心5を有するレーストラック形零相変流
器を使用し、これを開閉器中に組み込んでいる。配電系
統の3相導体R,S、Tは磁心5の内部の所定位置に貫
通して組み込まれている。尚、工場等の高圧需要家も第
7図と略同様の機能を有する配電系統を存しているが、
この場合にも第7図の変電所を変電設備にまた変電所外
を工場に夫々置き換えれば全く同様に考えることが出来
る。
Normally, a racetrack zero-phase current transformer having a racetrack magnetic core 5 whose basic structure is shown in FIG. 8 is used as the zero-phase current transformer, and is incorporated into a switch. The three-phase conductors R, S, and T of the power distribution system are inserted through the magnetic core 5 at predetermined positions. Note that high-voltage consumers such as factories also have power distribution systems with functions similar to those shown in Figure 7.
In this case as well, if the substation in FIG. 7 is replaced with substation equipment and the area outside the substation is replaced with a factory, the same idea can be obtained.

(発明が解決しようとする課題) しかしながら、従来のレーストラック形零相変流器は検
出可能な零相電流が200(mA)程度であって、検出
感度が悪いという問題点がある。
(Problems to be Solved by the Invention) However, the conventional racetrack type zero-sequence current transformer has a problem that the detectable zero-sequence current is about 200 (mA), and the detection sensitivity is poor.

レーストラック形零相変流器は、第8図に示すように、
磁心5に巻線6が略均−に巻き回されており3相導体R
,S、Tを流れる電流によって磁心5に磁束を発生させ
、この磁束によって巻線に磁束密度の時間微分に比例し
た誘起起電力を発生させる。この誘起起電力は巻線全周
では3指導体R1S、Tの3相導分が互いに打ち消し合
い、そのため出力端子の誘起起電力は零となる。しかし
、実際には、零相変流器の磁心5の透磁率μのばらつき
及び/又は3相導体R,S、Tの組み込み位置のばらつ
きに起因して第9図に示すように磁心5中に発生する磁
束密度に不均一が生じ、また第10図に示すように巻線
6の巻回密度が磁心5の各部において不均一であること
から、3指導体R1S、Tを流れる各電流が完全な対称
3相交流電流であっても零相変流器の出力端子電圧は通
常は零にならない。このため、従来のレーストラック形
零相変流器は零相電流の検出感度を上げることが出来な
いのである。
The racetrack type zero-phase current transformer, as shown in Figure 8,
The winding 6 is wound approximately evenly around the magnetic core 5, and the three-phase conductor R
, S, and T generate magnetic flux in the magnetic core 5, and this magnetic flux generates an induced electromotive force in the winding that is proportional to the time differential of the magnetic flux density. This induced electromotive force is caused by the three-phase conductors of the three conductors R1S and T canceling each other over the entire circumference of the winding, so that the induced electromotive force at the output terminal becomes zero. However, in reality, due to variations in the magnetic permeability μ of the magnetic core 5 of the zero-phase current transformer and/or variations in the installation positions of the three-phase conductors R, S, and T, as shown in FIG. Since there is non-uniformity in the magnetic flux density generated in the magnetic flux density, and since the winding density of the winding 6 is non-uniform in each part of the magnetic core 5 as shown in FIG. Even with perfectly symmetrical three-phase alternating current, the output terminal voltage of a zero-phase current transformer usually does not become zero. For this reason, the conventional racetrack type zero-sequence current transformer cannot increase the detection sensitivity of zero-sequence current.

本発明は、上記事情に鑑みてなされたものであり、零相
電流の検出感度を大幅に向上した光零相変流器を提供す
ることを目的とする。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide an optical zero-sequence current transformer with significantly improved zero-sequence current detection sensitivity.

(課題を解決するための手段) 上記目的を達成するために、本発明によれば、磁心の周
囲を異なる作動磁界を有する高透磁率の磁性材料を積層
して構成した磁気シールド部材でシールドし、前記磁心
にコイルを均一に巻回し、該コイルに光電圧センサを接
続して成る光零相変流器が提供される。
(Means for Solving the Problems) In order to achieve the above object, according to the present invention, the periphery of a magnetic core is shielded with a magnetic shield member formed by laminating high permeability magnetic materials having different working magnetic fields. , there is provided an optical zero-phase current transformer comprising a coil wound uniformly around the magnetic core and an optical voltage sensor connected to the coil.

(作用) 異なる作動磁界を有する高透磁率の磁性材料を積層した
磁気シールドを磁心に施したことから3相正相電流によ
って磁心中に誘起される磁束に基づく零相変流器の出力
電圧の変動を排除し、また無誘導の光電圧センサにより
零相電流の出力を検出することにより、検出感度を大幅
に向上させる。
(Function) Since the magnetic core is provided with a magnetic shield made of laminated magnetic materials with high magnetic permeability and different operating magnetic fields, the output voltage of the zero-phase current transformer is determined based on the magnetic flux induced in the magnetic core by the three-phase positive-sequence current. By eliminating fluctuations and detecting the zero-sequence current output with a non-inductive optical voltage sensor, detection sensitivity is greatly improved.

(実施例) 以下、本発明の実施例を添付図面に基づいて詳細に説明
する。
(Example) Hereinafter, an example of the present invention will be described in detail based on the accompanying drawings.

第1図は本発明の光零相変流器の一実施例を示す平面図
及び側面図であり、第2図は第1図の光零相変流器の部
分断面図であり、第3図は第2図の■−■矢視の断面図
である。本発明のレーストラック形光零相変流器1は、
3相正相電流による磁心5への磁束の誘起を排除して検
出感度を向上させるべく磁心5を磁気シールドしている
。つまり、300〜600(A)の相電流が磁心5に影
響を与えると検出可能な零相電流は200(mA)程度
より下がらず、検出感度を向上できない。そのため、本
発明では、後述するように、磁気シールドを完全にする
ために、磁心5及びコイル6を囲む磁気シールドは、種
々の透磁率を存する磁性材料を積層して構成する0本実
施例では、磁気シールドは、第3図に示すように、第1
層が無方向性ケイ素鋼板7、第2層が方向性ケイ素鋼板
8、第3Nがパーマロイ9から成る3層構造に積層され
ている。更に、磁心5に均一に巻回されたコイル6は、
零相電流によって磁心5に発生した誘起起電力を検出す
る光電圧センサ4に接続されている。光電圧センサ4に
は1対の光ファイバ3が接続されている。符号2は取付
用ビス孔である。
1 is a plan view and a side view showing one embodiment of the optical zero-phase current transformer of the present invention, FIG. 2 is a partial sectional view of the optical zero-phase current transformer of FIG. 1, and FIG. The figure is a sectional view taken along the line ■--■ in FIG. 2. The racetrack type optical zero-phase current transformer 1 of the present invention includes:
The magnetic core 5 is magnetically shielded in order to eliminate the induction of magnetic flux to the magnetic core 5 by the three-phase positive current and improve detection sensitivity. That is, when a phase current of 300 to 600 (A) affects the magnetic core 5, the detectable zero-sequence current does not fall below about 200 (mA), and detection sensitivity cannot be improved. Therefore, in the present invention, as will be described later, in order to complete the magnetic shield, the magnetic shield surrounding the magnetic core 5 and the coil 6 is constructed by laminating magnetic materials having various magnetic permeabilities. , the magnetic shield is the first one, as shown in FIG.
The three-layer structure includes a non-oriented silicon steel plate 7 as a layer, a grain-oriented silicon steel plate 8 as the second layer, and a permalloy 9 as the third layer. Furthermore, the coil 6 evenly wound around the magnetic core 5 is
It is connected to an optical voltage sensor 4 that detects the induced electromotive force generated in the magnetic core 5 by the zero-sequence current. A pair of optical fibers 3 are connected to the optical voltage sensor 4 . Reference numeral 2 is a mounting screw hole.

発明者の解析によれば、磁気シールドにおいて、厚さ1
(fi)のシールド板のシールド効果には近似的にに=
0.006μで表される。厚さ15(ms)のシールド
板のシールド効果にはに=0.075μとなる。
According to the inventor's analysis, the magnetic shield has a thickness of 1
The shielding effect of the shield plate (fi) is approximately equal to
It is expressed as 0.006μ. The shielding effect of a shield plate with a thickness of 15 (ms) is 0.075μ.

通常の零相変流器が置かれる外部磁界300^/を程度
の磁場内で無方向性ケイ素鋼板をシールド材として使用
した場合にはその透磁率μは第4図のH−μ特性から2
.000〜8.000程度となる。透磁率μを中間の4
 、000とすると厚さ15(m)の無方向性ケイ素鋼
板を使用するとそのシールド効果には前述した如< K
=0.075 X 4000−300となる。従って、
厚さ15(ms)の無方向性ケイ素鋼板を使用しても磁
界は300(A/m)十に−1(^/II+)程度にし
か減衰しない。このため、100+a^以下の零相電流
を検出しようとする断面10 (mm) xlO(鰭)
程度の磁心を磁気シールドするシールド材料としては、
厚さが15(ms)あっても単一の無方向性ケイ素鋼板
は不十分である。そこで、本発明では適正な磁界(磁化
力)Hに対して適正な透磁率μの磁性材料を使用して完
全な磁気シールドを行なうために、磁気シールドを異な
る作動磁界を有する高透磁率の磁性材料を積層して構成
するものとする。
When a non-oriented silicon steel plate is used as a shield material in an external magnetic field of about 300^/ where a normal zero-phase current transformer is placed, its magnetic permeability μ is 2 from the H-μ characteristic shown in Figure 4.
.. It will be about 000 to 8,000. Magnetic permeability μ is the middle 4
, 000, if a non-oriented silicon steel plate with a thickness of 15 (m) is used, its shielding effect will be < K as described above.
=0.075 x 4000-300. Therefore,
Even if a non-oriented silicon steel plate with a thickness of 15 (ms) is used, the magnetic field will attenuate only to about -1 (^/II+) of 300 (A/m). For this reason, the cross section 10 (mm)
As a shielding material for magnetically shielding a magnetic core of
Even if the thickness is 15 (ms), a single non-oriented silicon steel plate is insufficient. Therefore, in the present invention, in order to perform complete magnetic shielding by using a magnetic material with an appropriate magnetic permeability μ for an appropriate magnetic field (magnetizing force) H, the magnetic shield is made of a high permeability magnetic material with a different operating magnetic field. It shall be constructed by laminating materials.

今、高透磁率の磁性材料を3層に積層して磁気シールド
を構成するものとし、第1層を無方向性ケイ素鋼板(平
均の透磁率μm3,000、に=18)7で、第2層を
方向性ケイ層鋼板(平均の透磁率μm30゜000、 
K・180)8で、第3層をパーマロイ(平均の透磁率
μ−io、 ooo、K−60)9で夫々構成する。
Now, assume that a magnetic shield is constructed by laminating three layers of high magnetic permeability magnetic materials, the first layer is a non-oriented silicon steel plate (average magnetic permeability μm 3,000, = 18), the second layer is The layer is made of grain-oriented silicon layer steel plate (average magnetic permeability μm 30゜000,
The third layer is made of permalloy (average magnetic permeability μ-io, ooo, K-60) 9.

前述のように外部磁界を300 (A/m)とすると、
磁気シールドの第1層で減衰され第2層に到達する残留
磁界は300 +18=16.7(A/m)となる。こ
の残留磁界16.7(A/m)は第5図に示す方向性ケ
イ素鋼板のH−μ特性かられかるように最大の透磁率μ
を得るのに適切な磁界であり、第2Nで減衰され第3層
に到達する残留磁界は16.7÷180 = 92.6
 (mA/m)となる。この残留磁界はケイ素鋼板で磁
気シールドするには小さ過ぎるので、更に高透磁率のパ
ーマロイを第3層に使用する。パーマロイはそのH−μ
特性から92、6 (mA/m)の磁化力に対して透磁
率μ=105程度は確保できる。従って第3層の内側の
残留磁界は92.6 (mA/m)÷60= 1.6 
(mA/m)となる。この残留磁界は零相電流による磁
界10(mA/m)程度を検出するには十分に減衰され
ている。尚、磁気シールド用の磁性材料は前述のものに
限られず、また3眉に限られず他の層数のものも構成で
きる。
As mentioned above, if the external magnetic field is 300 (A/m),
The residual magnetic field that is attenuated by the first layer of the magnetic shield and reaches the second layer is 300 + 18 = 16.7 (A/m). This residual magnetic field of 16.7 (A/m) is the maximum magnetic permeability μ as seen from the H-μ characteristics of the grain-oriented silicon steel sheet shown in Figure 5.
The residual magnetic field that is attenuated by the second N and reaches the third layer is 16.7÷180 = 92.6
(mA/m). This residual magnetic field is too small to be magnetically shielded by a silicon steel plate, so permalloy with even higher magnetic permeability is used for the third layer. Permalloy has its H-μ
From the characteristics, a magnetic permeability μ of about 105 can be ensured for a magnetizing force of 92.6 (mA/m). Therefore, the residual magnetic field inside the third layer is 92.6 (mA/m) ÷ 60 = 1.6
(mA/m). This residual magnetic field is sufficiently attenuated to detect a magnetic field of about 10 (mA/m) due to the zero-sequence current. Incidentally, the magnetic material for the magnetic shield is not limited to the above-mentioned material, nor is it limited to three layers, but other numbers of layers can be used.

一方、零相電流の検出感度を10(mA/m)とすれば
零相変流器の磁心5の材料としては前述の高透磁率のパ
ーマロイが適切である。10(mA/m)の磁界によっ
て磁心5内に発生される磁束密度は10(C)程度であ
るから、巻回数が10“(ターン)のコイルの誘起起電
力■は次のようになる。
On the other hand, if the zero-sequence current detection sensitivity is 10 (mA/m), the above-mentioned high permeability permalloy is suitable as the material for the magnetic core 5 of the zero-sequence current transformer. Since the magnetic flux density generated in the magnetic core 5 by a magnetic field of 10 (mA/m) is about 10 (C), the induced electromotive force (2) of a coil with a winding number of 10" (turns) is as follows.

V=      (B−3−n) t =jω・10弓・(10−”) ”・104′= j 
π10−’ =0.314(V)ここで、B:磁心に零
相電流により発生する磁束密度(テスラ)、 S:磁心面積(10aaX 10層m)、n:巻線の巻
回数(ターン)。
V= (B-3-n) t =jω・10bow・(10-”) ”・104′= j
π10-' = 0.314 (V) Here, B: Magnetic flux density (Tesla) generated by zero-sequence current in the magnetic core, S: Core area (10aaX 10 layers m), n: Number of turns of the winding (turns) .

このように小さい誘起起電力を、3相交流の300A〜
600(A)という正相分電流による誘導作用の影響を
受けずに検出するためには無誘導の光電圧センサ4が必
要である。光電圧センサ4は検出インピーダンス(素子
インピーダンス)が高く、巻線には実質的に電流が流れ
ないために巻線は可能な限り細くしても良い。
This small induced electromotive force can be generated from 300A to 3-phase AC.
A non-inductive optical voltage sensor 4 is required in order to perform detection without being affected by the inductive effect of the positive-sequence current of 600 (A). The optical voltage sensor 4 has a high detection impedance (element impedance), and since substantially no current flows through the winding, the winding may be made as thin as possible.

地絡事故時に流れる零相電流は第6図に示す地絡点抵抗
Rgによって決まってしまうために、零相電流の検出感
度を向上すればこれまで検知できなかった地絡点抵抗R
gの高い事故点が検出可能となる。
Since the zero-sequence current that flows during a ground fault is determined by the ground-fault point resistance Rg shown in Figure 6, if the zero-sequence current detection sensitivity is improved, the ground fault point resistance R, which could not be detected until now, can be reduced.
Accident points with high g can be detected.

次に、本発明の光零相変流器の作用について説明する。Next, the operation of the optical zero-phase current transformer of the present invention will be explained.

零相変流器1の内側を貫通する3指導体を流れる3相正
相電流により発生される磁界は、順次外側から磁気シー
ルド層によって減衰され、磁心5に到達する磁界は非常
に小さくされる。一方、地絡事故の発生により3層導体
のどれか1つに零相電流が流れるとこの雪層電流により
磁心5中に磁束が誘起される。コイル6がこれを検出し
て光電圧センサ4に送り、光電圧センサ4は無誘導でか
つ高感度に検出して光信号として出力する。
The magnetic field generated by the three-phase positive-sequence current flowing through the three conductors penetrating the inside of the zero-phase current transformer 1 is sequentially attenuated by the magnetic shield layer from the outside, and the magnetic field reaching the magnetic core 5 is made extremely small. . On the other hand, when a zero-sequence current flows through any one of the three layer conductors due to the occurrence of a ground fault, magnetic flux is induced in the magnetic core 5 by this snow layer current. The coil 6 detects this and sends it to the optical voltage sensor 4, which detects it non-inductively and with high sensitivity and outputs it as an optical signal.

(発明の効果) 以上説明したように、本発明によれば、磁心の周囲を異
なる作動磁界を有する高透磁率の磁性材料を積層して構
成した磁気シールド部材でシールドし、前記磁心にコイ
ルを均一に巻回し、該コイルに光電圧センサを接続して
成ることにより、従来不可能であった10(mA)オー
ダの零相電流が検出可能となり、その結果零相変流器の
検出感度が大幅に向上できるという効果が得られる。
(Effects of the Invention) As explained above, according to the present invention, the periphery of a magnetic core is shielded with a magnetic shield member formed by laminating high permeability magnetic materials having different working magnetic fields, and a coil is attached to the magnetic core. By winding the coil uniformly and connecting a photovoltage sensor to the coil, it becomes possible to detect a zero-sequence current on the order of 10 (mA), which was previously impossible, and as a result, the detection sensitivity of the zero-phase current transformer increases. This results in a significant improvement.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の光零相変流器の一実施例を示す平面図
及び側面図、第2図は第1図の光零相変流器の部分断面
図、第3図は第2図の■−■矢視の断面図、第4図は無
方向性ケイ素鋼板のH−μ特性を示す図、第5図は方向
性ケイ素鋼板のH−μ特性を示す図、第6図は地絡事故
時の地絡点抵抗を説明する図、第7図は従来の高圧配電
系統を示す電気回路図、第8図はレーストラック形零相
変流器の基本構成を示す図、第9図は第8図の零相変流
器の発生磁束の不均一を示す図、第10図は零相変流器
のコイル巻回の不均一を示す図である。 1・・・レーストラック形零相変流器、2・・・ビス孔
、3・・・光ファイバ、4・・・光電圧センサ、5・・
・磁心、6・・・コイル、7・・・無方向性ケイ素鋼板
層、8・・・方向性ケイ素鋼板層、9・・・パーマロイ
層。
1 is a plan view and a side view showing an embodiment of the optical zero-phase current transformer of the present invention, FIG. 2 is a partial sectional view of the optical zero-phase current transformer of FIG. 1, and FIG. 4 is a diagram showing the H-μ characteristics of a non-oriented silicon steel sheet, FIG. 5 is a diagram showing the H-μ characteristics of a grain-oriented silicon steel sheet, and FIG. Figure 7 is an electric circuit diagram showing a conventional high-voltage distribution system; Figure 8 is a diagram showing the basic configuration of a racetrack type zero-phase current transformer; Figure 9 The figure shows the non-uniformity of the magnetic flux generated in the zero-phase current transformer of FIG. 8, and the figure shows the non-uniformity of the coil winding of the zero-phase current transformer. DESCRIPTION OF SYMBOLS 1... Race track type zero-phase current transformer, 2... Screw hole, 3... Optical fiber, 4... Optical voltage sensor, 5...
- Magnetic core, 6... Coil, 7... Non-oriented silicon steel plate layer, 8... Grain-oriented silicon steel plate layer, 9... Permalloy layer.

Claims (1)

【特許請求の範囲】[Claims] 磁心の周囲を異なる作動磁界を有する高透磁率の磁性材
料を積層して構成した磁気シールド部材でシールドし、
前記磁心にコイルを均一に巻回し、該コイルに光電圧セ
ンサを接続して成ることを特徴とする光零相変流器。
The magnetic core is surrounded by a magnetic shielding member made of laminated high permeability magnetic materials with different working magnetic fields,
An optical zero-phase current transformer characterized in that a coil is uniformly wound around the magnetic core, and an optical voltage sensor is connected to the coil.
JP63104895A 1988-04-27 1988-04-27 Optical zero-phase current transformer Pending JPH01274070A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63104895A JPH01274070A (en) 1988-04-27 1988-04-27 Optical zero-phase current transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63104895A JPH01274070A (en) 1988-04-27 1988-04-27 Optical zero-phase current transformer

Publications (1)

Publication Number Publication Date
JPH01274070A true JPH01274070A (en) 1989-11-01

Family

ID=14392890

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63104895A Pending JPH01274070A (en) 1988-04-27 1988-04-27 Optical zero-phase current transformer

Country Status (1)

Country Link
JP (1) JPH01274070A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215760A (en) * 1990-01-19 1991-09-20 Ngk Insulators Ltd Earth detector
JP2015188029A (en) * 2014-03-27 2015-10-29 Necトーキン株式会社 zero-phase current transformer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03215760A (en) * 1990-01-19 1991-09-20 Ngk Insulators Ltd Earth detector
JP2015188029A (en) * 2014-03-27 2015-10-29 Necトーキン株式会社 zero-phase current transformer

Similar Documents

Publication Publication Date Title
EP0544646B1 (en) Apparatus for assessing insulation conditions
US5223789A (en) AC/DC current detecting method
US5075628A (en) Insulation monitoring system of a direct current power supply system
US3863109A (en) Short circuit sensing device for electromagnetic induction apparatus
CN111771250B (en) Current transformer
EP0187309B1 (en) Insulation deterioration monitoring apparatus
US5055771A (en) Faulted current indicators with improved signal to noise ratios
JP2018072228A (en) Current detection device
US4295175A (en) Pilot wire relay protection system for electrical distribution networks
US4320433A (en) Earth-leakage-current circuit breaker system
US3832600A (en) Transformer internal fault detector
US3604982A (en) Ground fault and overload current interrupting apparatus
Hosemann et al. Modal saturation detector for digital differential protection
US2241127A (en) Protective relay
JPH01274070A (en) Optical zero-phase current transformer
US2929963A (en) Protective relaying system for direct current equipment
JP2586156B2 (en) AC / DC dual-purpose current detection method
US3555476A (en) Leakage current sensor
US5097202A (en) Faulted current indicators with improved signal to noise ratios
JPH07312823A (en) Dc leak detection and protective device
Novak et al. Sensitive ground-fault relaying
JPH01304363A (en) Optical zero-phase current transformer
JPS61201404A (en) Gapped input transformer for static protective relay
JPH073448B2 (en) Ground fault detector for distribution system
SU678582A1 (en) Device for protecting electric installation with magnetic core from interturn short-circuitings