JPH01273294A - Electrically writable and erasable memory device - Google Patents

Electrically writable and erasable memory device

Info

Publication number
JPH01273294A
JPH01273294A JP63101816A JP10181688A JPH01273294A JP H01273294 A JPH01273294 A JP H01273294A JP 63101816 A JP63101816 A JP 63101816A JP 10181688 A JP10181688 A JP 10181688A JP H01273294 A JPH01273294 A JP H01273294A
Authority
JP
Japan
Prior art keywords
cell
signal
turned
erasing
inverse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101816A
Other languages
Japanese (ja)
Inventor
Tsugihiro Sato
佐藤 二洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC IC Microcomputer Systems Co Ltd
Original Assignee
NEC IC Microcomputer Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC IC Microcomputer Systems Co Ltd filed Critical NEC IC Microcomputer Systems Co Ltd
Priority to JP63101816A priority Critical patent/JPH01273294A/en
Publication of JPH01273294A publication Critical patent/JPH01273294A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent excessive fatigue of the title memory device caused by the stress of an electric field and to reduce the writing and erasing time of the device by additionally providing a circuit which discriminates whether a cell is in the writing or erasing state and another circuit which controls the write and erasure. CONSTITUTION:At the time of erasing a cell 9, the cell 9 is erased by the period when a voltage VPP and signals, W, E, and CO the inverse of are respectively a high voltage and '0', '1', and '1'. During the period when the signal CO of the inverse of is '0', transfers (YF) 17 and 26 are turned of so as to make an AND 1 to become '1' and a transistor (Tr) 24 is turned off so as to apply a voltage of VDD-VTN across the cell 9. If the threshold of the cell 9 is lower than the voltage VDD-VTN, the cell 9 is turned on and the output of a sense amplifier 26 is held by a latch 27 after setting the output to '1'. The value '1' is compared with an anticipated value at a comparator circuit and outputs of an EXNOR 21 and NAND 23 are respectively set to '0' and '1', while a TF 25 is kept in a turned-on state. Then the signal of the inverse of CO becomes '1' and the cell 9 is erased. The above- mentioned operations are repeated until the signal of the inverse of CO' becomes '0' and the threshold of the memory cell 9 exceeds the voltage VDD-VTN. Even when the signal of the inverse of CO becomes '1', no high voltage is applied across the gate of the cell 9 and the erasure is interrupted.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体集積回路装置に°関し、特に電気的書込
み・消去可能型メモリに間する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor integrated circuit devices, and particularly to electrically programmable and erasable memories.

[従来の技術] 従来、電気的に消去・書込み可能なメモリ(Elect
oricaly  Erasable  Progra
mable  Read  0nly  Memoly
  以下EEPROMと称す)は、消去・書込みをする
場合、第5図に示す基本タイミングで行っており、消去
・書込み幅は、コントロール信号に依存し、そのセルの
しきい値(シフト量)が飽和するまで、消去・書込みを
行っていた。
[Prior Art] Conventionally, electrically erasable/writable memories (elect
orically Erasable Progra
mable Read Only Memory
When erasing/writing an EEPROM (hereinafter referred to as EEPROM), it is performed according to the basic timing shown in Figure 5.The erasing/writing width depends on the control signal, and the threshold value (shift amount) of the cell is saturated. Up until then, erasing and writing had been performed.

次に従来の技術について図面を参照して説明する。第2
図はカレントミラ一方式のセンスアンプの例でINに電
流が流れるとOUTには”1パを出し電流が流れないと
、OUTには”0”を出力する回路である。
Next, a conventional technique will be explained with reference to the drawings. Second
The figure shows an example of a current mirror type sense amplifier, which outputs "1" at OUT when current flows through IN, and outputs "0" at OUT when no current flows.

第3図はレベルシフタの例でINに接地電位が入力され
るとOUTには”0”が出力され、電源電圧(”1″)
が入力されるとOU Tには高電圧(V PP)が出力
する回路である。
Figure 3 shows an example of a level shifter. When the ground potential is input to IN, "0" is output to OUT, and the power supply voltage ("1")
This circuit outputs a high voltage (VPP) to OUT when it is input.

第4図は従来技術の一例である。まずEEPROMセル
(以下セルと称す)62を消去する場合を例に採って説
明する。表1は書込み・消去・読み出しのための信号レ
ベルを表す一例である。
FIG. 4 is an example of the prior art. First, the case of erasing an EEPROM cell (hereinafter referred to as cell) 62 will be explained as an example. Table 1 is an example of signal levels for writing, erasing, and reading.

表1 この表1より消去時はVPPが高電圧(20V前後)、
信号Eが′1′、信号Wが”0″となり、またセル62
を選択するためにYセレクタ信号YSセルセレクト信号
C5Iは”1”としておく、この時各トランジスタの状
態はレベルシフタL13は0”でトランスファ72がオ
フ、レベルシフタL14は高電圧でトランスファ71は
オン、レベルシフタL10.L11は高電圧でトランジ
スタ60.61.63がオンして、セル62のゲートに
は高電圧、ソースには接地電位が印加され、セル62の
フローティングゲートにエレクトロンが注入され、しき
い値をひきあげる(第6図に示すa点までしきい値は上
がる)。
Table 1 From Table 1, VPP is at a high voltage (around 20V) during erasing.
The signal E becomes '1', the signal W becomes '0', and the cell 62
In order to select, the Y selector signal YS cell select signal C5I is set to "1". At this time, the state of each transistor is that the level shifter L13 is 0" and the transfer 72 is off, the level shifter L14 is high voltage and the transfer 71 is on, and the level shifter L13 is 0" and the transfer 72 is off. L10.L11 is at high voltage, transistors 60, 61, 63 are turned on, high voltage is applied to the gate of cell 62, ground potential is applied to the source, electrons are injected into the floating gate of cell 62, and the threshold value is (The threshold value rises to point a shown in Figure 6).

次にセル65に書込む場合を例にとって説明する。表1
より書込み時はVPPが高電圧(20■前後)、信号E
が+10+?、信号Wが11199となり、またセル6
5を選択するためにYセレクタ信号Y85 セルセレク
ト信号CS2は”1”としておく。
Next, the case of writing to the cell 65 will be explained as an example. Table 1
When writing, VPP is at a high voltage (around 20μ), and signal E
Is it +10+? , signal W becomes 11199, and cell 6
In order to select 5, the Y selector signal Y85 and cell select signal CS2 are set to "1".

この時各トランジスタの状態はレベルシフタL13は高
電圧でトランスファ72はオン、レベルシフタL14は
パ0”でトランスファ71はオフ、オア70が1”でト
ランジスタ67はオン、レベルシフタLIO,L12は
高電圧でトランジスタ60.64.66がオンして、セ
ル65のゲートには接地電位、ドレインには高電圧が印
加され、セル65のフローティングゲートにホールが注
入され、セルのしきい値を引き下げる(第6図に示すb
点までしきい値は下がり、しきい値はマイナス領域に達
する)。
At this time, the state of each transistor is that the level shifter L13 is at high voltage and the transfer 72 is on, the level shifter L14 is at 0" and the transfer 71 is off, the OR 70 is 1" and the transistor 67 is on, and the level shifter LIO and L12 are at high voltage and the transistor 60, 64, and 66 are turned on, ground potential is applied to the gate of cell 65, and high voltage is applied to the drain, holes are injected into the floating gate of cell 65, lowering the threshold value of the cell (Fig. 6). b shown in
(the threshold falls to the point where the threshold reaches negative territory).

書込みを行う場合は、データ入力信号りが1”の時で”
0”の時には書込みは行わない。
When writing, write when the data input signal is 1".
When the flag is 0'', no writing is performed.

読み出し時はトランジスタ67がオンするため、各セル
のゲートに印加される電位は接地電位となり、セルのし
きい値が接地電位よりも高いと消去状態であり、センス
アンプ72のOUTには“02゛、接地電位よりも低い
と書込み状態でありセンスアンプ72のOUTには”1
”を出力する。
During reading, the transistor 67 is turned on, so the potential applied to the gate of each cell becomes the ground potential, and if the cell threshold is higher than the ground potential, it is in the erased state, and the OUT of the sense amplifier 72 is “02”.゛If it is lower than the ground potential, it is in the write state, and the OUT of the sense amplifier 72 is “1”.
” is output.

[発明が解決しようとする問題点コ 上述した従来のEEPROMはセル特性のばらつきに対
しても十分な書込み・消去幅をもたせるため、セルのし
きい値が飽和状態になる点く第6図のa点、b点)まで
長時間高電圧をセルのドレインまたはゲートに印加しつ
づけるので、酸化膜への電界ストレスによる余分な疲労
が発生し、EEPROMの信頼性や耐用書換え回数が低
下するという欠点を有している。
[Problems to be Solved by the Invention] The conventional EEPROM described above has a sufficient write/erase width even for variations in cell characteristics, so the cell threshold voltage reaches saturation, as shown in Figure 6. Since high voltage is continuously applied to the drain or gate of the cell for a long time up to points a and b), excessive fatigue occurs due to electric field stress on the oxide film, reducing the reliability and number of rewrites of the EEPROM. have.

[問題点を解決するための手段] 本発明のEEFROMは通常の書込み・消去時間に対し
短い時間で書込み・消去を繰り返すコントロール信号発
生回路と、読み出した値が期待値と一致しているかどう
かを判別する比較回路と、期待値と一致した場合メモリ
セルへ高電圧の供給を停止させる高電圧供給遮断回路を
有している。
[Means for Solving the Problems] The EEFROM of the present invention includes a control signal generation circuit that repeats writing and erasing in a shorter time than the normal writing and erasing time, and a control signal generation circuit that checks whether the read value matches the expected value. It has a comparison circuit for discrimination and a high voltage supply cutoff circuit for stopping the supply of high voltage to the memory cell when the value matches the expected value.

[実施例コ 次に本発明について図面を参照して説明する。[Example code] Next, the present invention will be explained with reference to the drawings.

第5図で示した基本タイミングの他に第7図で示す信号
Co(オーバーパー)を考える。これは外部からの信号
または第8図で示すリングオシレータの一例で作成して
もよい。第7図で示すtpwl、2・φ・nは第6図で
示すTPWW、TPWEよりも十分パルス幅は小さくし
ておく必要がある。第1図は消去時にはセルしきい値電
圧を■0O−VTN(C点)、書込み時にはセルしきい
値電圧を接地電位(6点)に設定するための回路例であ
る。
In addition to the basic timing shown in FIG. 5, consider the signal Co (over par) shown in FIG. This may be created using an external signal or an example of a ring oscillator shown in FIG. The pulse widths of tpwl and 2·φ·n shown in FIG. 7 must be made sufficiently smaller than those of TPWW and TPWE shown in FIG. FIG. 1 shows an example of a circuit for setting the cell threshold voltage to 00-VTN (point C) during erasing and to the ground potential (point 6) during writing.

まずセル9を消去する場合について説明する。First, the case of erasing cell 9 will be explained.

表1よりVPPが高電圧、信号Wは+10IT、信号E
は1″でCo(オーバーパー)が1゛の期間だけ従来例
と同様にセル9を消去しはじめる。次にCo(オーバー
パー)が′O”の期間はトランスファ17.26をオフ
してアント1が1”になりトランジスタ4をオンさせて
、セル9にVDD−VTNの電圧を印加する。この時セ
ル9のしきい値がVDD−VTNより小さいと、セル9
がオンしてセンスアンプ26の出力を1″にしてラッチ
27に保持する。 (第9図はCo(オーバーパー)が
!Il+!で保持するラッチの一実施例である)。
From Table 1, VPP is high voltage, signal W is +10IT, signal E
is 1", cell 9 begins to be erased during the period when Co (over par) is 1" as in the conventional example.Next, during the period when Co (over par) is 'O', transfer 17.26 is turned off and the antenna is 1 becomes 1'', transistor 4 is turned on, and a voltage of VDD-VTN is applied to cell 9.At this time, if the threshold value of cell 9 is smaller than VDD-VTN, cell 9
is turned on, and the output of the sense amplifier 26 is set to 1'' and held in the latch 27. (FIG. 9 is an example of a latch in which Co (over par) is held at !Il+!).

保持された値111+1は読み出した値が期待値と一致
しているかどうかを判別する比較回路(この回路の構成
はアンド1,2、トランジスタ4,5、ラッチ27、E
XNOR21よりなる)で比較されEXNOR21(7
)出力をII O”にしナンド23を“1゛にしトラン
スファ25をオンの状態にし続ける。次にCo(オーバ
ーパー)が”1”になりセル9を消去し、Co(オーバ
ーパー)が”0゛となり比較しセル9のしきい値がVD
D−VTNを越えるまで繰り返す。Co(オーバーパー
)がパ0゛2となってセル9のしきい値がV DD−V
 TNを越えたときセル9はオフしてセンスアンプ26
の出力を0”にしてラッチ27に保持する。保持された
値“OIIはしきい値電圧比較回路で比較されEXNO
Rの出力を”1゛にしナンド23を0°゛にしてトラン
スファ25をオフの状態にする。
The held value 111+1 is determined by a comparison circuit that determines whether the read value matches the expected value (this circuit consists of AND1, 2, transistors 4, 5, latch 27, E
EXNOR21 (consisting of 7
) The output is set to "II O", the NAND 23 is set to "1", and the transfer 25 is kept on. Next, Co (over par) becomes "1" and cell 9 is erased, Co (over par) becomes "0" and compared, the threshold value of cell 9 is VD
Repeat until D-VTN is exceeded. Co (over par) becomes Pa0゛2 and the threshold value of cell 9 becomes VDD-V
When TN is exceeded, cell 9 is turned off and sense amplifier 26
The output of EXNO is set to 0 and held in the latch 27.
The output of R is set to "1", the NAND 23 is set to 0°, and the transfer 25 is turned off.

この為次にCo(オーバーパー)が”1”となってもセ
ルのゲートには高電圧が印加されず、消去を中断する。
Therefore, even if Co (over par) becomes "1" next time, no high voltage is applied to the gate of the cell, and erasing is interrupted.

同様にセル12に書込む場合も説明できる。表1よりV
F’Pが高電圧、信号Wは1”、信号Eは0°′でCO
(オーバーパー)が′”1゛′の期間とDが°’1”(
書き込みたい情報はD=1とする)のとき、従来例と同
様に書込みはじめる。次にCO(オーバーパー)が”0
゛′の其月間は、トランスファ17.26をオフしてア
ンド2が1”になりトランジスタ5をオンさせてセル1
2のゲートに接地電位を印加する。このときセル12の
しきい値電圧が接地電位より大きいと、セル12がオフ
してセンスアンプ26の出力を”0゛にしてラッチ27
に保持する。保持された値゛0”はじきい値電圧比較回
路で比較されEXNOR21の出力を”O11にしナン
ド23を”1”にし、トランスファ25をオン状態にし
つづける。次にCo(オーバーパー)が”1”になりセ
ル12に書込み、Co(オーバーパー)が”0”となり
比較しセル12のしきい値が接地電位よりも下がるまで
繰り返す。Co(オーバーパー)が”0”となってセル
12のしきい値が接地電位より下がったとき、セル12
はオンしてセンスアンプ26の出力を”1”′にしてラ
ッチ27に保持する。保持された値パ1“′は、しきい
値電圧比較回路で比較され、EXNOR21の出力を1
1111にしナンド23を″0パにしてトランスファ2
5をオフの状態にする。
The case of writing to cell 12 can be similarly explained. From Table 1, V
F'P is high voltage, signal W is 1'', signal E is 0°' and CO
The period when (over par) is ``1'' and D is °'1'' (
When the information to be written is D=1), writing is started in the same way as in the conventional example. Next, CO (over par) is “0”
During the month ``'', transfer 17.26 is turned off, AND2 becomes 1'', transistor 5 is turned on, and cell 1 is turned off.
A ground potential is applied to the gate of 2. At this time, if the threshold voltage of the cell 12 is higher than the ground potential, the cell 12 is turned off, the output of the sense amplifier 26 is set to "0", and the latch 27
to hold. The held value "0" is compared by a threshold voltage comparator circuit, and the output of EXNOR 21 is set to "O11", NAND 23 is set to "1", and transfer 25 is kept on. Next, Co (over par) becomes "1" and is written into the cell 12, and Co (over par) becomes "0" and the comparison is repeated until the threshold value of the cell 12 falls below the ground potential. When Co (over par) becomes "0" and the threshold of cell 12 falls below the ground potential, cell 12
is turned on and the output of the sense amplifier 26 is set to "1" and held in the latch 27. The held value Pa1"' is compared in a threshold voltage comparator circuit, and the output of EXNOR21 is set to 1.
1111, Nando 23 to "0pa", transfer 2
Turn 5 off.

この為、次にCo(オーバーパー)が1”となってもセ
ルのドレインには高電圧印加がされず書込みを中断する
Therefore, even if Co (over par) becomes 1'' next time, no high voltage is applied to the drain of the cell, and writing is interrupted.

また書込み時りが0の場合アンド14が11111とな
りトランジスタ13をオンさせて、センスアンプ26に
+l□I+を入力し、Co(オーバーパー)が0”′の
とき書込み終了と同じように動作する。
Also, when the writing time is 0, AND 14 becomes 11111, turning on the transistor 13, inputting +l□I+ to the sense amplifier 26, and when Co (over par) is 0"', the operation is the same as when writing is completed. .

[発明の効果] 以上説明したように本発明は半導体集積回路のEEPR
OMにセルの状態が書込みか消去かを判定する回路と、
書込み消去を制御する回路を付加することにより、自動
的に書込み消去を制御できセルの酸化膜への電界ストレ
スによる余分な疲労を防ぐことができるという効果があ
る。
[Effects of the Invention] As explained above, the present invention improves the EEPR of semiconductor integrated circuits.
A circuit that determines whether the state of the cell in the OM is written or erased;
By adding a circuit for controlling programming and erasing, it is possible to automatically control programming and erasing, thereby preventing excessive fatigue due to electric field stress on the oxide film of the cell.

またセル状態判定回路の出力を信号(第1図のナンド2
3出力)として次に書込みまたは消去したいアドレス、
データを制御することにより、書込み消去時間を短縮で
きるという効果も得られる。
In addition, the output of the cell state determination circuit is signaled (NAND 2 in Figure 1).
3 output) as the next address you want to write or erase,
By controlling the data, it is also possible to shorten the write/erase time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図はカレ
ントミラー回路の回路図、第3図は第1図のレベルシフ
タの回路図、第4図は従来例の回路図、第5図は従来の
基本タイミングを示す波形図、第6図はセルしきい値を
表すグラフ、第7図は本発明の基本タイミングを示す波
形図、第8図はリングオシレータを示す回路図、第9図
はラッチ回路の回路図である。 1、 2. 16゜ 18.14・・・・アンド回路、 20.22・・・・オア回路、 3、 16. 19゜ 54、 59. 73゜ 74.203,206・・・インバータ、Ll、  L
2.  L3.  L4゜L5.L6.LIO,Lll
。 L12.Ll3.Ll4・・・レベルシフタ、50〜5
3.55〜5B、  60. 61. 63゜64.6
6.67.68.4〜8. 10. 11゜13.24
・・・・・トランジスタ、 17.25,26,71.72・・トランスファ、9、
 12,62.65・・・・EEFROMセル、26.
72・・・・センスアンプ、 27・・・・・・・ラッチ、 23.200・・・・ナンド、 2l−−−−−−EXNORl 201.204・・・ ・抵抗、 202.205・・・・容量。 特許出願人  日本電気アイジ−マイコンシステム株式
会社 代理人 弁理士  桑 井 清 − 第2図       i コ。 # 口 bソ 第3図 第6図 ○tJT : 第4図 第8図 第9図
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram of a current mirror circuit, FIG. 3 is a circuit diagram of the level shifter shown in FIG. 1, FIG. 4 is a circuit diagram of a conventional example, and FIG. 5 is a waveform diagram showing the conventional basic timing, FIG. 6 is a graph showing the cell threshold, FIG. 7 is a waveform diagram showing the basic timing of the present invention, FIG. 8 is a circuit diagram showing the ring oscillator, and FIG. FIG. 9 is a circuit diagram of the latch circuit. 1, 2. 16゜18.14...AND circuit, 20.22...OR circuit, 3, 16. 19°54, 59. 73゜74.203,206...Inverter, Ll, L
2. L3. L4゜L5. L6. LIO,Lll
. L12. Ll3. Ll4...Level shifter, 50~5
3.55-5B, 60. 61. 63°64.6
6.67.68.4-8. 10. 11°13.24
...transistor, 17.25,26,71.72...transfer, 9,
12,62.65...EEFROM cell, 26.
72...Sense amplifier, 27...Latch, 23.200...NAND, 2l----EXNORl 201.204... -Resistance, 202.205... ·capacity. Patent applicant: Nippon Electric IG - Representative of Micom System Co., Ltd. Patent attorney: Kiyoshi Kuwai - Figure 2. #口bsoFigure 3Figure 6○tJT: Figure 4Figure 8Figure 9

Claims (1)

【特許請求の範囲】[Claims] 電気的に書き込み・消去の可能な記憶装置において、通
常の書込み・消去時間に対し短い時間で書込み・消去を
繰り返すコントロール信号発生回路と、読み出した値が
期待値と一致しているかどうかを判別する比較回路と、
期待値と一致した場合にはメモリセルへ高電圧の供給を
停止させる高電圧供給遮断回路とを有することを特徴と
する電気的に書込み・消去可能型メモリ装置。
In electrically writable/erasable storage devices, a control signal generation circuit repeats writing/erasing in a shorter time than the normal writing/erasing time, and determines whether the read value matches the expected value. a comparison circuit,
An electrically writable/erasable memory device comprising a high voltage supply cutoff circuit that stops supplying high voltage to a memory cell when the value matches an expected value.
JP63101816A 1988-04-25 1988-04-25 Electrically writable and erasable memory device Pending JPH01273294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101816A JPH01273294A (en) 1988-04-25 1988-04-25 Electrically writable and erasable memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101816A JPH01273294A (en) 1988-04-25 1988-04-25 Electrically writable and erasable memory device

Publications (1)

Publication Number Publication Date
JPH01273294A true JPH01273294A (en) 1989-11-01

Family

ID=14310650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101816A Pending JPH01273294A (en) 1988-04-25 1988-04-25 Electrically writable and erasable memory device

Country Status (1)

Country Link
JP (1) JPH01273294A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182479A (en) * 1991-12-27 1993-07-23 Nec Corp Nonolatile semiconductor memory writing and erasing en bloc electrically
JPH05182481A (en) * 1991-10-30 1993-07-23 Mitsubishi Electric Corp Semiconductor memory writing and erasing electrically
US6181603B1 (en) 1996-05-01 2001-01-30 Hitachi, Ltd. Nonvolatile semiconductor memory device having plural memory cells which store multi-value information
US6226198B1 (en) 1995-01-31 2001-05-01 Hitachi, Ltd. Nonvolatile memory device and refreshing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870491A (en) * 1981-10-21 1983-04-26 Nec Corp Integrated circuit device
JPS6015896A (en) * 1983-07-08 1985-01-26 Nec Corp High speed write system of memory device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5870491A (en) * 1981-10-21 1983-04-26 Nec Corp Integrated circuit device
JPS6015896A (en) * 1983-07-08 1985-01-26 Nec Corp High speed write system of memory device

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182481A (en) * 1991-10-30 1993-07-23 Mitsubishi Electric Corp Semiconductor memory writing and erasing electrically
JPH05182479A (en) * 1991-12-27 1993-07-23 Nec Corp Nonolatile semiconductor memory writing and erasing en bloc electrically
US6829163B2 (en) 1995-01-31 2004-12-07 Hitachi, Ltd. Clock synchronized nonvolatile memory device
US6256230B1 (en) 1995-01-31 2001-07-03 Hitachi, Ltd. Nonvolatile memory device and refreshing method
US6847549B2 (en) 1995-01-31 2005-01-25 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6366495B2 (en) 1995-01-31 2002-04-02 Hitachi, Ltd. Nonvolatile memory device and refreshing method
US7327604B2 (en) 1995-01-31 2008-02-05 Renesas Technology Corporation Clock synchronized non-volatile memory device
US6459614B1 (en) 1995-01-31 2002-10-01 Hitachi, Ltd. Non-volatile memory device and refreshing method
US6747941B2 (en) 1995-01-31 2004-06-08 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6751120B2 (en) 1995-01-31 2004-06-15 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6751119B2 (en) 1995-01-31 2004-06-15 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6757194B2 (en) 1995-01-31 2004-06-29 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6768672B2 (en) 1995-01-31 2004-07-27 Renesas Technology Corp. Clock Synchronized Non-Volatile Memory Device
US7324375B2 (en) 1995-01-31 2008-01-29 Solid State Storage Solutions, Llc Multi-bits storage memory
US6801452B2 (en) 1995-01-31 2004-10-05 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6804147B2 (en) 1995-01-31 2004-10-12 Renesas Technology Corp. Clock synchronized non-volatile memory device
US7542339B2 (en) 1995-01-31 2009-06-02 Solid State Storage Solutions, Llc Clock synchronized non-volatile memory device
US6226198B1 (en) 1995-01-31 2001-05-01 Hitachi, Ltd. Nonvolatile memory device and refreshing method
US6850434B2 (en) 1995-01-31 2005-02-01 Renesas Technology Corp. Clock synchronized nonvolatile memory device
US6868006B2 (en) 1995-01-31 2005-03-15 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6898118B2 (en) 1995-01-31 2005-05-24 Renesas Technology Corp. Clock synchronized non-volatile memory device
US6912156B2 (en) 1995-01-31 2005-06-28 Renesas Technology Corp. Clock synchronized nonvolatile memory device
US6965525B2 (en) 1995-01-31 2005-11-15 Renesas Technology Corp. Clock synchronized nonvolatile memory device
US7286397B2 (en) 1995-01-31 2007-10-23 Renesas Technology Corporation Clock synchronized nonvolatile memory device
US7161830B2 (en) 1995-01-31 2007-01-09 Renesas Technology Corp. Clock synchronized nonvolatile memory device
US7193894B2 (en) 1995-01-31 2007-03-20 Renesas Technology Corp. Clock synchronized nonvolatile memory device
US7245532B2 (en) 1996-05-01 2007-07-17 Renesas Technology Corporation Nonvolatile semiconductor memory device which stores multi-value information
US7031187B2 (en) 1996-05-01 2006-04-18 Hitachi, Ltd. Nonvolatile semiconductor memory device which stores multi-value information
US6771537B2 (en) 1996-05-01 2004-08-03 Hitachi, Ltd. Nonvolatile semiconductor memory device which stores multi-value information
US6396736B1 (en) 1996-05-01 2002-05-28 Hitachi, Ltd. Nonvolatile semiconductor memory device which stores multi-value information
US7394697B2 (en) 1996-05-01 2008-07-01 Renesas Technology Corp. Nonvolatile semiconductor memory device which stores multi-value information
US6181603B1 (en) 1996-05-01 2001-01-30 Hitachi, Ltd. Nonvolatile semiconductor memory device having plural memory cells which store multi-value information

Similar Documents

Publication Publication Date Title
US5262984A (en) Non-volatile memory device capable of storing multi-state data
KR100253851B1 (en) Semiconductor memory device
KR940022566A (en) A nonvolatile semiconductor memory device having a function of causing a memory cell transistor to be in an excessive erase state and a data writing method in the device
JP3080744B2 (en) Nonvolatile semiconductor memory device capable of electrically writing and erasing all at once
JP2007128644A (en) Nonvolatile semiconductor memory device having program and erase verifying function
KR960005370B1 (en) Method for erasing and verifying nonvolatile semiconductor memory device
JP4132323B2 (en) Nonvolatile semiconductor memory device and internal operation method of nonvolatile semiconductor memory device
TW200402737A (en) Flash memory device with stable source line regardless of bit line coupling and loading effect
US5544117A (en) Non-volatile semiconductor memory device with improved collective erasing operation
JPS62120700A (en) Semiconductor memory device
EP0828255B1 (en) Data sensing apparatus and method of multi-bit cell
JPH10228784A (en) Non-volatile semiconductor memory
KR100243825B1 (en) Non-volatile semiconductor memory and method of writing into the same
US5153854A (en) EEPROM memory system having selectable programming voltage for low power readability
JP3998908B2 (en) Nonvolatile memory device
JP3693504B2 (en) Memory device
US5381366A (en) Non-volatile semiconductor memory device with timer controlled re-write inhibit means
JPH01273294A (en) Electrically writable and erasable memory device
EP0729634A1 (en) Memory with multiple erase modes
KR950006870A (en) NOR-type nonvolatile memory control circuit
US6115293A (en) Non-volatile semiconductor memory device
JP2591324B2 (en) Semiconductor memory integrated circuit
JPH0736274B2 (en) Read-only memory
JP2792087B2 (en) Semiconductor memory device
JPH06139785A (en) Nonvolatile semiconductor storage device