JPH01273239A - Optical reproducing pickup - Google Patents

Optical reproducing pickup

Info

Publication number
JPH01273239A
JPH01273239A JP63102300A JP10230088A JPH01273239A JP H01273239 A JPH01273239 A JP H01273239A JP 63102300 A JP63102300 A JP 63102300A JP 10230088 A JP10230088 A JP 10230088A JP H01273239 A JPH01273239 A JP H01273239A
Authority
JP
Japan
Prior art keywords
optical
waveguide
optical waveguide
recording medium
pickup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63102300A
Other languages
Japanese (ja)
Other versions
JP2629812B2 (en
Inventor
Sadaichi Miyauchi
貞一 宮内
Yutaka Hayata
裕 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP63102300A priority Critical patent/JP2629812B2/en
Priority to US07/341,115 priority patent/US5065390A/en
Priority to EP89304020A priority patent/EP0338864B1/en
Priority to KR1019890005257A priority patent/KR970008229B1/en
Priority to DE89304020T priority patent/DE68910570T2/en
Publication of JPH01273239A publication Critical patent/JPH01273239A/en
Application granted granted Critical
Publication of JP2629812B2 publication Critical patent/JP2629812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Head (AREA)

Abstract

PURPOSE:To efficiently condense reflected light rays from a recording medium so that the reproducing output of an optical reproducing pickup can be improved with a small optical system by making the cross-sectional area of one end of a 2nd waveguide smaller than that of the one end of a 1st waveguide, with the one ends of the waveguides being provided adjacent to each other and faced to an optical recording medium. CONSTITUTION:A laser beam from a laser diode 36 is emitted from one end 38A of the 1st optical waveguide 38 faced to an optical recording medium 31 after it is propagated through the waveguide 38 and the medium 31 is irradiated by the emitted beam. The reflected light rays of the laser beam from the medium 31 are made incident and efficiently condensed to the one end 39A of the 2nd optical waveguide 39 which is faced to the medium 31, has a larger cross-sectional area than the one end 38A has, and is provided adjacent to the one end 38A and made incident on a photodetector 37 after passing through the 2nd optical waveguide 39. Since the reflected light rays from the recording medium are efficiently condensed by the small optical system which does not required any lens, etc., in such way, the reproducing output of this pickup can be extremely improved and the optical pickup can easily be incorporated in a light-weight slider 33.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、光デイスク用の光再生ピックアップに関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical reproducing pickup for optical discs.

〔発明の概要〕[Summary of the invention]

本発明は、光デイスク用の光再生ピンクアップにおいて
、一端が記録媒体に対向し他端に光源を配した第1の光
導波路と、一端が第1の光導波路の一端に隣接し他端に
光検出器を配した第2の光導波路を有し、第2の光導波
路の一端の断面積を第1の光導波路の一端の断面積より
広くすることによって、光再生ピックアップの軽量スラ
イダ上への形成を可能として高速アクセス、狭トランク
化を図ると共に、再生出力の向上を図り、かつ戻り光の
影響を抑え光源であるレーザダイオードの発振の不安定
を防ぐようにしたものである。
The present invention provides an optical reproduction pink-up for optical discs, including a first optical waveguide having one end facing a recording medium and a light source disposed at the other end, and a first optical waveguide having one end adjacent to one end of the first optical waveguide and the other end facing the recording medium. By having a second optical waveguide disposed with a photodetector, and making the cross-sectional area of one end of the second optical waveguide larger than the cross-sectional area of one end of the first optical waveguide, the light beam can be placed on the lightweight slider of the optical reproducing pickup. In addition to achieving high-speed access and narrow trunks, this system also aims to improve reproduction output and suppress the influence of returned light to prevent instability in the oscillation of the laser diode, which is the light source.

〔従来の技術〕[Conventional technology]

第9図は従来の光磁気ディスク用光ヘッドの例を示す。 FIG. 9 shows an example of a conventional optical head for a magneto-optical disk.

同図において、(1)は記録媒体である光磁気ディスク
、(2)はレーザ光源を示す、レーザ光源(2)からの
光ビームはグレイティング(3)、レンズ系(4)、偏
光子(5)、ビームスプリッタ(6)及び対物レンズ(
7)を経て光磁気ディスク(1)上に集光される。光磁
気ディスク(1)を反射した戻りの光ビームはビームス
プリンタ(6)で90°方向に反射され、1/2波長板
(8)を経て偏光ビームスプリンタ(9)とフナl−ダ
イオード(10) 、  (11)により差動検出され
て再生信号が得られる。なお(12)及び(13)はシ
リンドリカル・レンズである。
In the figure, (1) is a magneto-optical disk that is a recording medium, and (2) is a laser light source.The light beam from the laser light source (2) is transmitted through a grating (3), a lens system (4), a polarizer ( 5), beam splitter (6) and objective lens (
7) and is focused onto the magneto-optical disk (1). The returning light beam reflected from the magneto-optical disk (1) is reflected in a 90° direction by a beam splinter (6), passes through a 1/2 wavelength plate (8), and is connected to a polarizing beam splinter (9) and a Funa L-diode (10). ) and (11), differential detection is performed to obtain a reproduced signal. Note that (12) and (13) are cylindrical lenses.

最近、オーバライド(lビームの市ね書き)が可能な様
に第10図に示すように基板(15) 、記録j→(1
6)及び保護fj!(17)からなる光磁気ディスク(
11の一方の面に記録用レーザ光(18)を照射し、そ
の照射面と反対側から磁気ディスク用ヘッドと同様なス
ライダ形状の磁気ヘッド(21)を配し、記録したい信
号を磁気ヘッド(21)に人力し、磁界変調方式で記録
する光磁気記録方式も出現している。再生は第9図の光
ヘッドで説明したようにレーザ光で行う。
Recently, as shown in FIG.
6) and protection fj! (17) A magneto-optical disk (
11 is irradiated with a recording laser beam (18), and a slider-shaped magnetic head (21) similar to a magnetic disk head is placed from the side opposite to the irradiated surface, and the signal to be recorded is transferred to the magnetic head ( 21) A magneto-optical recording method has also appeared in which recording is performed manually using a magnetic field modulation method. Reproduction is performed using a laser beam as described with respect to the optical head in FIG.

また、記録再生用の光ヘッドとして、分岐型光導波路を
用い、■方の分岐導波路の端部に光源となる半導体レー
ザを配し、他方の分岐導波路の端部に光検出器を配し、
共通導波路の先端を記録媒体に対向させ、半導体レーザ
からの射出光を1方の分岐導波路より共通導波路を通し
て記録媒体に入射させ、記録媒体からの反射光を共通導
波路の先端から他方の分岐導波路に導いて光検出器に入
射せしめ、再生信号を得るように構成したものが提案さ
れている(特開昭60−59547号、特開昭60−り
9548号、特開昭61−66238号参照)。さらに
同一基板上に半導体レーザとその両側に光検出器を一体
に形成し、半導体レーザの射出光が記録媒体に入射され
、その反射光を両側の光検出器で受光するようにした光
ヘッドも知られている(特開昭62−192032号参
照)。
In addition, a branched optical waveguide is used as an optical head for recording and reproduction, with a semiconductor laser serving as a light source placed at the end of one branched waveguide, and a photodetector placed at the end of the other branched waveguide. death,
The tip of the common waveguide is made to face the recording medium, the emitted light from the semiconductor laser is made to enter the recording medium from one branch waveguide through the common waveguide, and the reflected light from the recording medium is made to enter the recording medium from the tip of the common waveguide to the other branch waveguide. A structure has been proposed in which a reproduced signal is obtained by guiding the signal into a branch waveguide and making it incident on a photodetector (JP-A-60-59547, JP-A-60-9548, JP-A-61 -66238). Furthermore, there is also an optical head in which a semiconductor laser and photodetectors are integrally formed on the same substrate, and the emitted light from the semiconductor laser is incident on the recording medium, and the reflected light is received by the photodetectors on both sides. known (see Japanese Patent Application Laid-Open No. 192032/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、第9図の光ヘツド機構とスライダ形状の磁気
ヘッド(21)を用いた第10図に示す如き磁界変調方
式の光磁気記録方式においては、レーザ集光用の対物レ
ンズ(7)と磁気ヘッド(21)を同時に駆動する必要
があり、機構が複雑になり高速アクセスが困難である。
By the way, in the magneto-optical recording system using the magnetic field modulation method shown in FIG. 10, which uses the optical head mechanism shown in FIG. 9 and the slider-shaped magnetic head (21), the objective lens (7) for focusing the laser and the magnetic It is necessary to drive the heads (21) at the same time, which complicates the mechanism and makes high-speed access difficult.

一方、今日の薄膜磁気ヘッドを用いた磁気ディスクシス
テムでは軽量スライダ上に薄膜形成技術。
On the other hand, today's magnetic disk systems using thin-film magnetic heads use thin-film formation technology on lightweight sliders.

フォトリソグラフィ技術等を用いてヘッドを作成するた
めに軽量となり、高速アクセス(20m5)を実現して
いる。しかし、トラック密度は主に再生時の信号レベル
の関係から30007Plが限度である。
Because the head is created using photolithography technology, it is lightweight and achieves high-speed access (20m5). However, the track density is limited to 30007Pl mainly due to the signal level during reproduction.

また、分岐型光導波路を用いた場合には光の偏波面の方
向が変化するモード変換が起き易いこと、記録媒体から
の反射光が半導体レーザ側の分岐導波路に入り所謂戻り
光によって半導体レーザの発振が不安定となる問題点が
ある。
In addition, when using a branched optical waveguide, mode conversion, in which the direction of the polarization plane of light changes, is likely to occur, and the reflected light from the recording medium enters the branched waveguide on the semiconductor laser side and returns to the semiconductor laser. There is a problem that the oscillation becomes unstable.

本発明は、上述の問題点を解消し、軽量スライダ上に形
成可能にして高速アクセス、狭トラツク化を達成し、ま
た再生出力の向上、戻り光の影響を抑制できる光再生ピ
ックアップを提供するものである。
The present invention solves the above-mentioned problems and provides an optical reproducing pickup that can be formed on a lightweight slider to achieve high-speed access and narrow tracks, improve reproduction output, and suppress the influence of return light. It is.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の光再生ピックアップは、一端(38^)が記録
媒体(31)に対向し他端(38B)に光源(36)を
配した第1の光導波(38)と、一端(39A )が第
1の光導波路(38)の一端(38A)に隣接しかつ第
1の光導波路(38)の一端(38A)の面積より広い
断面積を有しその他端(39B)に光検出器(37)を
配した第2の光導波路(39)を備えて成る。
The optical reproducing pickup of the present invention includes a first optical waveguide (38) having one end (38^) facing the recording medium (31) and a light source (36) disposed at the other end (38B), and one end (39A) facing the recording medium (31). A photodetector ( 37 ) is provided with a second optical waveguide (39).

第1及び第2の光導波路(38)及び(39)は、イオ
ン交換によるガラス導波路、或は’l’ i拡散LiN
bO3導波路等にて形成することができる。
The first and second optical waveguides (38) and (39) are ion-exchanged glass waveguides or 'l' i-diffused LiN
It can be formed using a bO3 waveguide or the like.

この光再生ピックアンプは、再生専用CD(コンパクト
ディスク)の様な光ディスク、1回だけ記録可能な追記
型光ディスク、消去と書き込み可能な書換形光ディスク
等における光再生ピックアップに通用できる。W模形光
ディスクとしては、(i)材料の相変化による光学特性
変化を利用する光ディスク。(11)磁気光学効果、即
ち直線偏光面の回転を利用する光ディスクで、バイアス
磁界はなく媒体の浮遊磁界を利用して記録する光ディス
ク、バイアス磁界を用いるもの例えば補助磁界(直流磁
界)を利用して記録する光ディスク、磁界変調方式を利
用して記録する光ディスク等を含む。
This optical reproduction pick amplifier can be used as an optical reproduction pickup for optical discs such as read-only CDs (compact discs), write-once optical discs that can be recorded only once, rewritable optical discs that can be erased and written to, and the like. Examples of the W-shaped optical disk include (i) an optical disk that utilizes changes in optical properties due to phase changes in materials; (11) Optical disks that utilize the magneto-optical effect, that is, rotation of the plane of linearly polarized light; optical disks that record using the floating magnetic field of the medium without a bias magnetic field; disks that use a bias magnetic field, such as those that use an auxiliary magnetic field (DC magnetic field); This includes optical discs that record using a magnetic field modulation method, optical discs that record using a magnetic field modulation method, etc.

〔作用〕[Effect]

上述の構成によれば、光源(36)からの射出光は第1
の光導波路(38)を通り一端(38A)から記録媒体
(31)に直接入射される0次いで記録媒体(31)で
反射した反射光は第2の光導波路(39)の一端(39
A)から入射し伝搬されて光検出器(37)に入り、之
より再生信号が得られる。
According to the above configuration, the light emitted from the light source (36) is the first
The reflected light that passes through the optical waveguide (38) and directly enters the recording medium (31) from one end (38A) is then reflected by the recording medium (31) and passes through the second optical waveguide (39).
The light enters from A), is propagated, and enters the photodetector (37), from which a reproduced signal is obtained.

第2の光導波路(39)ではその記録媒体(31)に対
向する一端(39A)の断面積が第1の光導波路(38
)の一端(38^)のそれより広いので、記録媒体(3
1)からの反射光が効率よく集光され再生出力が向上す
る。 同時に、反射光の第1の光導波路(38)への戻
り光は少く光源(36)としてのレーザダイオードの発
振が不安定になるのが防止される。
In the second optical waveguide (39), the cross-sectional area of one end (39A) facing the recording medium (31) is larger than that of the first optical waveguide (38).
) is wider than that of one end (38^) of the recording medium (38^).
The reflected light from 1) is efficiently focused and the reproduction output is improved. At the same time, the amount of reflected light returning to the first optical waveguide (38) is small, thereby preventing the oscillation of the laser diode serving as the light source (36) from becoming unstable.

そして、本発明の光再生ピックアップは、従来のような
大きなレンズ系に変えて光導波路を用いて構成するので
、軽量スライダ上への形成が可能となり高速アクセスが
得られる。また、第1の導波路(38)は一端(38A
)の断面積が小さくなるように形成されるので、狭トラ
ツク化が図れる。
Since the optical reproducing pickup of the present invention is constructed using an optical waveguide instead of a conventional large lens system, it can be formed on a lightweight slider and high-speed access can be obtained. Further, the first waveguide (38) has one end (38A
) is formed to have a small cross-sectional area, so a narrow track can be achieved.

〔実施例〕〔Example〕

以下、図面を参照して本発明による光再生ピックアップ
の実施例を説明する。
Embodiments of the optical reproducing pickup according to the present invention will be described below with reference to the drawings.

第1図乃至第3図は本発明の光再生ピックアップの一例
である。第1図において、(31)は記録媒体例えば光
磁気ディスク、(32)はその記録トラック、(33)
は軽量スライダであり、その端面(33^)に本発明に
係る光再生ピックアップ(34)が形成される。光再生
ピックアップ(34)は第2図及び第3図に示すように
ヘッド基板例えばスライダ(33)の端面(33A )
上に光源となる例えば波長0.7〜0.8μmをレーザ
発振する半導体レーザダイオード(36)と、例えばP
INフォトダイオード又はアバランシェフォトダイオー
ド等よりなる光検出器(37)と、一端(38A)が光
磁気ディスク(31)に対向し他端(38B)がレーザ
ダイオード(36)に対接又は対向しレーザダイオード
(36)からの射出光を光磁気ディスク(31)の面に
直接入射せしめる第1の光導波路(38)と、−端(3
9^)が光磁気ディスク(31)に対向すると共に第1
の光導波路(38)の一端(38^)に隣接し、他端(
39B)が光検出器(37)に対接又は対向して光磁気
ディスク(31)での反射光を光検出器(37)へ導く
第2の光導波路(39)が設けられて成る。第1の光導
波路(38)は光磁気ディスク(31)に対向する一端
(38^)に向うに従って細くなる(幅Wか小となる)
テーパ状光導波路に形成され、その光磁気ディスク(3
1)に対向する一61i! (38A )の断面積が小
となるように形成される。
1 to 3 show an example of an optical reproducing pickup according to the present invention. In FIG. 1, (31) is a recording medium such as a magneto-optical disk, (32) is its recording track, (33)
is a lightweight slider, and an optical reproducing pickup (34) according to the present invention is formed on its end face (33^). As shown in FIGS. 2 and 3, the optical reproducing pickup (34) is mounted on a head substrate such as an end surface (33A) of a slider (33).
A semiconductor laser diode (36) that oscillates at a wavelength of 0.7 to 0.8 μm and serves as a light source, for example, and a P
A photodetector (37) consisting of an IN photodiode or an avalanche photodiode, etc., one end (38A) facing the magneto-optical disk (31) and the other end (38B) facing or facing the laser diode (36), and a laser diode. a first optical waveguide (38) that makes the emitted light from the diode (36) directly enter the surface of the magneto-optical disk (31);
9^) faces the magneto-optical disk (31) and the first
is adjacent to one end (38^) of the optical waveguide (38), and the other end (
A second optical waveguide (39) is provided so that the second optical waveguide (39B) is in contact with or facing the photodetector (37) and guides the light reflected by the magneto-optical disk (31) to the photodetector (37). The first optical waveguide (38) becomes thinner (width W becomes smaller) toward one end (38^) facing the magneto-optical disk (31).
It is formed in a tapered optical waveguide, and its magneto-optical disk (3
1) Opposed to 61i! (38A) is formed so that the cross-sectional area is small.

第2の光導波路(39)は光磁気ディスク(31)に対
向する一端(39^)の断面1f!(32)が第1の先
導波dlr (38) (7) 一端(38A ) (
DlfHmfa (S 1 )より大となるように形成
される。この例では第2の光導波路(39)が第1の光
導波路(38)の一端(38A )の幅W1より大なる
幅W2で形成される。
The second optical waveguide (39) has a cross section 1f at one end (39^) facing the magneto-optical disk (31)! (32) is the first leading wave dlr (38) (7) One end (38A) (
DlfHmfa (S 1 ) is formed so as to be larger than DlfHmfa (S 1 ). In this example, the second optical waveguide (39) is formed with a width W2 larger than the width W1 of one end (38A) of the first optical waveguide (38).

レーザダイオード(36)からの射出光は活性層に平行
な方向に偏波面をもつ直線偏光であり、直線偏光の程度
を表わす偏光比は80〜100である。
The light emitted from the laser diode (36) is linearly polarized light with a polarization plane parallel to the active layer, and the polarization ratio representing the degree of linear polarization is 80 to 100.

このレーザはモード変換なしに光導波路に導かれる。This laser is guided into an optical waveguide without mode conversion.

第1及び第2の光導波路(38)及び(39)は、夫々
例えばソーダガラスをKNO* 溶融液中に浸積しにゝ
イオンとNa+イオン変換によるイオン交換導波路によ
り構成される。ここでは単一モード、即ち電場分布が光
導波路(38)  (39)内でガウス分布的になるよ
うに光導波路の一端の幅と深さが調整される。
The first and second optical waveguides (38) and (39) are respectively constituted by ion exchange waveguides in which, for example, soda glass is immersed in a KNO* melt by converting ions and Na+ ions. Here, the width and depth of one end of the optical waveguide are adjusted so that the electric field distribution becomes a single mode, that is, a Gaussian distribution within the optical waveguide (38) (39).

その他、第1及び第2の光導波路(38)及び(39)
は例えばLiNb0i結晶基板にTi拡散してなる1゛
1拡散LiNbOx導波路により構成することもできる
。  (50)は熱イオン交換導波路、或はTi拡散導
波路を作る際のガラス基板或はLiNbO3結晶基板を
示す。
Others, first and second optical waveguides (38) and (39)
For example, the waveguide can be constructed by a 1×1 diffusion LiNbOx waveguide formed by diffusing Ti into a LiNbOi crystal substrate. (50) indicates a glass substrate or a LiNbO3 crystal substrate for making a thermal ion exchange waveguide or a Ti diffusion waveguide.

一方、レーザダイオード(36)は十分な偏光比を有す
る直線偏光であるが、後述するように再生信号を最大に
するために、第1の光導波路(38)及び第2の光導波
路(39)の途上に夫々偏光子及び検光子となる金属ク
ラッド型モードフィルタ(40)及び(41)が設けら
れる。この金属クラッド型モードフィルタ(40)及び
(41)は第5図(第2図のA−A線上の断面図)及び
第6図(第2図のB−B線上の断面図)に示すように第
1の光導波路(38)及び第2の光導波路(39)上に
夫々例えば5i(h等の絶縁層からなるバッファ層(4
2)  (43)を介して例えばへ1等の金属層(44
)(45)を被着形成して構成する。そして、偏光子と
なる金属クラッド型モードフィルタ(40)と検光子と
なる金属クラッド型モードフィルタ(41)とは互のな
す角が45°、若しくは45°に近い所定角度となるよ
うに形成する。即ち、例えば偏光子となる金属クラッド
型モードフィルタ(40)は第5図で示すようにその金
属層(44)及びバッファ層(42)が基準面(基板(
50)に平行な面)  (51)に対して角度α傾むけ
て形成し、検光子となる金属クラッド型モードフィルタ
(41)は第6図で示すようにその金属層(45)及び
バッファ層(43)が基準面(51)に対して角度β傾
けて形成し、その際のα+β−45°若しくはα+β=
45°となるように構成する。なお(52)は熱イオン
交換導波路に例をとった場合にはソーダガラスのスパッ
タ膜を示す、ここで光導波路(3B)  (39)上に
金属In (44)  (45)を形成することによっ
てI’ Eモード透過、’1’ Mモード吸収となる。
On the other hand, the laser diode (36) is linearly polarized light with a sufficient polarization ratio, but in order to maximize the reproduced signal as described later, the first optical waveguide (38) and the second optical waveguide (39) Metal-clad mode filters (40) and (41), which serve as a polarizer and an analyzer, respectively, are provided on the way. These metal clad type mode filters (40) and (41) are shown in FIG. 5 (cross-sectional view taken along the line A-A in FIG. 2) and FIG. A buffer layer (4) made of an insulating layer such as 5i (h) is formed on the first optical waveguide (38) and the second optical waveguide (39), respectively.
2) Through (43) a metal layer (44), e.g.
) (45) is deposited and formed. The metal clad mode filter (40) serving as a polarizer and the metal clad mode filter (41) serving as an analyzer are formed so that the angle between them is 45° or a predetermined angle close to 45°. . That is, for example, as shown in FIG. 5, the metal clad mode filter (40) serving as a polarizer has its metal layer (44) and buffer layer (42) on the reference plane (substrate (
The metal clad mode filter (41), which is formed at an angle α to the plane parallel to (50) (51) and serves as an analyzer, has its metal layer (45) and buffer layer as shown in FIG. (43) is formed at an angle β with respect to the reference plane (51), and at that time α+β−45° or α+β=
The angle is 45°. Note that (52) shows a sputtered film of soda glass in the case of a thermal ion exchange waveguide, where metal In (44) (45) is formed on the optical waveguide (3B) (39). This results in I' E mode transmission and '1' M mode absorption.

偏光子となる金属クラッド型モードフィルタ(40)で
はバッファltm(42)として5t(hを、TEモー
ドが損失を受けないように、及び膜厚を厚くするとT 
Mモードの損失が小さくなるので、はぼ0.2μ−程度
の厚さで形成するのがよい。
In the metal clad mode filter (40) serving as a polarizer, the buffer ltm (42) is set to 5t (h) so that the TE mode does not suffer loss and the film thickness is increased to T.
Since the M mode loss is reduced, it is preferable to form the layer with a thickness of about 0.2 .mu.m.

尚、レーザダイオード(36)においては、図示せざる
もそのp型りラッド層及びn型クラッド層間に挟まれた
活性層が偏光子となる金属クラッド型モードフィルタ(
40)の傾斜角αと同じ角度αで傾むくように配置し、
これに合せて第1の光導波路(38)もその面(38a
)が全長にわたって角度αの傾むくように形成するよう
に構成することもできる。また第2の光導波路(39)
も検光子となる金属クラッド型モードフィルタ(41)
の傾斜角βに合せてその面(39a)が全長にわたって
角度β傾むくように構成することもできる。この光再生
ピックアンプは前述の磁気光学効果を利用する書換形光
ディスク等における光再生ピックアップに通用できる。
Note that the laser diode (36) uses a metal clad mode filter (not shown) in which the active layer sandwiched between the p-type cladding layer and the n-type cladding layer serves as a polarizer.
40) so that it is inclined at the same angle α as the inclination angle α,
In line with this, the first optical waveguide (38) also has its surface (38a
) may be formed so as to be inclined at an angle α over the entire length. Also, a second optical waveguide (39)
Metal-clad mode filter (41) that also serves as an analyzer
The surface (39a) may also be configured to be inclined at an angle β over the entire length. This optical reproducing pick amplifier can be used as an optical reproducing pickup for a rewritable optical disk or the like that utilizes the above-mentioned magneto-optic effect.

かかる構成の光再生ピックアップにおいては、レーザダ
イオード(36)からの射出光が第1の光導波路(38
)に入り、偏光子である金属クラッド型モードフィルタ
(40)を伝搬して光磁気ディスク(31)の面に入射
される。光磁気ディスク(31)で反射した反射光の偏
波面は入射光の偏波面に対して光磁気ディスク(31)
の記録磁化の方向(例えば上向き磁化、下向き磁化)に
応じて鉤子〇。
In the optical reproducing pickup having such a configuration, the light emitted from the laser diode (36) passes through the first optical waveguide (38).
), propagates through a metal clad mode filter (40) which is a polarizer, and is incident on the surface of the magneto-optical disk (31). The polarization plane of the reflected light reflected by the magneto-optical disk (31) is different from the polarization plane of the incident light.
Depending on the direction of recording magnetization (e.g. upward magnetization, downward magnetization), hook 〇.

角−θのカー回転が生ずる0反射光は光磁気ディスク(
31)とピックアップ先端とのスペーシングtが1A1
11以下であるから第2の光導波路(39)の一端(3
9A)から入射し、検光子となる金属クラッド型モード
フィルタ(41)に入る。ここで、第5図及び第6図で
示した角度α、角度βの和をα+β−ψとすると、検光
子の金属クラフト型モ゛−ドフィルタ(41)後の光出
力の変化(カー回転角±θでの)は CO3’  (φ+θ) −cos’  (ψ−θ)−
−2sin  (2ψ)sin(2θ)に比例する。t
k化縁を最大にするためにはψ−45゜付近にする必要
がある。このため、前述したように金属クラッド型モー
ドフィルタ(40)及び(41)においては、金属ji
l (44)  (45) 、バッファ層(42)  
(43)にα+β−45°若しくはα+βミ45゜を満
足するようにそれぞれ角度α、βを付ける。
The 0-reflection light that causes Kerr rotation of angle -θ is the magneto-optical disk (
The spacing t between 31) and the tip of the pickup is 1A1
11 or less, one end (3
9A) and enters a metal clad mode filter (41) which serves as an analyzer. Here, if the sum of angle α and angle β shown in Figs. ) at angle ±θ is CO3' (φ+θ) −cos' (ψ−θ)−
-2sin (2ψ) Proportional to sin(2θ). t
In order to maximize the k edge, it is necessary to set it to around ψ-45°. Therefore, as mentioned above, in the metal clad mode filters (40) and (41), the metal ji
l (44) (45), buffer layer (42)
Add angles α and β to (43) so as to satisfy α+β−45° or α+β−45°, respectively.

面、α=0、β−45°若しくはβミ45°とするよう
に夫々の金属クラッド型モードフィルタ(40)及び(
41)を構成してもよい。
The respective metal clad mode filters (40) and (
41) may be configured.

そして検光子の金属クラッド型モードフィルタ(41)
を通過した反射光は光検出器(3’/)に受光され、こ
れより例えば差動検出されて再生信号が取り出される。
And the metal clad mode filter of the analyzer (41)
The reflected light that has passed through is received by a photodetector (3'/), from which, for example, differential detection is performed and a reproduced signal is extracted.

かかる構成の光再生ピックアップによれば、第1及び第
2の光導波路(38)及び(39)の光磁気ディスク(
31)に対向する一端(38A)及び(39A)を互い
に隣接せしめると共に、第2の光導波路(39)の一端
(39八)の断面積(S2)を第1の光導波路(38)
の一端(38A)の断面積(Sl)より広く形成してい
るので、光磁気ディスク(31)からの反射光を効率よ
く集光することができ、再生出力の向上が図れる。また
、第1の光導波路(38)の一端の断面m(St>が小
さいので光磁気ディスク(31)からの反射光の第1の
光導波路(38)への戻り光は少な(、従って戻り光の
影響でレーザダイオード(36)の発振が不安定になる
のを防ぐことができる。また第1の光導波路(38)が
テーパ状に形成され、一端の断面積(Sl)が第2の光
導波路(39)のそれより小さいので、記録トラックの
狭トラツク化が図れる。
According to the optical reproducing pickup having such a configuration, the magneto-optical disks (
31), and the cross-sectional area (S2) of one end (398) of the second optical waveguide (39) is made adjacent to the first optical waveguide (38).
Since it is formed wider than the cross-sectional area (Sl) of one end (38A) of the magneto-optical disk (31), the reflected light from the magneto-optical disk (31) can be efficiently focused, and the reproduction output can be improved. In addition, since the cross section m (St>) of one end of the first optical waveguide (38) is small, the amount of light reflected from the magneto-optical disk (31) returning to the first optical waveguide (38) is small (therefore, the amount of light returning to the first optical waveguide (38) is small. It is possible to prevent the oscillation of the laser diode (36) from becoming unstable due to the influence of light.In addition, the first optical waveguide (38) is formed in a tapered shape, and the cross-sectional area (Sl) of one end is equal to that of the second optical waveguide (38). Since it is smaller than that of the optical waveguide (39), the recording track can be made narrower.

さらに夫々の第1及び第2の光導波路(38)及び(3
9)での偏波面の方向が変化するというようなモード変
換は小さい。
Furthermore, the respective first and second optical waveguides (38) and (3
9) The mode conversion in which the direction of the polarization plane changes is small.

又、上述のように光導波路(3B)  <39) 、金
属クラ7ド型モードフイルタ(40)  (41)によ
り、従来に比し、光学系が小さく構成されるので、軽量
スライダ(33)の端面(33A)上に形成できる。
In addition, as mentioned above, the optical waveguide (3B) <39) and the metal clad mode filters (40) (41) make the optical system smaller than before, so the lightweight slider (33) It can be formed on the end face (33A).

したがって高速アクセスが達成できる。Therefore, high-speed access can be achieved.

第7図及び第8図は本発明の他の例を示す0本例は金属
クラッド型モードフィルタ(40)  (41)を省略
し、他は第2図と同様に一端(38^)が記録媒体(5
5)に対向し他端(38B )にレーザダイオード(3
6)を配した第1の光導波路(38)と、一端(39八
)が第1の光導波路(38)の一端(38A)に隣接し
かつ第1の光導波路(38)の一端(38A)の断面+
1jl(St)より広い断面積(St)を有しその他端
(39B)に光検出器(37)を配した第2の光導波路
(39)を有してなる。
7 and 8 show other examples of the present invention. In this example, the metal clad mode filters (40) and (41) are omitted, and one end (38^) is the same as in FIG. 2. Medium (5
5) and the other end (38B) is a laser diode (38B).
6), and one end (398) is adjacent to one end (38A) of the first optical waveguide (38) and one end (38A) of the first optical waveguide (38) is arranged. ) cross section +
It has a second optical waveguide (39) having a cross-sectional area (St) wider than 1jl (St) and having a photodetector (37) arranged at the other end (39B).

この構成の光再生ピックアップは、再生専用CL)の様
な光ディスク、1回だけ記録可能な追記型光ディスク、
書換形光ディスク等の光再生ビ。
Optical playback pickups with this configuration are suitable for optical discs such as read-only CL), write-once optical discs that can be recorded only once,
Optical playback of rewritable optical discs, etc.

クアップに通用できる。Can be used for backups.

〔発明の効果〕〔Effect of the invention〕

本発明の光再生ピックアップによれば、881及び第2
の光導波路の夫々記録媒体と対向する一端を隣接せしめ
ると共に、第2の光導波路の一端の断面積を第1の光導
波路の一端の曲面積よりも広く形成することにより、記
録媒体からの反射光を第2の光導波路の一端より効率よ
く集光でき、再生出力を大きく向上することができる。
According to the optical reproducing pickup of the present invention, the 881 and the second
By arranging one end of each of the optical waveguides facing the recording medium adjacent to each other, and making the cross-sectional area of one end of the second optical waveguide larger than the curved area of one end of the first optical waveguide, the reflection from the recording medium can be reduced. Light can be efficiently focused from one end of the second optical waveguide, and reproduction output can be greatly improved.

また、第1の光導波路の一端の断面積が小さいので、反
射光の第1の光導波路への戻り光が少なく光源としての
レーザダイオードの発振の不安定を防止することができ
る。
Furthermore, since the cross-sectional area of one end of the first optical waveguide is small, the amount of reflected light returning to the first optical waveguide is small, and instability of oscillation of the laser diode as a light source can be prevented.

また第1の光導波路の一端の断面積が小さいので、記録
トラックの狭トラツク化が図れる。そして、従来のよう
な大きなレンズ系に変え°C光導波路を用いて光学系を
小さくできるので、軽量スライダ上への形成が可能とな
り、高速アクセスを達成できる。
Furthermore, since the cross-sectional area of one end of the first optical waveguide is small, the recording track can be made narrower. Furthermore, since the optical system can be made smaller by using a °C optical waveguide instead of a conventional large lens system, it becomes possible to form the optical system on a lightweight slider and achieve high-speed access.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による光再生ピックアップを軽量スライ
ダに配した例を示す構成図、第2図はその光再生ピンク
アンプの一例を示す平面図、第3図はその光再生ピック
アップの斜視図、第4図はその光再生ピンクアンプの端
面の斜視図、第5図は第2図のA−A線上の断面図、f
f16図は第2図のB−B線上の断面図、第7図は本発
明による光再生ピンクアンプの他の例を示す平面図、第
8図はその光再生ピックアンプの端面の斜視図、第9図
は従来の光ヘッドの例を示す構成図、第10図は磁界変
調方式の光磁気記録方式を示す構成図である。 (31)  (55)は記録媒体、(36)はレーザダ
イオード、(37)は光検出器、(38)は第1の光導
波路、(39)は第2の光導波路、(40)  (41
)は金属クラッド型モードフィルタである。
Fig. 1 is a configuration diagram showing an example of an optical reproducing pickup according to the present invention arranged on a lightweight slider, Fig. 2 is a plan view showing an example of the optical reproducing pink amplifier, and Fig. 3 is a perspective view of the optical reproducing pickup. Figure 4 is a perspective view of the end face of the optically regenerating pink amplifier, Figure 5 is a sectional view taken along line A-A in Figure 2, f
Fig. f16 is a sectional view taken along the line B-B in Fig. 2, Fig. 7 is a plan view showing another example of the optical reproducing pink amplifier according to the present invention, and Fig. 8 is a perspective view of the end face of the optical reproducing pick amplifier. FIG. 9 is a block diagram showing an example of a conventional optical head, and FIG. 10 is a block diagram showing a magnetic field modulation type magneto-optical recording system. (31) (55) is a recording medium, (36) is a laser diode, (37) is a photodetector, (38) is a first optical waveguide, (39) is a second optical waveguide, (40) (41
) is a metal clad mode filter.

Claims (1)

【特許請求の範囲】 一端が記録媒体に対向し他端に光源を配した第1の光導
波路と、 一端が上記第1の光導波路の上記一端に隣接しかつ上記
第1の光導波路の一端の面積より広い断面積を有し、そ
の他端に光検出器を配した第2の光導波路より成る光再
生ピックアップ。
[Scope of Claims] A first optical waveguide having one end facing a recording medium and a light source disposed at the other end; one end adjacent to the one end of the first optical waveguide and one end of the first optical waveguide. An optical reproducing pickup comprising a second optical waveguide having a cross-sectional area larger than the area of the second optical waveguide and having a photodetector arranged at the other end.
JP63102300A 1988-04-22 1988-04-25 Optical playback pickup Expired - Fee Related JP2629812B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63102300A JP2629812B2 (en) 1988-04-25 1988-04-25 Optical playback pickup
US07/341,115 US5065390A (en) 1988-04-22 1989-04-20 Optical playback head
EP89304020A EP0338864B1 (en) 1988-04-22 1989-04-21 Magneto-optical playback heads
KR1019890005257A KR970008229B1 (en) 1988-04-22 1989-04-21 Optical playback head
DE89304020T DE68910570T2 (en) 1988-04-22 1989-04-21 Magneto-optical playback heads.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63102300A JP2629812B2 (en) 1988-04-25 1988-04-25 Optical playback pickup

Publications (2)

Publication Number Publication Date
JPH01273239A true JPH01273239A (en) 1989-11-01
JP2629812B2 JP2629812B2 (en) 1997-07-16

Family

ID=14323762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63102300A Expired - Fee Related JP2629812B2 (en) 1988-04-22 1988-04-25 Optical playback pickup

Country Status (1)

Country Link
JP (1) JP2629812B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300438A (en) * 1988-05-27 1989-12-04 Hitachi Ltd Optical pickup, optical disk device equipped with the same, and rotary encoder
US7260295B2 (en) 2003-01-30 2007-08-21 Sony Corporation Optical waveguide and optical transmitting/receiving module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488150A (en) * 1977-12-26 1979-07-13 Nippon Telegr & Teleph Corp <Ntt> Fiber sheet optical system
JPS58117510A (en) * 1982-01-05 1983-07-13 Toshiba Corp Optical waveguide and its manufacture
JPS60133408A (en) * 1983-12-22 1985-07-16 Matsushita Electric Ind Co Ltd Light junction device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488150A (en) * 1977-12-26 1979-07-13 Nippon Telegr & Teleph Corp <Ntt> Fiber sheet optical system
JPS58117510A (en) * 1982-01-05 1983-07-13 Toshiba Corp Optical waveguide and its manufacture
JPS60133408A (en) * 1983-12-22 1985-07-16 Matsushita Electric Ind Co Ltd Light junction device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01300438A (en) * 1988-05-27 1989-12-04 Hitachi Ltd Optical pickup, optical disk device equipped with the same, and rotary encoder
US7260295B2 (en) 2003-01-30 2007-08-21 Sony Corporation Optical waveguide and optical transmitting/receiving module

Also Published As

Publication number Publication date
JP2629812B2 (en) 1997-07-16

Similar Documents

Publication Publication Date Title
JP2736894B2 (en) Optical pickup, optical disk device and rotary encoder including the same
US4876680A (en) Monolithic optical pick-up using an optical waveguide
KR20020083739A (en) Reflection type complex prism and optical pickup apparatus employing it
KR100230668B1 (en) Multitrack magneto-optical read head
KR900016967A (en) Magneto-optical playhead
JPS60101745A (en) Optical device of photomagnetic storage device
CA2100636C (en) Optical information reproducing device
JPH01271931A (en) Optical reproducing head
JPH01273239A (en) Optical reproducing pickup
KR100286865B1 (en) Optical head unit
JPH0520817B2 (en)
JP2707588B2 (en) Magneto-optical pickup
KR100449612B1 (en) Optical pickup and opto-magnetic signal reproducing apparatus
JP2629838B2 (en) Optical head
JPH07161060A (en) Optical pickup device
JPH0355894B2 (en)
JP2682052B2 (en) Optical head
JPH0291831A (en) Optical reproducing pickup
JPH01271946A (en) Magneto-optical reproducing head
JP4072776B2 (en) Optical pick-up module and magneto-optical signal recording / reproducing apparatus
JPH08152534A (en) Prism coupler and optical pickup device
Kurdi Integrated optical heads for optical data storage
JPH02287937A (en) Optical reproducing pickup
JPH0721882B2 (en) Magneto-optical recording / reproducing device
JPH0266746A (en) Optical head

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees