JPH01271946A - Magneto-optical reproducing head - Google Patents

Magneto-optical reproducing head

Info

Publication number
JPH01271946A
JPH01271946A JP9938188A JP9938188A JPH01271946A JP H01271946 A JPH01271946 A JP H01271946A JP 9938188 A JP9938188 A JP 9938188A JP 9938188 A JP9938188 A JP 9938188A JP H01271946 A JPH01271946 A JP H01271946A
Authority
JP
Japan
Prior art keywords
magnetic
yoke
signal
optical waveguide
magnetic yoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9938188A
Other languages
Japanese (ja)
Inventor
Sadaichi Miyauchi
貞一 宮内
Yutaka Hayata
裕 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9938188A priority Critical patent/JPH01271946A/en
Publication of JPH01271946A publication Critical patent/JPH01271946A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head

Abstract

PURPOSE:To obtain a reproducing signal of large signal level even in the case of narrow track width by changing the change of the magnetization of a magnetic yoke into the change of the size of light and making it into the reproducing signal of a recording medium by the magneto-optical effect of the magnetic yoke. CONSTITUTION:At the time of reproducing, a signal magnetic field from the recording medium is led in a magnetic yoke 6 and the magnetization of the yoke 6 changes in accordance with the signal magnetic field. On the other hand, light from a laser diode 8 enters an optical waveguide path 7 and is polarized by a mode filter 12. This linearly polarized light is multiply reflected on the border of the yoke in an area just under the yoke 6 and the rotation of polarization plane by Kerr effect occurs. By repeating the multiple reflection, a Kerr rotation angle becomes larger to a size which can be detected as a signal. Polarized light which passes through the yoke 6 enter a photodetector 9 through a mode filter 13 and a reproducing signal is taken out. Thus, even in the case of the narrow track width, the reproducing signal of the large signal level can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気光再生ヘッドに関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a magneto-optical reproducing head.

〔発明の概要〕[Summary of the invention]

本発明は、記録媒体の磁化情報を再生するための磁気光
再生ヘッドに係り、磁気光学効果を有する磁性材料によ
り構成された磁気ヨークと、この磁気ヨークに接して設
けられた光導波路と、光導波路に直線偏光を導入する光
入力手段と、光導波路からの出力光を検出する光検出手
段を有して成り、記録媒体の信号磁界に応じた磁気ヨー
クの磁化の変化を光の大きさの変化に変えて記録媒体の
磁化情報を再生することによって、狭トラツク幅でも信
号レベルの大きな再生信号を取り出せるようにしたもの
である。
The present invention relates to a magneto-optical reproducing head for reproducing magnetization information of a recording medium, and the present invention relates to a magnetic yoke made of a magnetic material having a magneto-optic effect, an optical waveguide provided in contact with the magnetic yoke, and an optical waveguide. It has an optical input means for introducing linearly polarized light into the waveguide, and an optical detection means for detecting the output light from the optical waveguide. By reproducing the magnetization information of the recording medium instead of the change, it is possible to extract a reproduced signal with a high signal level even with a narrow track width.

〔従来の技術〕[Conventional technology]

磁気記録媒体から磁化情報を再生する再生ヘッド、特に
10μm以下の狭トラツク幅用の再生ヘッドとしては、
誘導型(いわゆる巻線付き)薄膜磁気ヘッド、磁気抵抗
効果(以下MRと称する)を利用したMR型磁気ヘッド
等の薄膜磁気ヘッドが知られている。
As a reproducing head for reproducing magnetization information from a magnetic recording medium, especially for a narrow track width of 10 μm or less,
2. Description of the Related Art Thin film magnetic heads such as an inductive type (so-called wire-wound) thin film magnetic head and an MR type magnetic head that utilizes a magnetoresistive effect (hereinafter referred to as MR) are known.

誘導型薄膜磁気ヘッドにおいては、再生信号を大きくす
るためには巻線数の増加が必要となるが、スペースファ
クタが増し効率が低下する。また記録媒体との相対速度
が小さい場合には再生信号が小さくなる。
In an inductive thin film magnetic head, it is necessary to increase the number of windings in order to increase the reproduction signal, but this increases the space factor and reduces efficiency. Furthermore, when the relative speed with respect to the recording medium is low, the reproduced signal becomes small.

一方、MR型磁気ヘッドは、記録媒体との相対速度に再
生信号の大きさは依存しない。しかし、トラック幅が狭
くなった場合、MR素子の長手方向をトラック幅方向と
平行にしたMR型磁気ヘッドでは隣接トラックからのク
ロストークが問題となる。また、MR素子の長手方向を
トラック幅方向に対して垂直にしたMR型磁気ヘッドで
は外部磁場がないときにトラック幅方向に磁化を容易軸
に向けるのが回能となる。
On the other hand, in the MR type magnetic head, the magnitude of the reproduced signal does not depend on the relative speed with the recording medium. However, when the track width becomes narrow, crosstalk from adjacent tracks becomes a problem in an MR type magnetic head in which the longitudinal direction of the MR element is parallel to the track width direction. Further, in an MR type magnetic head in which the longitudinal direction of the MR element is perpendicular to the track width direction, the function is to direct the magnetization to the easy axis in the track width direction when there is no external magnetic field.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明は上述した従来の再生ヘッドとは動作原理を異に
し、狭トラツク幅でも大きな再生信号レベルが得られる
磁気光再生ヘッドを提供するものである。
The present invention provides a magneto-optical reproducing head which differs in operating principle from the conventional reproducing head described above and is capable of obtaining a large reproduction signal level even with a narrow track width.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の磁気光再生ヘッドは、記録媒体の信号磁界が導
入され磁気光学効果を有する磁性材料により構成された
磁気ヨーク(6)と、この磁気ヨーク(6)に接して設
けられた光導波路(7)と、この光導波路(7)に直線
偏光を導入する光入力手段(8)と、光導波路(7)か
らの出力光を検出する光検出手段(9)より構成する。
The magnetic optical reproducing head of the present invention includes a magnetic yoke (6) made of a magnetic material having a magneto-optic effect into which a signal magnetic field of a recording medium is introduced, and an optical waveguide (6) provided in contact with the magnetic yoke (6). 7), a light input means (8) for introducing linearly polarized light into the optical waveguide (7), and a light detection means (9) for detecting the output light from the optical waveguide (7).

〔作用〕[Effect]

再生時、磁気ヨーク(6)には記録、媒体(1)からの
信号磁界が導入され、信号磁界に応じて磁気ヨーク(6
)の磁化が変化する。一方、光入力手段(8)より光導
波路(7)に直線偏光が導入される。直線偏光は光導波
路(7)内を伝搬し、磁気ヨーク(6)直下の領域では
磁気ヨーク(6)との境界で多重反射しながら進み、こ
の多重反射でカー効果による偏波面の回転が生じる。直
線偏光(22)は磁気ヨーク(6)直下の光導波路(7
)で多重反射を繰り返すことにより偏波面のカー回転角
は大きくなり信号として検出できる大きさになる。そし
て、光導波路(7)からの出力光が光検出手段(9)に
入り、これより再生信号が得られる。
During reproduction, a signal magnetic field from the recording medium (1) is introduced into the magnetic yoke (6), and the magnetic yoke (6)
) changes in magnetization. On the other hand, linearly polarized light is introduced into the optical waveguide (7) from the optical input means (8). Linearly polarized light propagates within the optical waveguide (7), and in the region directly below the magnetic yoke (6), it proceeds while undergoing multiple reflections at the boundary with the magnetic yoke (6), and this multiple reflection causes rotation of the plane of polarization due to the Kerr effect. . The linearly polarized light (22) passes through the optical waveguide (7) directly under the magnetic yoke (6).
), the Kerr rotation angle of the polarization plane becomes large enough to be detected as a signal. Then, the output light from the optical waveguide (7) enters the photodetecting means (9), from which a reproduced signal is obtained.

即ち、本構成では、磁気ヨーク(6)の磁化の変化が光
導波路(7)を通じて光の大きさの変化に変化されて記
録媒体(1)の磁化情報が再生される。
That is, in this configuration, the magnetization information of the recording medium (1) is reproduced by changing the magnetization of the magnetic yoke (6) into a change in the magnitude of light through the optical waveguide (7).

〔実施例〕〔Example〕

以下、図面を参照して本発明による磁気光再生ヘッドの
実施例を説明する。
Embodiments of the magneto-optical reproducing head according to the present invention will be described below with reference to the drawings.

第1図乃至第4図は本発明の磁気光再生ヘッドの一例で
ある。同図において、(1)は記録媒体例えば磁気記録
媒体、(2)は本発明に係る磁気光再生ヘッドを示す。
1 to 4 show an example of the magneto-optical reproducing head of the present invention. In the figure, (1) shows a recording medium, such as a magnetic recording medium, and (2) shows a magneto-optical reproducing head according to the present invention.

磁気記録媒体(1)としては面内方向に磁化される磁気
記録媒体、或いは垂直方向に磁化される磁気記録媒体の
いずれも適用できる。磁気光再生ヘッド(2)は、第1
図に示すように絶縁性ヘッド基板(3)上に下側磁気ヨ
ーク(4)及び上側磁気ヨーク(5)からなり先端に磁
気ギャップ(匂を有する閉磁路(即ちリング状)の磁気
ヨーク(6)と、この磁気ヨーク(6)の下側磁気ヨー
ク(4)及び上側磁気ヨーク(5)間をトラック幅方向
に貫通ずる光導波路(7)が形成され、光導波路(7)
の一端及び他端に夫々光源となる半導体レーザダイオー
ド(8)及び光導波路(7)からの出力光を検出する例
えばPINフォトダイオード又はアバランシェフォトダ
イオード等よりなる光検出器(9)が配されて成る。こ
の光検出器(9)、レーザダイオード〔8)及び磁気ヨ
ーク(6)と光導波路(7〕を形成した絶縁性ヘッド基
板(3)はベース基板(21)上に設けられる。磁気ヨ
ーク(6)としては例えばFe、 Co、 Ni、パー
70イ、 MnB1等の磁気カー効果を有する磁性材料
で形成される。光導波路(7)は磁気ヨーク(6)直下
の領域において片側のヨーク例えば上側磁気ヨーク(5
)とのみ接触し、上側磁気ヨーク(5)と光導波路(7
)の境界で多重反射しながら光が伝搬されるようになす
。また、光導波路(7)は磁気ヨーク(6)の磁気ギャ
ップ(松が形成される先端に近づけて配置するを可とす
る。
As the magnetic recording medium (1), either a magnetic recording medium magnetized in the in-plane direction or a magnetic recording medium magnetized in the perpendicular direction can be applied. The magneto-optical reproducing head (2) has a first
As shown in the figure, the lower magnetic yoke (4) and the upper magnetic yoke (5) are placed on the insulating head substrate (3). ), and an optical waveguide (7) passing through the lower magnetic yoke (4) and upper magnetic yoke (5) of the magnetic yoke (6) in the track width direction is formed, and the optical waveguide (7)
A semiconductor laser diode (8) serving as a light source and a photodetector (9), such as a PIN photodiode or an avalanche photodiode, for detecting output light from the optical waveguide (7) are arranged at one end and the other end, respectively. Become. The insulating head substrate (3) on which the photodetector (9), the laser diode [8), the magnetic yoke (6), and the optical waveguide (7] are formed is provided on the base substrate (21).The magnetic yoke (6) ) is formed of a magnetic material having a magnetic Kerr effect, such as Fe, Co, Ni, Par70, MnB1, etc.The optical waveguide (7) is formed of a magnetic material having a magnetic Kerr effect, such as Fe, Co, Ni, Par70, MnB1, etc.The optical waveguide (7) is formed of one side of the yoke, for example, the upper magnetic York (5
), and the upper magnetic yoke (5) and the optical waveguide (7
) so that light is propagated while undergoing multiple reflections at the boundary. Further, the optical waveguide (7) can be placed close to the magnetic gap (the tip where the pine is formed) of the magnetic yoke (6).

レーザダイオード(8)からの射出光は活性層に平行な
方向に偏波面をもつ直線偏光であり、直線偏光の程度を
表わす偏光比は80〜10oである。このレーザ光が光
導波路(7)に導入される。光導波路(7)は例えばソ
ーダガラスをKNO,溶解液中に浸漬しガラス中のNa
″″イオンとK“イオン交換により外側部、いわゆる後
述の基板(10)よりも屈折率を大きくして光を閉じ込
めて伝搬するイオン交換導波路より構成される。その他
光導波路(7)としては例えばL+NbO,結晶などの
光学異方性基板にTi拡散してなるTi拡散1iNb0
3導波路により構成することもできる。(10)は熱イ
オン交換導波路、或いはT1拡散導波路を作る際のガラ
ス基板或いはLiNb0.結晶基板を示す。また(11
)は磁気ヨーク(6)の両側外に形成されたスペーサと
なるSin、等の絶縁体を示す。
The light emitted from the laser diode (8) is linearly polarized light with a plane of polarization parallel to the active layer, and the polarization ratio representing the degree of linear polarization is 80 to 10 degrees. This laser light is introduced into the optical waveguide (7). For example, the optical waveguide (7) is made by immersing soda glass in a solution of KNO and removing Na in the glass.
It is composed of an ion-exchange waveguide that traps and propagates light by making the refractive index larger than the outer part, so-called substrate (10), which will be described later, by exchanging ``'' ions and K'' ions.Other optical waveguides (7) include For example, Ti diffusion 1iNb0 made by diffusing Ti into an optically anisotropic substrate such as L+NbO, crystal, etc.
It can also be configured with three waveguides. (10) is a glass substrate or LiNb0. A crystal substrate is shown. Also (11
) indicates insulators such as Sin, which serve as spacers formed on both sides of the magnetic yoke (6).

一方レーザダイオード(8)は十分な偏光比を有する直
線偏光であるが、後述するように再生信号を最大にする
ために、光導波路(7)の磁気ヨーク(6)及びレーザ
ダイオード(8)間と、磁気ヨーク(6)及び光検出器
(9)間に夫々偏光子となる金属クラッド型モードフィ
ルタ(12)及び検光子となる金属クラッド型モードフ
ィルタ(13)が設けられる。この金属クラッド型モー
ドフィルタ(12)及び(13)は第3図(第1図のB
−B線上の断面図)及び第4図(第1図のC−C線上の
断面図)に示すように光導波路(7)上に例えばSin
、等の絶縁層からなるバッファ層(14) (15)を
介して例えば1等の金属層(16)(17)を被着形成
して構成する。そして、偏光子となる金属クラッド型モ
ードフィルタ(12)と、検光子となる金属クラッド型
モードフィルタ(13)とは互いのなす角が45°、若
しくは45°に近い所定角度となるように形成する。即
ち、例えば偏光子と−なる金属クラッド型モードフィル
タ(12)は第3図で示すようにその金属層(16)及
びバッファ層(14)が基準面(例えば5in2の絶縁
体(11)の面”) (1g)  に対して角度α傾け
て形成し、検光子となる金属クラッド型モードフィルタ
(13)は第4図で示すようにその金属層(17)及び
バッファ層(15)が基準面(18)に対して角度β傾
けて形成し、その際にα十β=45°若しくはα+β;
45°となるように構成する。なお、図示の例では金属
クラッド型モードフィルタ(12)及び(13)として
金属層(16) (17)、バッファ層(14) (1
5)にα+β−45°若しくはα+βン45°を満足す
るように夫々角度α、βを付けたが、その他、α−0,
β=45°若しくはβ;45゜とするように夫々の金属
クラッド型モードフィルタ(12) (13)を構成し
てもよい。ここで光導波路(7)上に金属層(16) 
(17)を形成することによっ゛(TEモード透過、T
Mモード吸収となる。
On the other hand, the laser diode (8) is linearly polarized light with a sufficient polarization ratio, but in order to maximize the reproduced signal as described later, the distance between the magnetic yoke (6) of the optical waveguide (7) and the laser diode (8) is A metal clad mode filter (12) serving as a polarizer and a metal clad mode filter (13) serving as an analyzer are provided between the magnetic yoke (6) and the photodetector (9), respectively. These metal clad mode filters (12) and (13) are shown in Fig. 3 (B in Fig. 1).
As shown in FIG. 4 (cross-sectional view along line C-C in FIG. 1), for example,
For example, metal layers (16) (17), such as first grade, are deposited through buffer layers (14), (15) made of insulating layers such as . The metal clad mode filter (12) serving as a polarizer and the metal clad mode filter (13) serving as an analyzer are formed so that the angle between them is 45° or a predetermined angle close to 45°. do. That is, for example, the metal clad mode filter (12) which serves as a polarizer has its metal layer (16) and buffer layer (14) on the reference plane (for example, the plane of the 5 in 2 insulator (11)), as shown in FIG. (1g), and the metal clad mode filter (13) that serves as an analyzer has its metal layer (17) and buffer layer (15) on the reference plane, as shown in Figure 4. (18) at an angle of β, in which case α + β = 45° or α + β;
The angle is 45°. In the illustrated example, metal layers (16) (17) and buffer layers (14) (1) are used as metal clad mode filters (12) and (13).
5), angles α and β were added to satisfy α+β−45° or α+β−45°, but other angles α−0,
The metal clad mode filters (12) and (13) may be configured so that β=45° or β;45°. Here, a metal layer (16) is placed on the optical waveguide (7).
(17) By forming (TE mode transmission, T
This results in M mode absorption.

次に、かかる構成の磁気光再生ヘッドの動作を説明する
Next, the operation of the magneto-optical reproducing head having such a configuration will be explained.

再生時、第2図に示すように磁気記録媒体(1)からの
信号磁束が磁気ヨーク(6)に導入される。磁気ヨーク
(6)では信号磁束に応じて磁化(M)が変化する。一
方、レーザダイオード(8)から発振された光は光導波
路(7)に入り、偏光子である金属クラッド型モードフ
ィルタ(12)で第3図の矢印a方向に偏波面が向くよ
うに偏光される。この直線偏光(22)は磁気ヨーク(
6)直下の光導波路領域で第5図で示すように光導波路
(7)と基板(10)との境界、及び光導波路(7)と
磁化された上側磁気ヨーク(5)との境界で多重反射し
ながら進む。このとき、直線偏光(22)の偏波面は上
側磁気ヨーク(5)の磁化の向きに応じて角十〇、角−
θのカー回転が生じ、特に多重反射によって偏波面のカ
ー回転角は大き(なり実際に信号として検出できる大き
さになる。そして、磁気ヨーク(6)直下を通過した直
線偏光(22)は検光子である金属クラッド型モードフ
ィルタ(13)に入る。ここで、第3図及び第4図で示
した角度α、角度βの和をα+β=ψとすると、検光子
の金属クラッド型モードフィルタ(13)後の光出力の
変化(カー回転角±θでの)は cos2(ψ十θ)−cos2(ψ−θ)= −2si
n(2ψ)sin(2θ)に比例し、ψ−45°付近と
することによっ°C変化量が最大となる。そして、検光
子の金属クラッド型モードフィルタ(13)を通過した
出力光が光検出器(9)に受光され、これより例えば差
動検出されて電気信号として再生信号が取り出される。
During reproduction, signal magnetic flux from the magnetic recording medium (1) is introduced into the magnetic yoke (6) as shown in FIG. The magnetization (M) of the magnetic yoke (6) changes depending on the signal magnetic flux. On the other hand, the light emitted from the laser diode (8) enters the optical waveguide (7) and is polarized by the metal clad mode filter (12), which is a polarizer, so that the plane of polarization faces in the direction of arrow a in Figure 3. Ru. This linearly polarized light (22) is transmitted by the magnetic yoke (
6) In the optical waveguide area immediately below, as shown in FIG. Proceed while reflecting. At this time, the polarization plane of the linearly polarized light (22) varies from angle 10 to angle - depending on the direction of magnetization of the upper magnetic yoke (5).
Kerr rotation of θ occurs, and in particular, multiple reflections cause the Kerr rotation angle of the polarization plane to become large (so large that it can actually be detected as a signal.Then, the linearly polarized light (22) passing directly under the magnetic yoke (6) cannot be detected. The metal clad mode filter (13), which is a photon, enters the analyzer's metal clad mode filter (13).If the sum of the angles α and β shown in FIGS. 13) The subsequent change in light output (with Kerr rotation angle ±θ) is cos2(ψ1θ)−cos2(ψ−θ)=−2si
It is proportional to n(2ψ)sin(2θ), and by setting it near ψ-45°, the degree of change in °C becomes maximum. Then, the output light that has passed through the metal clad mode filter (13) of the analyzer is received by a photodetector (9), from which, for example, differential detection is performed and a reproduced signal is extracted as an electrical signal.

尚、光導波路(7)が上側磁気ヨーク(5)及び下側磁
気ヨーク(4)に接して構成された場合には、第2図に
示すように上側磁気ヨーク(5)と下側ヨーク(4)で
は磁化Mの向きが互いに逆向きになるので、第5図での
上側と下側の反射で互いに偏波面の回転が打ち消し合っ
てしまう。従って本発明では光導波路(7)と片側例え
ば上側磁気ヨーク(5)を接触させ、上側磁気ヨーク(
5)との境界で反射させるようになす。
In addition, when the optical waveguide (7) is configured to be in contact with the upper magnetic yoke (5) and the lower magnetic yoke (4), as shown in FIG. In 4), since the directions of the magnetizations M are opposite to each other, the rotation of the plane of polarization cancels each other out due to the upper and lower reflections in FIG. Therefore, in the present invention, the optical waveguide (7) is brought into contact with one side, for example, the upper magnetic yoke (5), and the upper magnetic yoke (5) is brought into contact with the optical waveguide (7).
5) Make it reflect at the boundary with.

かかる構成の磁気光再生ヘッドによれば磁気ヨ−クの磁
化の変化を光の大きさの変化に変換して磁気記録媒体の
磁化情報を再生するので、再生信号の大きさは磁気記録
媒体とヘッドの相対速度に依存してい。そして、光導波
路に導入された直線偏光が磁気ヨークとの境界で多重反
射され、偏波面のカー回転角が大きくなることによって
、大きな信号として取り出すことができ、従って、狭ト
ラツク幅の場合でも大きい信号レベルの再生信号が得ら
れる。また光導波路(7)を、磁化の変化量が大きい磁
気ギャップ(湯の先端に近づけて配置することによって
高出力が期待できる。
According to the magnetic optical reproducing head having such a configuration, the magnetization information of the magnetic recording medium is reproduced by converting the change in the magnetization of the magnetic yoke into a change in the magnitude of the light, so the magnitude of the reproduced signal is different from that of the magnetic recording medium. Depends on the relative speed of the heads. The linearly polarized light introduced into the optical waveguide is multiple-reflected at the boundary with the magnetic yoke, and the Kerr rotation angle of the polarization plane increases, allowing it to be extracted as a large signal. A reproduced signal of signal level can be obtained. In addition, high output can be expected by arranging the optical waveguide (7) close to the magnetic gap (close to the tip of the hot water) where the amount of change in magnetization is large.

尚、上例では磁気ヨークを閉磁路に構成した所謂リング
型ヘッドに適用したが、その他磁気El −りを単磁極
とした単磁極型ヘッドにも適用できる。
In the above example, the present invention is applied to a so-called ring-type head in which the magnetic yoke is formed into a closed magnetic path, but it can also be applied to other single-pole type heads in which the magnetic element has a single magnetic pole.

又、上例においてその磁気ヨーク(6)にコイルを巻装
し、誘導型記録ヘッドをも兼ねるように構成することも
可能である。
Further, in the above example, it is also possible to wrap a coil around the magnetic yoke (6) so that it also functions as an inductive recording head.

〔発明の効果〕 上述した本発明の磁気光再生ヘッドによれば、磁気ヨー
クの磁気光学効果を利用し、磁気ヨークの磁化の変化を
光の大きさの変化に変えて記録媒体の磁化情報を再生し
ている。従って、狭トラツク幅の場合でも、信号レベル
の大きい再生信号を得ることができる。また再生信号の
大きさは記録媒体とヘッドとの相対速度に依存しないも
のである。
[Effects of the Invention] According to the above-described magnetic optical reproducing head of the present invention, the magneto-optic effect of the magnetic yoke is used to convert changes in the magnetization of the magnetic yoke into changes in the magnitude of light, thereby obtaining magnetization information of the recording medium. It's playing. Therefore, even in the case of a narrow track width, a reproduced signal with a high signal level can be obtained. Further, the magnitude of the reproduced signal does not depend on the relative speed between the recording medium and the head.

さらに光導波路を磁気ヨークの記録媒体と対向する先端
に近づけて配置することにより高出力が期待できる。
Furthermore, high output can be expected by arranging the optical waveguide close to the tip of the magnetic yoke that faces the recording medium.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気光再生ヘッドの一例を示す斜
視図、第2図は第1図のA−A線上の断面図、第3図は
第1図のB−B線上の断面図、第4図は第1図のC−C
線上の断面図、第5図は動作説明に供する断面図である
。 (1)は磁気記録媒体、(2)は本発明の磁気光再生ヘ
ッドの全体、(4)は下側磁気ヨーク、(5)は上側磁
気ヨーク、(6)は磁気ヨーク、(7)は光導波路、(
8)はレーザダイオード、(9)は光検出器、(12>
、 (13)  は金属クラッド型モードフィルタであ
る。 同        松  隈  秀  盛Aく喫iへ−
うダlり脅−十序号しし〕第1図
1 is a perspective view showing an example of a magneto-optical reproducing head according to the present invention, FIG. 2 is a cross-sectional view taken along the line A-A in FIG. 1, FIG. 3 is a cross-sectional view taken along the line B-B in FIG. 1, Figure 4 shows C-C in Figure 1.
FIG. 5 is a cross-sectional view along the line for explaining the operation. (1) is a magnetic recording medium, (2) is the entire magneto-optical reproducing head of the present invention, (4) is a lower magnetic yoke, (5) is an upper magnetic yoke, (6) is a magnetic yoke, and (7) is Optical waveguide, (
8) is a laser diode, (9) is a photodetector, (12>
, (13) is a metal clad mode filter. Same as Hide Matsukuma to Mori Aku-ki.
Figure 1

Claims (1)

【特許請求の範囲】 記録媒体の信号磁界が導入され、磁気光学効果を有する
磁性材料により構成された磁気ヨークと上記磁気ヨーク
に接して設けられた光導波路と、上記光導波路に直線偏
光を導入する光入力手段と、 上記光導波路からの出力光を検出する光検出手段より成
る磁気光再生ヘッド。
[Claims] A signal magnetic field of a recording medium is introduced, and linearly polarized light is introduced into a magnetic yoke made of a magnetic material having a magneto-optical effect, an optical waveguide provided in contact with the magnetic yoke, and the optical waveguide. A magneto-optical reproducing head comprising: a light input means for detecting the output light from the optical waveguide; and a light detection means for detecting the output light from the optical waveguide.
JP9938188A 1988-04-22 1988-04-22 Magneto-optical reproducing head Pending JPH01271946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9938188A JPH01271946A (en) 1988-04-22 1988-04-22 Magneto-optical reproducing head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9938188A JPH01271946A (en) 1988-04-22 1988-04-22 Magneto-optical reproducing head

Publications (1)

Publication Number Publication Date
JPH01271946A true JPH01271946A (en) 1989-10-31

Family

ID=14245941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9938188A Pending JPH01271946A (en) 1988-04-22 1988-04-22 Magneto-optical reproducing head

Country Status (1)

Country Link
JP (1) JPH01271946A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808973A (en) * 1995-09-06 1998-09-15 Kabushiki Kaisha Toshiba Near field recording and reproducing apparatus
EP0844604A3 (en) * 1991-08-09 2000-12-06 Thomson-Csf Magneto-optical read head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844604A3 (en) * 1991-08-09 2000-12-06 Thomson-Csf Magneto-optical read head
US5808973A (en) * 1995-09-06 1998-09-15 Kabushiki Kaisha Toshiba Near field recording and reproducing apparatus

Similar Documents

Publication Publication Date Title
US5199090A (en) Flying magnetooptical read/write head employing an optical integrated circuit waveguide
US4876680A (en) Monolithic optical pick-up using an optical waveguide
KR970008229B1 (en) Optical playback head
US5689391A (en) Magneto-optic multitrack reading head having a plurality of reflective rays
NL192546C (en) Reading head for high-density magnetic recording.
JPS58153244A (en) Photomagnetic recording medium
JPH01271946A (en) Magneto-optical reproducing head
US4609961A (en) Faraday-effect magneto-optic transducer
JPH01271931A (en) Optical reproducing head
JPH0355894B2 (en)
JP2629812B2 (en) Optical playback pickup
JPH01273252A (en) Magneto-optical pickup
JP2682052B2 (en) Optical head
JPH04105235A (en) Magnetic head
JPS6055537A (en) Magneto-optical reproduction method using asymmetric kerr effect and recording medium and reproducer using said reproduction method
JPS6139956A (en) Magnetooptic head
JPH02287937A (en) Optical reproducing pickup
JPH01182947A (en) Method and head for reading magneto-optical disk
JPS5996551A (en) Reproducing device of photomagnetic recording body
JPS60224139A (en) High-density magnetooptic playback head
JPH034979Y2 (en)
JP2797659B2 (en) Magneto-optical head for reading magneto-optical recording
JPS62241155A (en) Magneto-optical type reproducing magnetic head
JPH03122832A (en) Optical reproducing pickup
JPH08180495A (en) Magnetic head