JPH01272940A - Powder supply amount controller - Google Patents

Powder supply amount controller

Info

Publication number
JPH01272940A
JPH01272940A JP63101658A JP10165888A JPH01272940A JP H01272940 A JPH01272940 A JP H01272940A JP 63101658 A JP63101658 A JP 63101658A JP 10165888 A JP10165888 A JP 10165888A JP H01272940 A JPH01272940 A JP H01272940A
Authority
JP
Japan
Prior art keywords
powder
pulverized coal
particle concentration
pipe
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63101658A
Other languages
Japanese (ja)
Inventor
Yoshinobu Kobayashi
啓信 小林
Shigeru Azuhata
茂 小豆畑
Kiyoshi Narato
清 楢戸
Masao Masutani
桝谷 正男
Norio Arashi
紀夫 嵐
Shigeki Morita
茂樹 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP63101658A priority Critical patent/JPH01272940A/en
Publication of JPH01272940A publication Critical patent/JPH01272940A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To evaluate a difference in the particle concentration of the powder in a high-concentration supply pipe and to remove a measurement error by providing a detection pipe for taking part of powder within a prescribed concentration range out of piping and returning it to the piping after light transmission is detected. CONSTITUTION:The pulverized coal supply amounts of plural pulverized coal supply pipes 100a-100c are varied by opening/closing valves 101a-101c, and irregular particle concentration distributions generated in the supply pipes 100 are uniformed by particle concentration uniforming devices 102a-102c. Then detection pipes 103a-103c sample part of particles in the supply pipes 100 and particle concentration meters 106a-106c as detecting means detect the particle concentration. A signal processor 107 calculates the ratios of the intensity values of light photodetected by detectors 105a-105c to the intensity values of incident light from projectors 104a-104c. Then the intensity ratios are compared 108 and an opening extent regulator 109 adjusts the opening/closing valves 101 to equalize the intensity ratios of the respective pipes.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、粉体供給量制御装置に係り、特に複数配管内
の粉体供給量を適当に保つに好適な粉体供給量制御装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a powder supply rate control device, and particularly to a powder supply rate control device suitable for maintaining an appropriate powder supply rate in a plurality of pipes. .

〔従来の技術〕[Conventional technology]

従来のこの種の装置として微粉炭焚きボイラについて詳
述する。これは、微粉砕された石炭と空気を供給する供
給管を複数段配し、各段に複数個のバーナを有し、微粉
砕された石炭(以下微粉炭と称する。)は、通常粉砕機
にて供給されるが、1台の粉砕機は複数個のバーナへ空
気の搬送によって微粉炭を供給するものである。
A pulverized coal-fired boiler will be described in detail as a conventional device of this type. This has multiple stages of supply pipes that supply pulverized coal and air, and each stage has multiple burners.The pulverized coal (hereinafter referred to as pulverized coal) is usually However, one pulverizer supplies pulverized coal to multiple burners by conveying air.

この微粉炭は燃料中に窒素分を約1〜3%含むため、燃
焼すると窒素化合物(N Ox)が生成される。このた
め、バーナの性能向上によるNO!低減(所謂、低NO
xバーナ)、ボイラ内部の一部を空気不足の状態で微粉
炭を燃焼させる方法(所謂、2段燃焼法)、燃焼排ガス
中にアンモニア等を散布してNOxを窒素に還元する方
法(所謂、炉外脱硝)等の種々の技術により、大気中へ
放出されるNoxlA度を低減させようとする試みがな
されている。この中で、微粉炭ボイラの運転コスト低減
の観点から、低NOxバーナ及び2段燃焼法が良く用い
られている。
Since this pulverized coal contains about 1 to 3% nitrogen in its fuel, nitrogen compounds (NOx) are generated when it is combusted. For this reason, NO! due to improved burner performance! reduction (so-called low NO
x burner), a method of burning pulverized coal in a part of the boiler with insufficient air (the so-called two-stage combustion method), a method of reducing NOx to nitrogen by spraying ammonia, etc. into the combustion exhaust gas (the so-called, Attempts have been made to reduce the degree of NoxlA released into the atmosphere by various techniques such as ex-furnace denitrification. Among these, low NOx burners and two-stage combustion methods are often used from the viewpoint of reducing operating costs of pulverized coal boilers.

複数段・複数列のバーナを有する微粉炭焚きボイラで、
上記の低NOxバーナ及び2段燃焼法を効果的に作動さ
せるには、各バーナへ微粉炭を搬送する空気流量と微粉
炭流派を設計値と等しくなるようにしなければならない
A pulverized coal-fired boiler with multiple stages and multiple rows of burners.
In order to effectively operate the low NOx burner and two-stage combustion method described above, the air flow rate and the pulverized coal flow for conveying pulverized coal to each burner must be made equal to the designed values.

例えば2段燃焼法をもって低NOx燃焼の動作を説明す
ると、供給燃料を燃焼するのに必要な空気流量に体する
実空気流量の割合(以下、空気比と称する。)が1より
高いバーナ列と、空気比1より低いバーナ列を設け、空
気比1以上のバーナ列は、石炭中に窒素分をNOxの形
で火炎内に放出し、空気比1以下のバーナ列は窒素分が
アンモニア(NH3)やシアン(HcN)の形で放出さ
れ、さらに、−酸化炭素(Co)や水素(H2)、メタ
ン(c H4)等の燃焼1月111生成物か生成される
。これらの物質は酸素の不足した領域でNOxを還元す
ることが良く知られており、ボイラ火炉内部の空気比が
1以下の火炎を形成することによってNOx9度を効果
的に低減するのである。
For example, to explain the operation of low NOx combustion using the two-stage combustion method, burner rows with a ratio of the actual air flow rate (hereinafter referred to as the air ratio) to the air flow rate required to burn the supplied fuel are higher than 1. , a burner row with an air ratio of less than 1 is provided, and the burner row with an air ratio of 1 or more releases the nitrogen content in the coal into the flame in the form of NOx, and the burner row with an air ratio of 1 or less releases the nitrogen content into ammonia (NH3). ) and cyanide (HcN), and further products of combustion such as -carbon oxide (Co), hydrogen (H2), and methane (cH4) are produced. These substances are well known to reduce NOx in oxygen-deficient regions, and by forming a flame with an air ratio of 1 or less inside the boiler furnace, they effectively reduce NOx by 9 degrees.

バーナの全数よりも粉砕機の個数は少ないため、通常1
台の粉砕機で製造された微粉炭は複数個のバーナへ供給
されるが、この時上述した2段燃焼法を効果的にするた
めに、同じ段列のバーナは同し粉砕機の微粉炭を供給さ
れるように組立てられているのである。
Since the number of crushers is smaller than the total number of burners, usually 1
The pulverized coal produced in one pulverizer is supplied to multiple burners, but in order to make the above-mentioned two-stage combustion method effective, the burners in the same row are supplied with pulverized coal produced in the same pulverizer. It is assembled in such a way that it is supplied with

しかしながら、粉砕機から各バーナへ微粉炭を供給する
供給管の全長並びに曲がり部の曲率や数などに起因する
圧力損失が各供給管で異なる点や、粉砕機からの微粉炭
を各バーナへ分配する分配器の性能が悪い点、などに起
因して各バーナの微粉炭供給量に不均衡を生ずる。この
ため、個々のバーナの空気比は、微粉炭供給量の不均衡
に対応することとなり、設定された空気比とは異なる。
However, the pressure loss caused by the total length of the supply pipe that supplies pulverized coal from the pulverizer to each burner, as well as the curvature and number of bends, is different for each supply pipe, and the pulverized coal from the pulverizer is distributed to each burner. The amount of pulverized coal supplied to each burner is unbalanced due to poor performance of the distributor. Therefore, the air ratio of each burner corresponds to the imbalance in the amount of pulverized coal supplied, and differs from the set air ratio.

例えば、前述した空気比1以−トのバーナ段で上記の空
気比の不均衡が生ずると、設定空気比より高いバーナの
燃焼中間生成物の総社は減少するたq− め、ボイラから排出されるN 0xllJ度は高くなり
、一方、設定空気比より低いバーナの燃焼中間生成物の
総量は増加する。N Ox′a度に対し過剰な燃焼中間
生成物、特に過剰なCOガスは燃え切りに時間を要し、
時にボイラ火炉外に放出されるようになる。また、微粉
炭内の可燃成分の割合も同時に増加するため、燃焼効率
の低下、ボイラ火炉後流に取付けられた集じん装置の集
じん効率の低下等の問題が生ずる。
For example, if the aforementioned air ratio imbalance occurs in a burner stage with an air ratio of 1 or higher, the total amount of combustion intermediate products in the burner with an air ratio higher than the set air ratio will decrease, and therefore will be discharged from the boiler. The N 0xllJ degree increases, while the total amount of combustion intermediates in the burner below the set air ratio increases. Excessive combustion intermediate products, especially excessive CO gas, take time to burn out compared to NOx'a degree,
Sometimes it is released outside the boiler furnace. Moreover, since the proportion of combustible components in the pulverized coal increases at the same time, problems such as a decrease in combustion efficiency and a decrease in the dust collection efficiency of a dust collector installed downstream of the boiler furnace occur.

一■−記の例は、2段燃焼法の空気比1以下のバーナ段
について記述したが、一般に各バーナ間の微粉炭供給量
の不均衡は、ボイラ火炉の燃焼効率の低下と排出される
N Ox濃度の増加を招くため、各バーナへ微粉炭を分
配する分配器に関する考案や、分配器の後流の微粉炭a
度を観視し供給量が等しくなるように制御する装置に関
する考案かなされている。
The example in 1-2 describes a burner stage with an air ratio of 1 or less in the two-stage combustion method, but in general, an imbalance in the amount of pulverized coal supplied between each burner is considered to be a decrease in the combustion efficiency of the boiler furnace. To avoid this, it is necessary to develop a distributor that distributes pulverized coal to each burner, and to reduce the amount of pulverized coal a downstream of the distributor.
A device has been devised to control the supply amount to be equal by observing the degree.

後者の装置として、例えば特願昭58−123323が
挙げられる。これは、微粉炭を各バーナへ供給する配管
に直接取付けられた配管中の光透過を検出する検出装置
から検出される光透過の割合が各配管で等しくなるよう
に、検出装置の」1流に設けられた粉体供給量を制御す
る開閉弁の開度を制御することを特徴としたものである
An example of the latter device is disclosed in Japanese Patent Application No. 58-123323. This is done so that the ratio of light transmission detected by the detection device that detects light transmission in the piping directly attached to the piping that supplies pulverized coal to each burner is equal in each piping. It is characterized by controlling the opening degree of an on-off valve that is provided to control the amount of powder supplied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上述の装置には実用上次のような2つの問
題点があげられる。
However, the above-mentioned device has the following two practical problems.

第1の問題点として、微粉炭の供給管の直径が大きいこ
とにより、供給管に直接取付けられた検出装置の光透過
の割合が微粉炭供給量を変えてもほとんど変化しない、
という問題がある。
The first problem is that due to the large diameter of the pulverized coal supply pipe, the light transmission rate of the detection device directly attached to the supply pipe hardly changes even if the pulverized coal supply amount is changed.
There is a problem.

粉砕機で微粉炭を供給するボイラの場合、供給管内を流
れる微粉炭重量流量(Ckg/h)と搬送空気重量流+
i (A kg/h)の割合C/Aは、ボイラシステム
の制約上、通常0.3〜0.4に設定されている。また
、搬送空気の流速は微粉炭を管壁に沈降させないように
約19m/sに設定されている。この2つの条件から、
微粉炭供給管の直径を算出すると、微粉炭を3t/h燃
焼するバーナの場合0.37−0.33m、10 t/
hバーナの場合0.77−0.69mになる。
In the case of a boiler that supplies pulverized coal with a crusher, the pulverized coal weight flow rate (Ckg/h) flowing in the supply pipe and the conveying air weight flow +
The ratio C/A of i (A kg/h) is usually set to 0.3 to 0.4 due to boiler system constraints. Further, the flow velocity of the conveying air is set to about 19 m/s so as not to cause the pulverized coal to settle on the pipe wall. From these two conditions,
Calculating the diameter of the pulverized coal supply pipe is 0.37-0.33 m for a burner that burns 3 t/h of pulverized coal, 10 t/h.
In case of h burner, it will be 0.77-0.69m.

一方、粒子が存在する時の光の強度■は粒子が存在しな
い時の光の強度■。と粒子径χ2粒子径χの個数n、管
直径dの間に0式の関係が1戊立することが知られてい
る。
On the other hand, the light intensity ■ when particles are present is the light intensity ■ when particles are not present. It is known that the relationship of equation 0 is established between the particle diameter χ2, the number n of particle diameters χ, and the tube diameter d.

この0式を概算するため、粒子径χを■式で定義される
平均径χ3□と、光路中に存在する粒子の全個数Nを用
いて0式を簡略化すると、■式となる。
In order to roughly estimate this equation 0, the equation 0 is simplified using the average diameter χ3□ defined by the equation (2) for the particle diameter χ and the total number N of particles existing in the optical path, resulting in the equation (2).

(c、c′は定数) fn・χ3dχ χ32””’”’(蛋1) fn・χ2dχ ■式の右辺が1以上になると、光学的に粒子濃度が濃い
状態になり、粒子で散乱した光が再度粒子に散乱して検
出装置の光透過検出器に入る状態になることが実験的に
明らかになった。この状態は、一般に多重散乱と呼ばれ
、粒子濃度は正確に識別できなくなる。微粉炭の供給管
で多重散乱の生ぜぬ限界の粒子個数濃度から供給管中の
C/AをC′=2 + Z、+z= 20 pmとして
(■式の右辺)=1から概算すると、3し/hバーナの
C/Aは0.022−−0.025 、  l OL 
/hバーー1−(7)C/Δは、Q、Q1]〜0.01
2となる。
(c, c' are constants) fn・χ3dχ χ32'''''''' (Program 1) fn・χ2dχ ■When the right side of the equation becomes 1 or more, the particle concentration becomes optically high, and the light scattered by the particles It has been experimentally revealed that the particles scatter again into the light transmission detector of the detection device.This condition is generally called multiple scattering, and the particle concentration cannot be accurately identified. From the limit particle number concentration that does not cause multiple scattering in the charcoal supply pipe, the C/A in the supply pipe is calculated as C' = 2 + Z, +z = 20 pm from (the right side of the equation) = 1, and it is approximately 3. /h burner C/A is 0.022--0.025, l OL
/h bar-1-(7)C/Δ is Q, Q1] ~ 0.01
It becomes 2.

即ち、単に供給管へ直接光透過の検出装置を取付けた方
法では、微粉炭供給管のような高い粒子濃度を判定する
ことができないばかりか、更に言えることは、上述の多
重散乱は光の強度(単位面積当りの光のエネルギ)に関
係なく生ずるため、高い粒子濃度の場合、たとえ光の強
度の強い光源を使用しても、透過光の強度工の光の強度
■。に対する割合は粒子濃度を変えてもほとんど変化し
ないのである。
In other words, simply attaching a detection device that transmits light directly to the supply pipe is not only incapable of determining high particle concentrations such as those in the pulverized coal supply pipe, but moreover, the above-mentioned multiple scattering is caused by the light intensity. (The energy of light per unit area) occurs regardless of the intensity of the transmitted light. The ratio to the total amount does not change much even if the particle concentration is changed.

第2の問題点は、粒子は慣性力のため検出装置の光が透
過する所を必ずしも通らない、ということである。例え
ば、粒子濃度が−様な直管が流れ方向右側に曲りを生ず
る場合を考える。
A second problem is that particles do not necessarily pass through the light of the detection device due to inertial forces. For example, consider a case where a straight pipe with a -like particle concentration bends to the right in the flow direction.

搬送空気は直管部の流速分布を保持したまま曲管部を通
過できるのに対し、粒子は慣性力が太きいため曲管通過
後の粒子濃度は流れ方向左側の部分が高くなる。このと
き、検出装置が管中心を含む上下方向に光を通過させた
とすると、粒子が管内に存在するにもかかわらず、検出
装置は粒子が存在しない情報の信号しか出力できないの
である。
While the conveying air can pass through the curved pipe section while maintaining the flow velocity distribution of the straight pipe section, the particles have a large inertial force, so the particle concentration after passing through the curved pipe is higher on the left side in the flow direction. At this time, if the detection device passes light in the vertical direction including the center of the tube, even though particles are present in the tube, the detection device can only output a signal indicating that no particles are present.

また、例え検出装置を粒子が存在する信号が生ずる位置
に取付けても、粒子濃度の分布は曲り部以前の分布と異
なり、また操作条件により粒子濃度分布が変化するため
誤差を含んだ信号しか出力できないのである。
Furthermore, even if the detection device is installed at a position where a signal indicating the presence of particles is generated, the distribution of particle concentration will be different from the distribution before the bend, and the particle concentration distribution will change depending on the operating conditions, so it will only output a signal containing errors. It cannot be done.

各バーナへ微粉炭を供給する供給管の管路形状は異なる
現状を考慮すると、公知例の方法で検出装置の信号が等
しくなるように制御しても実際の微粉炭供給量は必ずし
も等しくはならない。
Considering the fact that the shape of the supply pipe that supplies pulverized coal to each burner is different, the actual amount of pulverized coal supplied will not necessarily be the same even if the signals from the detection device are controlled to be equal using the known method. .

このように1粒子濃度が高くなると、多重散乱の影響で
検出装置の受光強度の入射光強度に対する割合はほぼ一
定の値を示すようになり、実際の濃度の相違を正確に測
定できない点と、検出装置上流部の曲管等により粒子が
偏在する点について配慮がされておらず、供給管を流れ
る微粉炭の供給量を評価できない問題があった。
When the concentration of a single particle increases in this way, the ratio of the intensity of light received by the detection device to the intensity of incident light becomes almost constant due to the influence of multiple scattering, which makes it impossible to accurately measure the difference in actual concentration. No consideration was given to the uneven distribution of particles due to the curved pipe upstream of the detection device, and there was a problem in that the amount of pulverized coal supplied flowing through the supply pipe could not be evaluated.

本発明の目的は、上記のような問題点を解消するために
なされたもので、高濃度の供給管内の粉体の粒子濃度の
差を評価できると共に粒子の偏在による粒子濃度の計測
誤差をなくす粉体供給量制御装置を提供することにある
The purpose of the present invention was to solve the above-mentioned problems, and it is possible to evaluate the difference in the particle concentration of powder in a high-concentration supply pipe, and to eliminate measurement errors in particle concentration due to uneven distribution of particles. An object of the present invention is to provide a powder supply amount control device.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明は5粉体を供給する複
数の配管に夫々設けられた粉体の供給量を制御する開閉
弁と、この開閉弁取付位置より下流に設けられ、粉体供
給時夫々の配管中の光透過を検出する検出手段と、この
検出手段からの出力によって各配管の光透過率を計算す
る計算手段と、この計算手段から出力された各光透過率
を比較すると、この比較器から出力された信号により各
配管の光透過率によって前記開閉弁の開度を調節する開
度調節器とを有する粉体供給量制御装置において、前記
検出手段に、前記配管から所定の濃度範囲の粉体の一部
を取出して光透過を検出した後に再び該配管に戻す検出
管が設けられていることを特徴とするものである(請求
項1)。
In order to achieve the above object, the present invention includes an on-off valve that controls the amount of powder supplied, which is provided in each of a plurality of pipes that supply powder, and an on-off valve that is provided downstream from the installation position of this on-off valve to supply powder. Comparing the detection means that detects the light transmission in each pipe from time to time, the calculation means that calculates the light transmittance of each pipe based on the output from this detection means, and the light transmittance output from this calculation means, In the powder supply amount control device having an opening degree adjuster that adjusts the opening degree of the on-off valve according to the light transmittance of each pipe based on the signal output from the comparator, The present invention is characterized in that a detection tube is provided for taking out a part of the powder in the concentration range, detecting light transmission, and then returning it to the pipe (claim 1).

そして更に、この配管の、前記開閉弁下流側で且つ前記
検出手段上流側の位置に、該配管内の粉体粒子を所定の
濃度範囲にする粒子濃度均質化手段を配設したことを特
徴とするものである(Eft求項2)。
Further, a particle concentration homogenizing means for adjusting the concentration of powder particles in the piping to a predetermined concentration range is disposed in the piping at a position downstream of the on-off valve and upstream of the detection means. (Eft term 2).

この粒子濃度均質化手段は、前記配管の内径よりも小さ
な開口部を有し、該開口部に前記粉体を通過させること
によって該粉体を所定の濃度にしたり(請求項3)、前
記配管の内壁に複数個のガス噴出孔を配設し、該噴出孔
からのガスの噴出によって前記粉体を所定の濃度にする
ものである(請求項4)。
This particle concentration homogenizing means has an opening smaller than the inner diameter of the pipe, and makes the powder a predetermined concentration by passing the powder through the opening (claim 3); A plurality of gas ejection holes are arranged on the inner wall of the powder, and the powder is brought to a predetermined concentration by ejecting gas from the ejection holes (claim 4).

また、前記の検出管に、粉体を吸込む吸入手段を設けた
ものがある(請求項5)。
There is also a detection tube provided with a suction means for sucking powder (claim 5).

そしてこれらの装置に、粉体として微粉炭が用いられて
いることを特徴としたものもある(請求項6)。
Some of these devices are characterized in that pulverized coal is used as the powder (claim 6).

〔作用〕[Effect]

上記の構成によれば以干のような作用がある。 The above configuration has the following effects.

(請求項1) 光透過の測定を行う際、検出管によって所定濃度範囲の
粉体を取出すことができるので、多重散乱光による不正
確な識別を防止することができる。
(Claim 1) When measuring light transmission, it is possible to take out powder in a predetermined concentration range using the detection tube, so that inaccurate identification due to multiple scattered light can be prevented.

(請求項2) この検出管に取込む粉体を、粒子濃度均質化手段によっ
て所定濃度にすることができるので光透過による正確な
検出ができる。
(Claim 2) Since the powder taken into the detection tube can be brought to a predetermined concentration by the particle concentration homogenizing means, accurate detection can be performed by light transmission.

(請求項3) 粉体が検出管入口に到る配管中を流れるとき、この開口
部によって流れが絞られ、例えば上流側の配管の曲りな
どによって生じる粒子の偏在が防止され、粒子濃度が配
管内でほぼ均質化される。
(Claim 3) When powder flows through the piping leading to the detection tube inlet, the flow is restricted by this opening, preventing uneven distribution of particles caused by, for example, bends in the piping on the upstream side, and reducing the concentration of particles in the piping. almost homogenized within.

(請求項4) また、上記開口部のかわりに、複数個のガス噴出孔から
ガスを噴出して、配管中を流れる粉体を混合し、粒子の
偏在を防止することができる。
(Claim 4) Moreover, instead of the opening, gas can be ejected from a plurality of gas ejection holes to mix the powder flowing in the pipe, thereby preventing particles from being unevenly distributed.

(請求項5) 配管から検出管に粉体の一部を取出すとき、検出管に吸
込むことができるので、配管や検出管の管径、あるいは
粉体の流速に拘わらず、配管内に粉体を確実に取込み、
その濃度を検?J5することができる。
(Claim 5) When taking out a part of the powder from the piping into the detection tube, it can be sucked into the detection tube, so regardless of the diameter of the piping or detection tube, or the flow rate of the powder, there is no powder in the piping. be sure to incorporate
Check the concentration? J5 can be done.

(請求項6) 粉体として微粉体を用いることができるので、これらの
装置を微粉炭焚きボイラに適用することができる。
(Claim 6) Since fine powder can be used as the powder, these devices can be applied to a pulverized coal-fired boiler.

〔実施例〕〔Example〕

以下、本発明の一実施例として、粉体に微粉炭を用いた
例について詳述する。
Hereinafter, as an example of the present invention, an example in which pulverized coal is used as the powder will be described in detail.

まず、具体例を説明する前に、本実施例による粉体粒子
の偏在防止、及び多重散乱光における透過光測定の原理
について説明する。
First, before explaining a specific example, the principle of preventing uneven distribution of powder particles and measuring transmitted light in multiple scattered light according to this embodiment will be explained.

粉体粒子の偏在防止については、粒子濃度を検出する検
出装置の上流側に、ベンチュリ、オリフィス等の微粉炭
供給管の内径に比べ開口部の直径が等しくないことを特
徴とする絞り部、又は、微粉炭供給管の内部に旋回流を
形成することを特徴とする複数の空気噴出孔を設けるこ
とによって達成することができる。
To prevent uneven distribution of powder particles, a constriction part such as a venturi or orifice whose opening diameter is not equal to the inner diameter of the pulverized coal supply pipe, or This can be achieved by providing a plurality of air jet holes, which are characterized by forming a swirling flow, inside the pulverized coal supply pipe.

また、多重散乱光における透過光の測定については、検
出装置の透過光の光源から出た光が微粉炭粒子をよぎる
長さLが下記の0式を満足するよりも短くなるように透
過光の光源の検出器を配置させることにより達成される
In addition, regarding the measurement of transmitted light in multiple scattered light, the length L of the transmitted light emitted from the light source of the detection device passing through the pulverized coal particles is shorter than satisfying the following equation 0. This is achieved by locating the detector of the light source.

X3□ρ 3 ここで0式のC′は定数で約2、C/Aは微粉炭の重−
it流量に対する搬送空気の重量流量の割合、Lは光が
微粉炭をよぎる長さ(m) 、 X3□は前出0式で定
義される微粉炭の平均粒径(m)、ρは微粉炭の密度(
kg/m)である。
X3□ρ 3 Here, C' in equation 0 is a constant of approximately 2, and C/A is the weight of pulverized coal.
The ratio of the weight flow rate of the conveying air to the IT flow rate, L is the length of light passing through the pulverized coal (m), X3□ is the average particle diameter of the pulverized coal (m) defined by the above formula 0, and ρ is the pulverized coal The density of (
kg/m).

検出装置の上流側に設けられた、前記絞り部又は複数の
空気噴出孔等の粒子濃度物質化装置は、粒子濃度均質化
装置の上流側の曲管等の配管により生した粒子濃度の偏
在をなくし、配管内部の粒子濃度が均質もしくは配管中
心軸に対して対称の濃度になるように動作する。
The particle concentration materializing device, such as the aperture section or a plurality of air jet holes, provided on the upstream side of the detection device suppresses the uneven distribution of particle concentration caused by piping, such as a curved pipe, on the upstream side of the particle concentration homogenizing device. It operates so that the particle concentration inside the pipe is homogeneous or symmetrical with respect to the central axis of the pipe.

詳細を記せば、絞り部は偏在した粒子と搬送空気を一度
配管中心部に集め、しかる後に流路断面が絞り部入口の
流路断面と等しくなることによって、粒子濃度を微粉炭
供給管内部でほぼ等しくさせることができる。一方、複
数の空気噴出孔からは管内のC/Aを低下させないため
圧縮空気が互いに旋回流を形成するように噴出される。
In detail, the constriction part once collects the unevenly distributed particles and the conveying air in the center of the pipe, and then the cross section of the flow path becomes equal to the cross section of the flow path at the inlet of the constriction part, thereby reducing the particle concentration inside the pulverized coal supply pipe. They can be made almost equal. On the other hand, compressed air is ejected from the plurality of air ejection holes so as to form a swirling flow with each other so as not to reduce the C/A inside the pipe.

旋回流は、偏在した微粉炭を気流に乗せて分散させるの
で、管壁の粒子濃度が高く中心部が低い粒子濃度分布を
形成できる。この粒子濃度均質化装置は、検出装置の検
出信号を配管内の平均粒子濃度の計測結果とするので、
検出装置は誤動作することがない。
Since the swirling flow disperses the unevenly distributed pulverized coal in the airflow, it is possible to form a particle concentration distribution in which the particle concentration is high on the pipe wall and low in the center. This particle concentration homogenization device uses the detection signal of the detection device as the measurement result of the average particle concentration in the pipe, so
The detection device will not malfunction.

また前記0式を満足するように取付けられた検出装置は
、0.3〜0.4のC/Aと粒子濃度の高い状態でも粒
子の多重散乱光が検出装置の検出器に入射することのな
いように動作する。これにより、微粉炭供給管の粒子濃
度の変動は検出されるようになるので、複数の微粉炭供
給管の粒子濃度を等しくすることができるのである。
Furthermore, a detection device installed to satisfy the above formula 0 has a C/A of 0.3 to 0.4, which prevents multiple scattered light from particles from entering the detector of the detection device even in a state where the particle concentration is high. It doesn't seem to work. As a result, fluctuations in the particle concentration of the pulverized coal supply pipes can be detected, so that the particle concentrations of the plurality of pulverized coal supply pipes can be made equal.

以下具体例を図面により説明する。Specific examples will be explained below with reference to the drawings.

第1図は第1実施例による微粉炭バーナの燃料供給量制
御装置の系統図である。本実施例は、複数の微粉炭供給
管100(図中で個々の配管は、番号の後にa、b、c
を附記して示す)に微粉炭粒子が流れる方向に順次取付
けられた微粉炭の供給量を変化させる開閉弁101と、
開閉弁101により生じた微粉炭供給管100内の不均
一な粒子濃度分布を均一にさせる粒子濃度均質化装置1
02と、使用条件内で粒子の濃度とともに透過する光の
量が変化するように微粉炭供給管内の粒子の一部を採取
する検出管103及びこの検出管内の粒体濃度を検出す
るための投光器104、検出器105等で構成される検
出手段としての粒子濃度計測器106と、この粒子濃度
計測器106の信号から投光器104で入射した光の強
度■。に対する検出管103を通過し検出器105で受
光した光の強度Iの割合(以下、強度比I/I。と記す
)を算出する信号処理器107と、信号処理器107か
ら出力される複数個の微粉炭供給管の強度比I/I。を
比較する比較器108と、比較器108の出力信号を受
は各配管の強度比I/I。
FIG. 1 is a system diagram of a fuel supply amount control device for a pulverized coal burner according to a first embodiment. In this embodiment, a plurality of pulverized coal supply pipes 100 (in the figure, individual pipes are indicated by numbers followed by a, b, c)
an on-off valve 101 that changes the supply amount of pulverized coal, which is installed sequentially in the direction in which the pulverized coal particles flow;
Particle concentration homogenization device 1 that makes uniform the uneven particle concentration distribution in the pulverized coal supply pipe 100 caused by the on-off valve 101
02, a detection tube 103 for collecting part of the particles in the pulverized coal supply pipe so that the amount of light transmitted changes with the concentration of particles within the usage conditions, and a floodlight for detecting the concentration of particles in this detection tube. 104, a particle concentration measuring device 106 as a detection means composed of a detector 105 and the like, and the intensity (■) of light incident on the projector 104 from the signal of this particle concentration measuring device 106; A signal processor 107 that calculates the ratio of the intensity I of the light passed through the detection tube 103 and received by the detector 105 (hereinafter referred to as intensity ratio I/I), and a plurality of signals output from the signal processor 107. Strength ratio I/I of pulverized coal supply pipe. A comparator 108 compares the intensity ratio I/I of each pipe and receives the output signal of the comparator 108.

が等しくなるように開閉弁101を調節する開度調節器
109からなる。
It consists of an opening adjuster 109 that adjusts the on-off valve 101 so that the opening and closing valves are equal.

図には記載されていない微粉炭粉砕機で製造された微粉
炭は、搬送空気で搬送され、図に記載されていない分配
器で複数の微粉炭供給管100に分配される(第1図で
は100a、1oob。
Pulverized coal produced by a pulverized coal pulverizer (not shown in the figure) is conveyed by conveying air and distributed to a plurality of pulverized coal supply pipes 100 by a distributor (not shown in the figure) (in FIG. 100a, 1ooob.

100cの3本の微粉炭供給管に分配される)。(distributed to three pulverized coal supply pipes of 100c).

微粉炭供給管100の微粉炭流量は流路断面積を変化さ
せ流路の圧力損失を変化させる開閉弁101によって調
整される。
The flow rate of pulverized coal in the pulverized coal supply pipe 100 is adjusted by an on-off valve 101 that changes the cross-sectional area of the flow path and changes the pressure loss of the flow path.

開閉弁101を通過した石炭粒子は、例えばベンチュリ
、オリフィス等のような微粉炭供給管100の流路面積
よりも小さな流路を通過させる粒子濃度均質化装置10
2を通過させることにより所定の粒子濃度分布を持つよ
うに変化させる。この粒子濃度均質化装置102は、上
流側で生した粒子濃度分布の偏在を所定の粒子濃度分布
を持つように動作させる。
The coal particles that have passed through the on-off valve 101 are passed through a particle concentration homogenizer 10 that passes through a flow path smaller than the flow path area of the pulverized coal supply pipe 100, such as a venturi or orifice.
2, the particles are changed to have a predetermined particle concentration distribution. This particle concentration homogenizing device 102 operates to make the uneven distribution of particle concentration generated on the upstream side into a predetermined particle concentration distribution.

粒子濃度均質化装置102の微粉炭供給管]〇Oaにつ
いての動作を説明したのが第3図である。
Pulverized coal supply pipe of particle concentration homogenizing device 102] FIG. 3 explains the operation regarding Oa.

第3図は、開閉弁101の上流側の流路断面A−A、開
閉弁101と粒子濃度均質化装置102の間に位置する
流路断面B−B、粒子濃度均質化袋+i 102の下流
側の流路断面C−Cの粒子濃度分布を示した図であり、
縦軸は微粉炭の濃度を配管内の断面における微粉炭最大
濃度で無次元化した粒子濃度を示し、横軸は断面内の半
径を流路の供給管の半径で無次元化した半径であり、0
が管の中心、1又は−1が管壁に相当する。A−A断面
の微粉炭粒子濃度は、前述の分配器からの距離が長いた
め、一般に流れが発達し、速度分布が相似形になるので
、中心部が高くなっている。
FIG. 3 shows a flow path cross section A-A on the upstream side of the on-off valve 101, a flow path cross section B-B located between the on-off valve 101 and the particle concentration homogenization device 102, and a flow path cross section downstream of the particle concentration homogenization bag +i 102. It is a diagram showing the particle concentration distribution of the side channel cross section C-C,
The vertical axis shows the particle concentration, which is the pulverized coal concentration made dimensionless by the maximum pulverized coal concentration in the cross section in the pipe, and the horizontal axis is the radius, which is made dimensionless by the radius in the cross section by the radius of the supply pipe of the flow path. ,0
corresponds to the center of the tube, and 1 or -1 corresponds to the tube wall. The pulverized coal particle concentration in the A-A cross section is high in the center because the distance from the distributor is long, so the flow generally develops and the velocity distribution becomes similar.

ところが、開閉弁による流路面積の縮少1曲り管部で動
く粒子の慣性力による粒子の偏在、等が作用するため、
開閉弁後の粒子濃度分布は、B−Bの曲線の様に配管の
中心からずれた位置に最大値を示す。本実施例の場合、
B−B曲線の最大値は、半径/供給管径=−0,5に相
当する。この粒子の感度の偏在は、管路形状、開閉弁の
開度等により、複雑に変わるため、粒子濃度を正しく計
測することができない。
However, due to the reduction of the flow path area due to the on-off valve, uneven distribution of particles due to the inertial force of particles moving in the bent pipe section, etc.
The particle concentration distribution after the opening/closing valve shows a maximum value at a position shifted from the center of the piping, as shown by the curve B-B. In the case of this example,
The maximum value of the BB curve corresponds to radius/supply pipe diameter=-0.5. This uneven distribution of particle sensitivity varies in a complex manner depending on the shape of the pipe, the degree of opening of the on-off valve, etc., making it impossible to accurately measure the particle concentration.

しかし、粒子濃度均質化装置102において、粒子は一
度管の中心部を通過するため、管壁に近く偏在していた
粒子も管の中心部に集められる。
However, in the particle concentration homogenizing device 102, since the particles once pass through the center of the tube, the particles that were unevenly distributed near the tube wall are also collected at the center of the tube.

この結果、C−C部の濃度分布の最大値は、管の中心部
にほぼ位置するようになる。即ち、粒子濃度物質化装置
102は、上流部で偏在した粒子の分布を、管路のほぼ
中心部が高くなるように働くのである。
As a result, the maximum value of the concentration distribution in the C-C portion is located approximately at the center of the tube. In other words, the particle concentration materializing device 102 works to change the distribution of particles that are unevenly distributed in the upstream portion so that the concentration becomes higher almost at the center of the pipe.

さて、上記のように、粒子の濃度分布が管流路の中心部
で高くなるようになった後、微粉炭粒子は、粒子濃度を
計測する粒子濃度i−1測器106に到達する。本実施
例における粒子濃度計測器106は、微粉炭供給管10
0内の粒子の一部を採取する粒子サンプル管110と(
尚、この粒子サンプル管110の粒子を吸込する位置は
微粉炭供給管1 ]、 O内の任意場所に設定すること
ができる)、粒子サンプル管110に接続された直管1
11と、粒子を再び微粉炭供給管100へ戻す戻り管1
1−2からなる粒子のサンプル系統と、直管111の管
壁の相対応する任意の壁面に取り付けられた粒子濃度を
計測するための光を投光する投光器104と、投光器か
らの光が入射することが可能な位置に設けられた検出器
105から構成される。
Now, as described above, after the particle concentration distribution becomes high in the center of the pipe flow path, the pulverized coal particles reach the particle concentration i-1 measuring device 106 that measures the particle concentration. The particle concentration measuring device 106 in this embodiment is a pulverized coal supply pipe 10
A particle sample tube 110 for collecting some of the particles in 0 and (
The position of the particle sample tube 110 at which the particles are sucked can be set at any location within the pulverized coal supply tube 1], the straight tube 1 connected to the particle sample tube 110.
11, and a return pipe 1 for returning the particles to the pulverized coal supply pipe 100 again.
A particle sample system consisting of 1-2, a light emitter 104 that emits light for measuring particle concentration attached to a corresponding arbitrary wall surface of the straight pipe 111, and light from the light emitter is incident. It consists of a detector 105 installed at a position where it can be detected.

この時、粒子サンプル管110が微粉炭供給管100の
粒子を採取する場所は、各配管の微粉炭供給量を等しく
する場合(本実施例では、100a 、 ]、 OOb
 、 100 c ) 、配管の中心から粒子サンプル
管]、 OOまでの距離に対する配管内径の割合が等し
くなるようにすることが重要である。
At this time, the locations where the particle sample pipe 110 collects particles from the pulverized coal supply pipe 100 are the locations where the pulverized coal supply amount of each pipe is made equal (in this example, 100a, ), OOb
, 100 c), from the center of the pipe to the particle sample tube], It is important to ensure that the ratio of the pipe inner diameter to the distance from the center of the pipe to the particle sample tube is equal.

更に言えることは、配管の粒子濃度が高い場合、第3図
で示したC−C部の濃度分布の管壁に近い部分の様な相
対的に粒子濃度の低い部分から粒子を採取すると、見か
け−1−粒子濃度が低い場合と同等にすることができる
ので、計測可能な粒子濃度の」―限を高くすることがで
きる。
Furthermore, when the particle concentration in the pipe is high, if particles are collected from a relatively low concentration area such as the part near the pipe wall of the concentration distribution in the C-C section shown in Figure 3, the apparent -1- Since the particle concentration can be made equivalent to a low particle concentration, the limit of measurable particle concentration can be increased.

尚、図中の113は検出信号ケーブル、114は信号処
理器107と比較器108を結ぶケーブル、1]5は比
較器108と開度調節器109を結ぶケーブル、116
は開度調節器109と開閉弁101を結ぶ開度調節信号
ケーブル、117は投光器104へのファイバである。
In the figure, 113 is a detection signal cable, 114 is a cable that connects the signal processor 107 and the comparator 108, 1]5 is a cable that connects the comparator 108 and the opening adjuster 109, 116
117 is an opening adjustment signal cable connecting the opening adjustment device 109 and the on-off valve 101, and 117 is a fiber to the projector 104.

第1の実施例における粒子濃度計測器106の粒子濃度
検出部の詳細構造を第2図に示す。粒子濃度を計測する
ための光を生成させる光源201から出力された光は、
光分配器202によって111測する微粉炭供給管の個
数に分配される(第1の実施例では3個)。このとき、
光源201は光を発生する物なら何でも使用できるが、
レーザ光を使用することが望ましい。分割された光20
3の内、微粉炭供給管100aに関する動作のみを以下
説明するが、他の光203b、203cについても同様
な原理で動作する。
FIG. 2 shows the detailed structure of the particle concentration detection section of the particle concentration measuring device 106 in the first embodiment. The light output from the light source 201 that generates light for measuring particle concentration is
The pulverized coal is distributed to 111 pulverized coal supply pipes by the optical distributor 202 (three in the first embodiment). At this time,
The light source 201 can be anything that generates light, but
Preferably, laser light is used. divided light 20
3, only the operation related to the pulverized coal supply pipe 100a will be described below, but the other lights 203b and 203c also operate on the same principle.

分配された光203aは、ビー11スプリツタ204に
より、粒子濃度を計測するための光と分配された光の強
度を計測するための光に分配され、それぞれ、光をファ
イバ205へ導くためのロッドレンズ206と光強度計
測器207へ入射する、。
The distributed light 203a is divided into light for measuring the particle concentration and light for measuring the intensity of the distributed light by the Be-11 splitter 204, and a rod lens for guiding the light to the fiber 205. 206 and enters the light intensity measuring device 207.

粒子濃度を計測するための光は、光ファイバ205によ
って直管111aに取付けられた投光器104aまて導
びかれ、光ファイバ205の入射光端面と反対側の端面
に取(=Iけられた投光部208から光を生成し、直管
11]aに設けられた投光孔209を通過した後、受光
孔210及び保護カラス211を通過し検出器105a
の検出部212に入射する。
Light for measuring particle concentration is guided by an optical fiber 205 to a projector 104a attached to a straight pipe 111a, and is attached to an end surface of the optical fiber 205 opposite to the incident light end surface (=I). Light is generated from the light unit 208, passes through the light emitting hole 209 provided in the straight pipe 11]a, passes through the light receiving hole 210 and the protective crow 211, and is transmitted to the detector 105a.
The light enters the detection unit 212 of.

検出部212は入射光に応じた強度の信号(通常は電気
信−号)を生成し、この信号は検出信−号ケーブル11
3aを通過し、信号強度を強くする増幅器213及び前
記信号に含まれるノイズを取り除くフィルタ214を径
で信号処理器107へ入力される。一方、分配された光
の強度を言]測するための光強度計測器207から生成
された信号は、信号強度を強くする増幅器213及び信
号に含まれるノイズを取除くフィルタ2]4を径で信号
が処理器107へ入力される。
The detection unit 212 generates a signal (usually an electrical signal) with an intensity corresponding to the incident light, and this signal is transmitted to the detection signal cable 11.
3a, and is input to the signal processor 107 through an amplifier 213 that increases the signal strength and a filter 214 that removes noise contained in the signal. On the other hand, the signal generated from the light intensity measuring device 207 for measuring the intensity of the distributed light is passed through an amplifier 213 that increases the signal intensity and a filter 2]4 that removes noise contained in the signal. The signal is input to processor 107.

供給管100aの光の強度比(I/Io)が、例えば他
の微粉炭供給管10ob、100cの光の強度比(I/
I。)に比へて大きい場合、微粉炭供給管100aの微
粉炭の供給量が少ない状態を示しているので、開度調節
器109は開閉弁101aを開ける指示をし、微粉炭供
給管100 aの微粉炭供給量を増加させるように動作
したり、逆に、微粉炭供給管100aの強度比(I/1
.、)がほの強度比に比べて小さい場合、微粉炭の供給
量が多い状態を示すから、開度調節器109は開閉弁1
01aを閉じる指示を与え、全ての微粉炭供給管の光の
強度比(I/1.)が等しくなるように動作させたりす
ることができる。
The light intensity ratio (I/Io) of the supply pipe 100a is, for example, the light intensity ratio (I/Io) of the other pulverized coal supply pipes 10ob and 100c.
I. ), it indicates that the amount of pulverized coal supplied from the pulverized coal supply pipe 100a is small, so the opening regulator 109 instructs to open the on-off valve 101a, and the amount of pulverized coal supplied from the pulverized coal supply pipe 100a is It operates to increase the amount of pulverized coal supplied, or conversely, increases the strength ratio (I/1) of the pulverized coal supply pipe 100a.
.. , ) is smaller than the intensity ratio, it indicates that the supply amount of pulverized coal is large, so the opening regulator 109 is set to the on-off valve 1.
It is possible to give an instruction to close 01a and operate it so that the light intensity ratio (I/1.) of all the pulverized coal supply pipes becomes equal.

ここで、光の強度比(I/I。)の計測手法を説明する
。まず、粒子が直管11」a内に存在しない時に検出部
212へ入射した光の強度をI l’l、光強度計測器
207八入射した光の強度を11.とする。増幅器21
3は、強度IBに応じた信号強度と、強度■。に応じた
信号強度が等しくなるように増幅の割合を調整し、ファ
イバ205、ロンドレンズ206、投光部208等の光
が通過する部分の光の減衰、並びに、検出部212及び
光強度計測器207の光の強度を信号に変換する機器の
特性の補正を行なう。微粉炭供給管内の粒子濃度の相対
的な比較を行なう場合は、光の強度比(I/1.)に応
した信号を出力すれば良い。
Here, a method for measuring the light intensity ratio (I/I) will be explained. First, when no particles are present in the straight pipe 11''a, the intensity of the light incident on the detection unit 212 is Il'l, and the intensity of the light incident on the light intensity measuring device 2078 is 11. shall be. Amplifier 21
3 is the signal strength according to the strength IB and the strength ■. The amplification ratio is adjusted so that the signal strength according to the The characteristics of the device that converts the intensity of light 207 into a signal are corrected. When performing a relative comparison of particle concentrations within the pulverized coal supply pipe, a signal corresponding to the light intensity ratio (I/1.) may be output.

一方、粒子−濃度を算出する場合は、次式■の定数値C
nをあらかじめ較正する必要がある。
On the other hand, when calculating the particle concentration, the constant value C of the following formula (■)
It is necessary to calibrate n in advance.

Qn(In/I)=C”NX、2’d   −■ここで
X j 2は前出0式で定まる平均粒径、dは管径、N
は光路内に位置する粒子数に相当する。
Qn(In/I)=C''NX, 2'd -■Here, X j 2 is the average particle diameter determined by the above formula 0, d is the pipe diameter, N
corresponds to the number of particles located in the optical path.

C“は粒子の形や表面性状によって変わる物性定数であ
り、管路を通過する粒子の種類によって変わる。定数C
″が得られれば1粒子源度Cpは次の0式で得られる粒
子数Nを別の手段で計測した搬送空気速度を基に算出し
た1L位時間当りの流量で除算を行うことによって得ら
れる。
C" is a physical property constant that changes depending on the shape and surface properties of particles, and changes depending on the type of particles passing through the pipe.Constant C
'' is obtained, the particle source degree Cp can be obtained by dividing the number of particles N obtained by the following 0 formula by the flow rate per 1L hour calculated based on the conveying air velocity measured by another means. .

N=L/(C”・XJ、” d )・Q n (I o
/ I ) −1B+直管111aの径dは、較正にて
得られた物性定数C″を用いて、■式の右辺が1以下に
なるように設定する。この方法による管径dの設定によ
り、光路内に粒子が多数存在することによって生ずる光
の多重散乱が防がれ、粒子の濃度の変化を鋭敏に計測す
ることが可能になり、従来技術で問題になった透過光の
強度■が粒子濃度を変えても変化しないという問題を解
決できるのである。
N=L/(C"・XJ," d)・Q n (I o
/I) -1B+The diameter d of the straight pipe 111a is set using the physical property constant C'' obtained by calibration so that the right side of the equation (■) is 1 or less.By setting the pipe diameter d using this method, , multiple scattering of light caused by the presence of many particles in the optical path is prevented, making it possible to sensitively measure changes in particle concentration, and reducing the intensity of transmitted light, which was a problem with conventional technology. This solves the problem of no change even if the particle concentration is changed.

投光部208と検出部212の表面に石炭粒子が付着す
ると、上記方法による粒子濃度の計測方法は著しい誤差
を生ずる。このため、投光部2゜8と検出部212の取
付法は、粒子付着を極カ防ぐ構造にしなければならない
。本実施例の−・例は、粒子付着を防止するパージガス
を供給する構造とし、投光部208と検出部212が直
管1 ’J ] aの管内壁に露出しないような構造に
している。即ち、投光部208と検出部212は、直管
111aの管内壁に開口部(投光孔209又は受光孔2
10)を有するガス留り215に取付けられ、ガス留り
215内へパージカスを導入するパージガス管216が
取付けられている。ガス留り215の内壁の径は、パー
ジガス管216が取付けられている位置が最も大きく、
直管111a側に前記径より小さいガス留り215の内
壁が設けられている。また、パージガス管216は、光
が進む方向にほぼ直角になるように取付けられている。
When coal particles adhere to the surfaces of the light projecting section 208 and the detecting section 212, the above method for measuring particle concentration causes a significant error. For this reason, the method of mounting the light emitting section 2.8 and the detecting section 212 must be structured to prevent particle adhesion to a minimum. This embodiment has a structure in which a purge gas is supplied to prevent particle adhesion, and the light projecting section 208 and the detecting section 212 are not exposed to the inner wall of the straight pipe 1'J]a. That is, the light projecting section 208 and the detecting section 212 have an opening (light projecting hole 209 or light receiving hole 2) in the inner wall of the straight pipe 111a.
10), and a purge gas pipe 216 for introducing purge scum into the gas reservoir 215 is attached. The diameter of the inner wall of the gas retainer 215 is largest at the position where the purge gas pipe 216 is attached.
An inner wall of a gas reservoir 215 smaller in diameter than the above diameter is provided on the straight pipe 111a side. Further, the purge gas pipe 216 is installed so as to be substantially perpendicular to the direction in which the light travels.

このような、ガス留り215の構造にすることにより、
パージガスは、投光部208及び検出部212の外周を
一様に流れ、投光孔209及び受光孔210から噴出す
るので、粒子の耐着を未然に防ぐことができる。
By having such a structure of the gas retainer 215,
Since the purge gas uniformly flows around the outer periphery of the light projecting section 208 and the detecting section 212 and is ejected from the light projecting hole 209 and the light receiving hole 210, adhesion of particles can be prevented.

受光孔2100口径は投光孔209の口径より大きくし
ているため、粒子濃度計測器106の製作及び組立てが
容易に行なえる。
Since the diameter of the light receiving hole 2100 is made larger than the diameter of the light emitting hole 209, manufacturing and assembly of the particle concentration measuring device 106 can be easily performed.

保護ガラス211は検出部212の損傷を未然に防ぐた
めのものである。
The protective glass 211 is for preventing damage to the detection section 212.

第2の実施例として粒子濃度均質化装置1.02は、第
4図及び第5図に示す空気噴流旋回型の粒子温度均質化
装置でも1]的登達することができる。
As a second embodiment, the particle concentration homogenization device 1.02 can also be achieved by an air jet swirling type particle temperature homogenization device shown in FIGS. 4 and 5.

第4図は側面図であり、第5図は第4図のL) −D断
面図である。
FIG. 4 is a side view, and FIG. 5 is a sectional view taken along line L-D in FIG. 4.

この実施例では複数の空気噴出孔51は微粉炭供給管1
00の管中心軸に対して90°又は噴出方向と中心軸流
れ方向のなす角が90’以下になるように配するととも
に、噴出された空気が互いに旋回流となすように供給さ
れる。空気の噴流は、偏在した粒子を旋回流にて移動さ
せ、第3図におけるC−C部曲線の濃度分布もしくは、
管壁部で濃度が高く管中心部で濃度が低い分布にし1石
炭粒子濃度が軸対称になるようにする。この結果、粒子
偏在による計測の誤差をなくすことができる。
In this embodiment, the plurality of air jet holes 51 are connected to the pulverized coal supply pipe 1.
The pipe is arranged so that the angle between the jetting direction and the central axis flow direction is 90° or less with respect to the central axis of the pipe, and the jetted air is supplied so as to form a swirling flow with respect to each other. The air jet moves the unevenly distributed particles in a swirling flow, and the concentration distribution of the C-C section curve in Fig. 3 or
The distribution is such that the concentration is high at the pipe wall and low at the center of the pipe so that the concentration of each coal particle is axially symmetrical. As a result, measurement errors due to uneven distribution of particles can be eliminated.

第3の実施例として直管111の変形例を第6図に示す
。第6図は直管111の内径よりも小さな開孔部を有す
るベンチュリ71を取付け、上流側に高速の空気を噴出
するノズル72を設置し、高速の空気がベンチュリ71
の開孔部の中心を流れるようにノズル72の位置を定め
る。第6図に示した変形例によると、粒子サンプル管1
10の圧力を第1の実施例よりも低くすることができる
ので、微粉炭粒子を容易に直管1.11の計測部へ導く
ことができる。また、粒子の濃度を圧縮空気73にて低
くすることができるので、第1の実施例よりも粒子の濃
度の濃い条件でも精度良く計測することができる。
A modification of the straight pipe 111 is shown in FIG. 6 as a third embodiment. In FIG. 6, a venturi 71 having an opening smaller than the inner diameter of the straight pipe 111 is installed, and a nozzle 72 that blows out high-speed air is installed on the upstream side.
The nozzle 72 is positioned so that the flow passes through the center of the opening. According to the modification shown in FIG.
Since the pressure of 1.10 can be lower than that of the first embodiment, the pulverized coal particles can be easily guided to the measurement section of the straight pipe 1.11. Furthermore, since the concentration of particles can be lowered using the compressed air 73, it is possible to measure with higher accuracy even under conditions where the concentration of particles is higher than in the first embodiment.

第4の実施例として直管111の他の変形例を第7図に
示す。本実施例は、直管111の計測部の後流側にポン
プ81を配したことが特徴である。
Another modification of the straight pipe 111 is shown in FIG. 7 as a fourth embodiment. This embodiment is characterized in that the pump 81 is disposed on the downstream side of the measuring section of the straight pipe 111.

ポンプの吸込み流量は可変にすることができるので、微
粉炭粒子濃度の計測範囲を広くすることができる。
Since the suction flow rate of the pump can be made variable, the measurement range of pulverized coal particle concentration can be widened.

第5の実施例として、以上の実施例は粒子濃度削測@1
06の粒子濃度計測条件が0式の右辺が1以下の条件に
なるように管径d、即ち、光路の長さを小さくしていた
が、検出器105と投光器104の間の光路長さが上記
条件を満足できれば、微粉炭供給管】、 OOの内部に
取付けても良い。この場合、投光器104又は検出器1
05は、微粉炭供給管100の内部に突出するため粒子
の衝突による摩耗を防止する様に、表面にセラミック等
で作られた保護壁を設ける必要がある。
As a fifth example, the above example is a particle concentration reduction @1
The tube diameter d, that is, the length of the optical path, was made small so that the particle concentration measurement condition of 06 was such that the right side of equation 0 was 1 or less, but the optical path length between the detector 105 and the projector 104 was If the above conditions are satisfied, the pulverized coal supply pipe may be installed inside the OO. In this case, the projector 104 or the detector 1
05 protrudes into the inside of the pulverized coal supply pipe 100, so it is necessary to provide a protective wall made of ceramic or the like on the surface to prevent wear caused by particle collisions.

〔発明の効果〕〔Effect of the invention〕

上述のとおり本発明によれば、以下の効果を奏すること
ができる。
As described above, according to the present invention, the following effects can be achieved.

所定濃度範囲の粉体を取出す検出管を設けることによっ
て、多重散乱光の状態でも正確な濃度の測定を行うこと
ができる(請求項1)。
By providing a detection tube for taking out powder in a predetermined concentration range, accurate concentration measurement can be performed even in the state of multiple scattered light (claim 1).

また、配管に粒子濃度均質化手段を配設することによっ
て、配管内における粉体粒子を所定濃度範囲とすること
ができるので、正確な光透過測定ができ、粒子濃度の計
測誤差をなくすことができる(請求項2)。
In addition, by providing particle concentration homogenization means in the piping, the powder particles in the piping can be kept within a predetermined concentration range, allowing accurate light transmission measurement and eliminating measurement errors in particle concentration. It is possible (Claim 2).

この粒子濃度均質化手段として、配管内径より小さな開
口部を設けたり(請求項3)、配管内壁の複数個所から
ガスを噴出するので(請求項4)、粒体粒子の偏在が防
止され、配管内の粉体粉子を所定濃度範囲とすることが
できる。
As this particle concentration homogenization means, an opening smaller than the inner diameter of the pipe is provided (Claim 3) or gas is ejected from multiple locations on the inner wall of the pipe (Claim 4). The powder within can be set within a predetermined concentration range.

一方、検出管に設けられた粉体の吸入手段によって、検
出管に粒子を確実に吸込むことができるので、確実な測
定が可能となる(請求項5)。
On the other hand, since particles can be reliably sucked into the detection tube by the powder suction means provided in the detection tube, reliable measurement is possible (claim 5).

粉体として微粉炭を用いることによって、微粉炭焚きボ
イラにも適用でき、微粉炭粒子の濃度の高い条件まで粒
子濃度を精度良く計測することができるので、複数個の
微粉炭供給管内の粒子供給量を制御することができる(
請求項6)。
By using pulverized coal as the powder, it can also be applied to pulverized coal-fired boilers, and the particle concentration can be measured with high accuracy even under conditions where the concentration of pulverized coal particles is high. The amount can be controlled (
Claim 6).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す燃料供給量制御装置の
系統図、第2図は粒子濃度計測器の構造図、第3図は供
給管内の微粉炭の濃度分布線図、第4図は第2の実施例
の粒子濃度均質化装置の変形例の説明図、第5図は第4
図のD−D矢視間、第6図は第3の実施例の直管の変形
例の説明図、第7図は第4の実施例としての直管の他の
変形例の説明図である。 100 微粉炭供給管、101  開閉弁、102・粒
子濃度均質化装置、103・検出管、104 投光器、
105・検出器、 106  粒子濃度計測器、107・信号処理器、10
8 比較器、109開度調節器、 201−光源、202・光分配器、203  光、20
4−ビームスプリンタ、205・ファイバ、206  
ロッドレンズ、207  光強度計測器、208・・投
光部、209 投光孔、 210 受光孔、2]1 保護ガラス、212 検出部
、213 増幅器、 214・フィルタ、51・空気噴出孔、71−・ベンチ
ュリ、72 ノズル、 73・・圧縮空気、8トポンプ。
Fig. 1 is a system diagram of a fuel supply amount control device showing an embodiment of the present invention, Fig. 2 is a structural diagram of a particle concentration measuring device, Fig. 3 is a concentration distribution diagram of pulverized coal in a supply pipe, and Fig. 4 is a diagram of a concentration distribution diagram of pulverized coal in a supply pipe. The figure is an explanatory diagram of a modification of the particle concentration homogenizing device of the second embodiment, and FIG.
Between arrows D and D in the figure, FIG. 6 is an explanatory diagram of a modification of the straight pipe of the third embodiment, and FIG. 7 is an explanatory diagram of another modification of the straight pipe of the fourth embodiment. be. 100 Pulverized coal supply pipe, 101 On-off valve, 102 Particle concentration homogenizer, 103 Detection tube, 104 Floodlight,
105・Detector, 106 Particle concentration measuring device, 107・Signal processor, 10
8 Comparator, 109 Opening degree adjuster, 201-Light source, 202-Light distributor, 203 Light, 20
4-beam splinter, 205/fiber, 206
Rod lens, 207 Light intensity measuring device, 208... Light projecting unit, 209 Light projecting hole, 210 Light receiving hole, 2] 1 Protective glass, 212 Detecting unit, 213 Amplifier, 214 Filter, 51 Air blowout hole, 71-・Venturi, 72 nozzles, 73...compressed air, 8 pumps.

Claims (1)

【特許請求の範囲】 1、粉体を供給する複数の配管に夫々設けられた粉体の
供給量を制御する開閉弁と、この開閉弁取付位置より下
流に設けられ、粉体供給時夫々の配管中の光透過を検出
する検出手段と、この検出手段からの出力によって各配
管の光透過率を計算する計算手段と、この計算手段から
出力された各光透過率を比較する比較器と、この比較器
から出力された信号により各配管の光透過率によって前
記開閉弁の開度を調節する開度調節器とを有する粉体供
給量制御装置において、前記検出手段に、前記配管から
所定の濃度範囲の粉体の一部を取出して光透過を検出し
た後に再び該配管に戻す検出管が設けられていることを
特徴とする粉体供給量制御装置。 2、前記配管の、前記開閉弁下流側で且つ前記検出手段
上流側の位置に、該配管内の粉体粒子を所定の濃度にす
る粒子濃度均質化手段を配設したことを特徴とする請求
項1記載の粉体供給量制御装置。 3、前記粒子濃度均質化手段が、前記配管の内径よりも
小さな開口部を有し、該開口部に前記粉体を通過させる
ことによって該粉体を所定の濃度にすることを特徴とす
る請求項2記載の粉体供給制御装置。 4、前記粒子濃度均質化手段が、前記配管の内壁に複数
個のガス噴出孔を配設し、該噴出孔からのガスの噴出に
よって前記粉体を所定の濃度にすることを特徴とする請
求項2記載の粉体供給量制御装置。 5、前記検出管に、前記粉体を吸込む吸入手段が設けら
れていることを特徴とする請求項1記載の粉体供給量制
御装置。 6、前記粉体として微粉炭が用いられていることを特徴
とする請求項1ないし5のいずれかに記載の粉体供給量
制御装置。
[Claims] 1. An on-off valve for controlling the supply amount of powder provided in each of a plurality of pipes for supplying powder, and an on-off valve provided downstream from the installation position of this on-off valve for controlling the amount of powder supplied during each powder supply. a detection means for detecting light transmission in the piping; a calculation means for calculating the light transmittance of each piping based on the output from the detection means; and a comparator for comparing each light transmittance output from the calculation means; In the powder supply amount control device having an opening degree adjuster that adjusts the opening degree of the on-off valve according to the light transmittance of each pipe based on the signal output from the comparator, A powder supply amount control device characterized by being provided with a detection tube that takes out a portion of powder in a concentration range, detects light transmission, and then returns it to the pipe. 2. A claim characterized in that a particle concentration homogenizing means for adjusting the powder particles in the piping to a predetermined concentration is disposed in the piping at a position downstream of the on-off valve and upstream of the detection means. Item 1. Powder supply amount control device. 3. The particle concentration homogenizing means has an opening smaller than the inner diameter of the pipe, and the powder is made to have a predetermined concentration by passing the powder through the opening. Item 2. Powder supply control device according to item 2. 4. The particle concentration homogenizing means is characterized in that a plurality of gas ejection holes are arranged on the inner wall of the piping, and the powder is brought to a predetermined concentration by ejecting gas from the ejection holes. Item 2. Powder supply amount control device. 5. The powder supply amount control device according to claim 1, wherein the detection tube is provided with suction means for sucking the powder. 6. The powder supply amount control device according to claim 1, wherein pulverized coal is used as the powder.
JP63101658A 1988-04-25 1988-04-25 Powder supply amount controller Pending JPH01272940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63101658A JPH01272940A (en) 1988-04-25 1988-04-25 Powder supply amount controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63101658A JPH01272940A (en) 1988-04-25 1988-04-25 Powder supply amount controller

Publications (1)

Publication Number Publication Date
JPH01272940A true JPH01272940A (en) 1989-10-31

Family

ID=14306477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63101658A Pending JPH01272940A (en) 1988-04-25 1988-04-25 Powder supply amount controller

Country Status (1)

Country Link
JP (1) JPH01272940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212994A (en) * 1990-03-14 1993-05-25 Outokumpu Oy Measuring cell
JP2019516085A (en) * 2016-04-01 2019-06-13 ティエスアイ インコーポレイテッドTsi Incorporated False count reduction in condensed particle counters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212994A (en) * 1990-03-14 1993-05-25 Outokumpu Oy Measuring cell
JP2019516085A (en) * 2016-04-01 2019-06-13 ティエスアイ インコーポレイテッドTsi Incorporated False count reduction in condensed particle counters

Similar Documents

Publication Publication Date Title
EP2467641B1 (en) Optical flue gas monitor and control
CN100520367C (en) Method of sampling for particle surface area measurement using laser-induced incandescence
CN102022193B (en) Systems and methods for closed loop emissions control
US6142665A (en) Temperature sensor arrangement in combination with a gas turbine combustion chamber
EP0445938B1 (en) Pulverized coal burner, pulverized coal boiler and method of burning pulverized coal
CN100454349C (en) Improvements relating to smoke detectors particularly ducted smoke detectors
US20110045420A1 (en) Burner monitor and control
KR20010052937A (en) LOW NOx AND LOW CO BURNER AND METHOD FOR OPERATING SAME
WO2012098848A1 (en) Solid fuel burner and combustion device using same
US20060215163A1 (en) Air purged optical densitometer
Zhengqi et al. Effect of primary air flow types on particle distributions in the near swirl burner region
EP3472588B1 (en) Sensor system for sensing the mass concentration of particles in air
US20120079969A1 (en) Combustion controller
CN101103275A (en) Optical transit time velocimeter
CN206398703U (en) A kind of flue gas recirculation device
JPH01272940A (en) Powder supply amount controller
Qi Li et al. Gas-particle flow and combustion in the near-burner zone of the swirl-stabilized pulverized coal burner
Jing et al. Influence of the mass flow rate of secondary air on the gas/particle flow characteristics in the near-burner region of a double swirl flow burner
JP6025504B2 (en) Gas component concentration measuring device in exhaust gas
KR102146277B1 (en) device for measuring dust by different particle size in chimney
KR102158142B1 (en) device for measuring dust by different particle size in chimney
KR102117422B1 (en) Apparatus for measuring concentration of dust
CN219369488U (en) Novel dust measuring optical system
CN115290518B (en) Take particle size spectrometer of self calibration
CN218917196U (en) Pipeline internal gas detection device based on spectrum technology