JPH0127290B2 - - Google Patents

Info

Publication number
JPH0127290B2
JPH0127290B2 JP9523384A JP9523384A JPH0127290B2 JP H0127290 B2 JPH0127290 B2 JP H0127290B2 JP 9523384 A JP9523384 A JP 9523384A JP 9523384 A JP9523384 A JP 9523384A JP H0127290 B2 JPH0127290 B2 JP H0127290B2
Authority
JP
Japan
Prior art keywords
coil
spring
center line
curvature
shear stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9523384A
Other languages
Japanese (ja)
Other versions
JPS60241542A (en
Inventor
Tsuneo Mizuno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Original Assignee
Chuo Hatsujo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK filed Critical Chuo Hatsujo KK
Priority to JP9523384A priority Critical patent/JPS60241542A/en
Publication of JPS60241542A publication Critical patent/JPS60241542A/en
Publication of JPH0127290B2 publication Critical patent/JPH0127290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/042Wound springs characterised by the cross-section of the wire

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は、使用状態においてコイルの中心線が
自由状態と異なる曲率に変形するコイルばねに関
し、圧縮コイルばねと引張コイルばねの両方に適
用し得るものである。
[Detailed Description of the Invention] Purpose of the Invention Industrial Application Field The present invention relates to a coil spring in which the center line of the coil deforms to a curvature different from that in the free state when in use, and is applicable to both compression coil springs and tension coil springs. It is possible.

発明が解決しようとする問題点 例えば、独立懸架式の車輌懸架装置にシヤシば
ねとして使用されるコイルばねは、車体と車輪の
相対的な上下運動によりコントロールアームが揺
動運動するのに伴つてアコーデオンのようにコイ
ルの中心線が彎曲しつつ伸縮するのであるが、こ
のような場合には、コイルの周方向において素線
に生ずる剪断応力が不均一となつて部分的に過大
な応力が生ずるため、コイルの中心線を真直ぐに
保つて伸縮する場合に比べて素線径を太くする必
要があつて重量が増大し、車輌の軽量化に反する
結果となつている。
Problems to be Solved by the Invention For example, a coil spring used as a chassis spring in an independent vehicle suspension system is used as an accordion spring as the control arm swings due to the relative vertical movement of the vehicle body and wheels. The center line of the coil expands and contracts while curving, as shown in Figure 3. In this case, the shear stress generated in the strands in the circumferential direction of the coil becomes uneven, resulting in excessive stress in some parts. Compared to the case where the center line of the coil is kept straight while expanding and contracting, it is necessary to increase the diameter of the strands, resulting in an increase in weight, which is contrary to the aim of reducing the weight of the vehicle.

本発明は、このように、使用状態においてコイ
ルの中心線が自由状態と異なる曲率に変形するコ
イルばねにおいて、コイルの周方向において素線
に生ずる剪断応力を均一化し、軽量化を可能にす
ることを目的とするものである。
As described above, the present invention makes it possible to equalize the shear stress generated in the strands in the circumferential direction of the coil in a coil spring in which the center line of the coil deforms to a curvature different from that in the free state when in use, thereby making it possible to reduce the weight. The purpose is to

実施例 本発明を圧縮コイルばねに適用した一実施例を
第1図乃至第5図に基づいて説明すると、本実施
例の圧縮コイルばねは、第1図に拡大して示すよ
うに、互いに向き合う幅の狭い円弧部分イと幅の
広い円弧部分ロとを曲線ハ,ハで滑らかに接続し
た卵形断面のばね素線1を、第2図及び第4図に
示すように、真直ぐな中心線X―Xの周りに、幅
の狭い円弧部分イを内周側に向けて、等ピツチで
コイル形に巻回したものであるが、そのコイルの
平面形状は、第3図に示すように、互いに向き合
う曲率の小さい円弧部分aと曲率の大きい円弧部
分bとを曲線c,cで滑らかに接続した卵形をな
す。
Embodiment An embodiment in which the present invention is applied to a compression coil spring will be described based on FIGS. 1 to 5. The compression coil springs of this embodiment face each other as shown enlarged in FIG. As shown in FIGS. 2 and 4, a spring wire 1 with an oval cross section in which a narrow arc portion A and a wide arc portion B are smoothly connected by curves C and C is connected to a straight center line. The coil is wound around X-X at equal pitches with the narrow arc portion A facing the inner circumference, and the planar shape of the coil is as shown in Figure 3. It forms an oval shape in which a circular arc portion a with a small curvature and a circular arc portion b with a large curvature, which face each other, are smoothly connected by curves c and c.

この圧縮コイルばねを、第5図に示すように、
コイルの中心線X―Xが彎曲するように圧縮して
使用する場合に、コイルの曲率の小さい円弧部分
aを中心線X―X方向の撓み量の小さい側、すな
わち、彎曲の外側に配することにより、コイルの
周方向においてばね素線1に生ずる剪断応力が均
一化されるのである。その理由を第4図及び第5
図に基づいて説明する。
As shown in Fig. 5, this compression coil spring is
When compressed and used so that the center line XX of the coil is curved, the circular arc portion a of the coil with a small curvature is arranged on the side with a small amount of deflection in the direction of the center line XX, that is, on the outside of the curvature. As a result, the shear stress generated in the spring wire 1 in the circumferential direction of the coil is made uniform. The reason is shown in Figures 4 and 5.
This will be explained based on the diagram.

第5図に示すようにコイルの中心線X―Xが彎
曲して圧縮される場合における彎曲の内側、すな
わち、圧縮量が最大となる側におけるばね素線1
上の位置をB1,B2,B3,B4とし、彎曲の外側、
すなわち、ばね素線1上において圧縮量が最小と
なる側におけるばね素線1上の位置をA1,A2
A3,A4とすると、この圧縮コイルばねは等ピツ
チで巻回されているから、第4図に示す自由状態
においては、 ∠A1B2A2=∠A2B3A3=∠A3B4A4 =∠B1A1B2=∠B2A2B3=∠B3A3B4=α であるが、第5図に示す圧縮状態においては、 ∠A1B2A2=∠A2B3A3=∠A3B4A4=β ∠B1A1B2=∠B2A2B3=∠B3A3B4=γ とすると、 α>β>γ となるのであつて、ばね素線1上の位置A1,A2
A3,A4における捩り角度α―γが位置B1,B2
B3,B4における捩り角度α―βより大となり、
この捩り変形によつて生ずる平均剪断応力は位置
A1,A2,A3,A4の方が位置B1,B2,B3,B4
り大となる。ところで、円形断面のばね素線を円
形に巻回したコイルばねを、そのコイルの中心線
を真直ぐに保つて伸縮させた場合にばね素線は単
位長さ当り一定角度ずつ捩り変形を生ずるのであ
るが、コイルの内周の弧は外周の弧より短かいた
め、コイルの内周が外周より剪断ひずみが大き
く、これに伴つて生ずる剪断応力もコイルの内周
の方が外周より大となるのであり、しかもこの傾
向は、ばね指数、すなわち、コイル径Dと素線径
dの比D/dが小さくなるのに伴つて著しくなる
のであつて、ばね素線の内周に生ずる最大剪断応
力のその断面の平均剪断応力に対する比、すなわ
ち、応力修正係数xとばね指数D/dとの関係は
第8図のグラフに示す通りであり、例えば、ばね
指数D/dが12.0の場合はコイルの内側に生ずる
最大剪断応力はその断面の平均剪断応力の約1.1
倍であるのに対し、ばね指数D/dが4.0の場合
は約1.4倍となるのである。
As shown in FIG. 5, when the center line XX of the coil is curved and compressed, the spring wire 1 is on the inside of the curve, that is, on the side where the amount of compression is maximum.
Let the upper position be B 1 , B 2 , B 3 , B 4 , outside the curve,
In other words, the position on the spring wire 1 on the side where the amount of compression is minimum on the spring wire 1 is A 1 , A 2 ,
Assuming A 3 and A 4 , this compression coil spring is wound at equal pitches, so in the free state shown in Fig. 4, ∠A 1 B 2 A 2 = ∠A 2 B 3 A 3 = ∠ A 3 B 4 A 4 = ∠B 1 A 1 B 2 = ∠B 2 A 2 B 3 = ∠B 3 A 3 B 4 = α, but in the compressed state shown in Fig. 5, ∠A 1 B 2 A 2 = ∠A 2 B 3 A 3 = ∠A 3 B 4 A 4 = β ∠B 1 A 1 B 2 = ∠B 2 A 2 B 3 = ∠B 3 A 3 B 4 = γ, then α >β>γ, and the positions A 1 , A 2 , A 2 on the spring wire 1,
The torsion angle α-γ at A 3 , A 4 is at position B 1 , B 2 ,
It is larger than the torsion angle α-β at B 3 and B 4 ,
The average shear stress caused by this torsional deformation is
The positions A 1 , A 2 , A 3 , and A 4 are larger than the positions B 1 , B 2 , B 3 , and B 4 . By the way, when a coil spring made by winding a spring wire with a circular cross section in a circle is expanded or contracted while keeping the center line of the coil straight, the spring wire will be twisted by a certain angle per unit length. However, since the arc on the inner circumference of the coil is shorter than the arc on the outer circumference, the shear strain is greater on the inner circumference of the coil than on the outer circumference, and the resulting shear stress is also greater on the inner circumference of the coil than on the outer circumference. Moreover, this tendency becomes more pronounced as the spring index, that is, the ratio D/d of the coil diameter D and the wire diameter d, decreases, and the maximum shear stress generated on the inner circumference of the spring wire becomes smaller. The ratio of the cross section to the average shear stress, that is, the relationship between the stress modification coefficient x and the spring index D/d is as shown in the graph of Figure 8. The maximum shear stress generated inside is approximately 1.1 of the average shear stress of the cross section.
However, when the spring index D/d is 4.0, it is approximately 1.4 times.

しかるに、本実施例の圧縮コイルばねは、第2
図に示すように、互いに向き合う曲率の小さい円
弧部分aと曲率の大きい円弧部分bとを曲線c,
cで滑らかに接続した平面形状をなすから、ばね
素線1が円形断面であると仮定した場合には、コ
イルの中心線X―Xを真直ぐに保つて伸縮させる
と、曲率の小さい円弧部分aではばね指数D/d
が大きくなつて応力修正係数xが小さく、曲率の
大きい円弧部分bではD/dが小さくなつてxが
大となるのであり、このため、コイルの内周に生
ずる最大剪断応力は曲率の小さい円弧部分aの方
が曲率の大きい円弧部分bより小となるのであ
る。
However, the compression coil spring of this embodiment has a second
As shown in the figure, a curve c represents a circular arc portion a with a small curvature and a circular arc portion b with a large curvature, which face each other.
Assuming that the spring wire 1 has a circular cross section, if the center line XX of the coil is kept straight and the coil is expanded and contracted, the circular arc portion a with a small curvature will form. Then the spring index D/d
becomes larger, the stress modification coefficient x becomes smaller, D/d becomes smaller and x becomes larger in arc portion b with large curvature. Therefore, the maximum shear stress generated on the inner circumference of the coil is Part a is smaller than arc part b, which has a larger curvature.

したがつて、先に説明したように、本実施例の
圧縮コイルばねをその中心線を彎曲させるように
圧縮した場合に、中心線X―X方向の撓み量の小
さい彎曲の外側の位置A1,A2,A3,A4に生ずる
平均剪断応力の方が撓み量の大きい彎曲の内側の
位置B1,B2,B3,B4に生ずる平均剪断応力より
大きいことを考え合わせると、ばね素線1が円形
断面であると仮定した場合には、コイルの中心線
X―Xを真直ぐに保つて伸縮する場合の応力修正
係数xが小さくなる曲率の小さい円弧部分aを、
中心線を彎曲させるように圧縮した場合に生ずる
平均剪断応力が大きくなる中心線X―X方向の撓
み量の小さい彎曲の外側の位置A1,A2,A3,A4
の側に配し、逆に、応力修正係数xが大きくなる
曲率の大きい円弧部分bを、平均剪断応力が小さ
くなる位置B1,B2,B3,B4側に配すると、コイ
ルの周方向におけるばね素線1の各断面に生ずる
最大剪断応力が均一化されるのである。
Therefore, as explained earlier, when the compression coil spring of this embodiment is compressed so that its center line is curved, the position A 1 on the outside of the curve where the amount of deflection in the center line XX direction is small is , A 2 , A 3 , A 4 is larger than the average shear stress occurring at positions B 1 , B 2 , B 3 , B 4 inside the curve where the amount of deflection is large. Assuming that the spring wire 1 has a circular cross section, the arc portion a with a small curvature that reduces the stress correction coefficient x when expanding and contracting while keeping the center line XX of the coil straight is
Positions A 1 , A 2 , A 3 , A 4 on the outside of the curve where the amount of deflection in the center line XX direction is small, where the average shear stress that occurs when the center line is compressed to curve is large.
On the other hand, if the circular arc portion b with a large curvature where the stress modification coefficient The maximum shear stress occurring in each cross section of the spring wire 1 in this direction is made uniform.

一方、ばね素線1の各断面においては、既述の
ように、コイルの内周側に生ずる剪断応力が外周
側より高く、高荷重が作用するとコイルの内周側
から亀裂が生じて破損するという問題があるが、
本実施例のように卵形断面のばね素線1を、その
断面の幅の狭い円弧部分イを内周側に向けて巻回
したコイルばねにおいては、特公昭27―3261号公
報に記載されているように、その捩り変形の中心
が外周側へ移動することにより内周側と外周側の
剪断応力が均一化されるのであつて、本実施例に
おいては、コイルの周方向におけるばね素線1の
各断面に生ずる最大剪断応力が均一化されるのに
加えて、ばね素線1の各断面内における内周側と
外周側の剪断応力が均一化されるため、コイルの
全周における剪断応力の最大値が低く抑えられる
のである。
On the other hand, in each cross section of the spring wire 1, as mentioned above, the shear stress generated on the inner circumferential side of the coil is higher than on the outer circumferential side, and when a high load is applied, cracks occur from the inner circumferential side of the coil and breakage occurs. There is a problem,
In a coil spring in which a spring wire 1 having an oval cross section is wound with the narrow circular arc portion A of the cross section facing the inner circumferential side as in this embodiment, it is described in Japanese Patent Publication No. 3261/1983. As shown in the figure, the shear stress on the inner and outer circumferential sides is equalized by moving the center of the torsional deformation toward the outer circumference. In addition to equalizing the maximum shear stress that occurs in each cross section of spring wire 1, the shear stress on the inner and outer circumferential sides of each cross section of spring wire 1 is also equalized, so that the shear stress on the entire circumference of the coil is equalized. This allows the maximum stress to be kept low.

次に、本発明を引張コイルばねに適用した実施
例を第6図及び第7図に基づいて説明すると、本
実施例のコイルばねも、上記実施例と同様に卵形
断面のばね素線1を第3図に示すように、互いに
向き合う曲率の小さい円弧部分aと曲率の大きい
円弧部分bとを曲線c,cで滑らかに接続した卵
形に、幅の狭い円弧部分イを内周側に向けて、等
ピツチで巻回したものであつて、自由状態におい
ては、第6図に示すように、コイルの中心線X―
Xが真直をなしており、この引張コイルばねを、
第7図に示すように、中心線X―Xが彎曲するよ
うに引張して使用する場合に、コイルの曲率の小
さい円弧部分aを中心線X―X方向の撓み量の小
さい側、すなわち、彎曲の内側に配すると、第6
図及び第7図において、 α′<β′<γ′ となつて、彎曲の内側の位置において捩り変形が
最大となり、ばね素線1に生ずる平均剪断応力も
最大となるのであるが、この位置にはコイルの曲
率の小さい円弧部分aが配されていて、ばね指数
D/dが大きいため、応力修正係数xが小さくな
るのに対し、彎曲の外側の位置においては捩り変
形が最小で平均剪断応力も最小であるが、ばね指
数D/dが小さく応力修正係数xが大となるので
あつて、コイルの周方向におけるばね素線1の各
断面に生ずる最大剪断応力が均一化され、さら
に、卵形断面のばね素線1の幅の狭い円弧部分が
内周側を向いているため、ばね素線1の内周側と
外周側の剪断応力も均一化され、ばね素線1の内
周側に生ずる剪断応力の最大値が著しく低く抑え
られるのである。
Next, an embodiment in which the present invention is applied to a tension coil spring will be described based on FIGS. As shown in Figure 3, an arc part a with a small curvature and an arc part b with a large curvature facing each other are smoothly connected by curves c and c to form an oval shape, with the narrow arc part a on the inner circumferential side. The center line of the coil is
X is straight, and this tension coil spring is
As shown in FIG. 7, when the coil is tensioned so that the center line XX is curved, the circular arc portion a of the coil with a small curvature is set to the side where the amount of deflection in the direction of the center line XX is small, that is, If placed inside the curve, the 6th
In Fig. 7 and Fig. 7, α'<β'<γ', and the torsional deformation is maximum at the position inside the curve, and the average shear stress generated in the spring wire 1 is also maximum, but at this position The coil has a circular arc portion a with a small curvature, and the spring index D/d is large, so the stress modification coefficient Although the stress is also minimum, the spring index D/d is small and the stress modification coefficient x is large, so that the maximum shear stress occurring in each cross section of the spring wire 1 in the circumferential direction of the coil is equalized, and further, Since the narrow arc portion of the spring wire 1 with an oval cross section faces toward the inner circumference, the shear stress on the inner and outer circumferential sides of the spring wire 1 is equalized, and the inner circumference of the spring wire 1 is The maximum value of the shear stress generated on the sides is kept extremely low.

なお、ばね素線1の断面形状を第9図に示すよ
うに、互いに向き合う幅の狭い直線部分イと幅の
広い直線部分ロを斜辺ハ,ハで結んだ台形とし、
幅の狭い直線部分イを内周側に向けて巻回した場
合においても、上記実施例と同様に捩り変形の中
心が外周側へ移動し、内外周の剪断応力が均一化
されてその最大値が低く抑えられる。
In addition, as shown in FIG. 9, the cross-sectional shape of the spring wire 1 is a trapezoid, with a narrow straight part A and a wide straight part B facing each other connected by hypotenuses C and C.
Even when the narrow straight portion A is wound toward the inner circumference, the center of torsional deformation moves toward the outer circumference, as in the above embodiment, and the shear stress on the inner and outer circumferences is equalized and reaches its maximum value. can be kept low.

また、本発明は、自由状態においてコイルの中
心線が彎曲して成形されているコイルばねを、そ
の中心線の曲率が変化するように圧縮または引張
して使用する場合にも適用し得るのであつて、こ
のような場合にも、中心線方向の撓み量の小さい
側の平均剪断応力が最大となるのであり、この位
置に応力修正係数xが小さくなる曲率の小さい円
弧部分を配することにより等応力化を図ることが
できるのである。
The present invention can also be applied to the case where a coil spring, which is formed so that the center line of the coil is curved in a free state, is compressed or stretched so that the curvature of the center line changes. Therefore, even in such a case, the average shear stress on the side where the amount of deflection in the center line direction is small is the maximum, and by placing an arc portion with a small curvature where the stress modification coefficient x is small at this position, it is possible to It is possible to create stress.

発明の構成及び効果 上記実施例によつて具体的に説明したように、
本発明のコイルばねは、使用状態においてコイル
の中心線が自由状態と異なる曲率に変形するコイ
ルばねであつて、一側から他側へ向かつて幅が
徐々に減少する断面形状のばね素線を、その断面
の幅の狭い側を内周に向けて、互いに向き合う曲
率の小さい円弧部分と曲率の大きい円弧部分とを
滑らかに接続した形状に巻回してなり、曲率の小
さい円弧部分を中心線方向の撓み量の小さい側に
配置して使用することを要旨とするものであつ
て、平均剪断応力が大きくなる撓み量の小さい側
に応力修正係数が小さくなる曲率の小さい円弧部
分を配置して使用するようにしたから、コイルの
周方向の各断面においてばね素線の内周に生ずる
最大剪断応力を均一化することができ、さらに、
ばね素線の断面形状の幅の狭い側を内周側に向け
て巻回したから、素線の内外周の応力を均一化す
ることができてばね素線に生ずる剪断応力の最大
値を著しく低く抑えることができ、ばね素線の径
を小さくして素材の節減及び軽量化を達成し得る
効果を奏する。
Structure and Effects of the Invention As specifically explained in the above embodiments,
The coil spring of the present invention is a coil spring in which the center line of the coil deforms to a curvature different from that in the free state when in use, and has a spring wire having a cross-sectional shape whose width gradually decreases from one side to the other. , with the narrow side of the cross section facing the inner circumference, and are wound in a shape that smoothly connects the circular arc part with a small curvature and the circular arc part with a large curvature facing each other, with the circular arc part with a small curvature facing towards the center line. The purpose is to place the circular arc part with a small curvature, where the stress modification coefficient is small, on the side where the amount of deflection is small, where the average shear stress is large, and use it. This makes it possible to equalize the maximum shear stress occurring on the inner periphery of the spring wire in each section in the circumferential direction of the coil, and furthermore,
Since the narrow side of the cross-sectional shape of the spring wire is wound toward the inner circumference, the stress on the inner and outer circumferences of the wire can be equalized, and the maximum value of shear stress occurring in the spring wire can be significantly reduced. This has the effect of reducing the diameter of the spring wire and reducing the amount of material and weight.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を圧縮コイルばねに適用した実
施例ばね素線の拡大断面図、第2図はその部分斜
視図、第3図はその平面図、第4図はその自由状
態の縦断面図、第5図は使用状態の縦断面図、第
6図は本発明を引張コイルばねに適用した実施例
の自由状態の部分縦断面図、第7図はその使用状
態の部分縦断面図、第8図はばね指数と応力修正
係数の関係を示すグラフ、第9図はばね素線の断
面形状の変形例を示す拡大断面図である。 1:ばね素線、a:(コイルの)曲率の小さい
円弧部分、b:曲率の大きい円弧部分、イ:(ば
ね素線の断面形状の)幅の狭い部分、ロ:幅の広
い部分。
Fig. 1 is an enlarged cross-sectional view of a spring wire according to an embodiment of the present invention applied to a compression coil spring, Fig. 2 is a partial perspective view thereof, Fig. 3 is a plan view thereof, and Fig. 4 is a longitudinal cross-section of the spring wire in its free state. Figure 5 is a vertical sectional view in a used state, Figure 6 is a partial longitudinal sectional view in a free state of an embodiment in which the present invention is applied to a tension coil spring, and Figure 7 is a partial vertical sectional view in a used state. FIG. 8 is a graph showing the relationship between the spring index and the stress modification coefficient, and FIG. 9 is an enlarged sectional view showing a modification of the cross-sectional shape of the spring wire. 1: Spring wire, a: Arc part with small curvature (of the coil), b: Arc part with large curvature, A: Narrow part (of the cross-sectional shape of the spring wire), B: Wide part.

Claims (1)

【特許請求の範囲】[Claims] 1 使用状態においてコイルの中心線が自由状態
と異なる曲率に変形するコイルばねであつて、一
側から他側へ向かつて幅が徐々に減少する断面形
状のばね素線を、その断面の幅の狭い側を内周に
向けて、互いに向き合う曲率の小さい円弧部分と
曲率の大きい円弧部分とを滑らかに接続した形状
に巻回してなり、曲率の小さい円弧部分を中心線
方向の撓み量の小さい側に配置して使用すること
を特徴とするコイルばね。
1 A coil spring in which the center line of the coil deforms to a curvature different from that in the free state when in use, and whose cross-sectional shape gradually decreases in width from one side to the other, is It is wound in a shape in which a circular arc part with a small curvature and a circular arc part with a large curvature that face each other are smoothly connected with the narrow side facing the inner circumference, and the circular arc part with a small curvature is the side with a small amount of deflection in the center line direction. A coil spring characterized by being used by being placed in.
JP9523384A 1984-05-11 1984-05-11 Coil spring Granted JPS60241542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9523384A JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9523384A JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Publications (2)

Publication Number Publication Date
JPS60241542A JPS60241542A (en) 1985-11-30
JPH0127290B2 true JPH0127290B2 (en) 1989-05-29

Family

ID=14132040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9523384A Granted JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Country Status (1)

Country Link
JP (1) JPS60241542A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320330A (en) * 1988-06-21 1989-12-26 Murata Hatsujo Kk Coil spring for damper
FR2678035B1 (en) * 1991-06-20 1995-04-14 Valeo SPRING SPRING, ESPECIALLY FOR A TORSION SHOCK ABSORBER.

Also Published As

Publication number Publication date
JPS60241542A (en) 1985-11-30

Similar Documents

Publication Publication Date Title
AU626188B2 (en) Coiled spring
RU2194627C2 (en) Suspension of vehicle wheels using spring in combination with flexible holder for changing rigidity curve
US20020125623A1 (en) Spring having coils of varying diameters
JP2000356234A (en) Torsion spring
US4817921A (en) Composite spring
JP5268261B2 (en) Coil spring
US4377280A (en) Cylindrical helical compression spring
JPH0520614B2 (en)
JPH0160705B2 (en)
JPH0127290B2 (en)
JPS60237235A (en) Coil spring
JP3718305B2 (en) Radial tires for vehicles
JP4212311B2 (en) Suspension coil spring
JPH045112A (en) Low rolling resistance tire
JPS6325217B2 (en)
JPS647249B2 (en)
JP2005226673A (en) Coil spring and suspension system
JPS6069337A (en) Coiled spring of strand having deformed section
JP2750457B2 (en) Metal bellows tube
JPS5945857B2 (en) coil spring
GB2411709A (en) Closed end type coiled spring with reduced initial deflection
JPS61105317A (en) Coiled spring
JPH07117428A (en) Link member of vehicle suspension
JPS5832033Y2 (en) Deformed compression coil spring with linear spring characteristics
JPS6165925A (en) U-shape leaf spring for cab suspension