JPS60241542A - Coil spring - Google Patents

Coil spring

Info

Publication number
JPS60241542A
JPS60241542A JP9523384A JP9523384A JPS60241542A JP S60241542 A JPS60241542 A JP S60241542A JP 9523384 A JP9523384 A JP 9523384A JP 9523384 A JP9523384 A JP 9523384A JP S60241542 A JPS60241542 A JP S60241542A
Authority
JP
Japan
Prior art keywords
coil
spring
circular
curvature
arc part
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9523384A
Other languages
Japanese (ja)
Other versions
JPH0127290B2 (en
Inventor
Tsuneo Mizuno
水野 恒男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Hatsujo KK
Chuo Spring Co Ltd
Original Assignee
Chuo Hatsujo KK
Chuo Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Hatsujo KK, Chuo Spring Co Ltd filed Critical Chuo Hatsujo KK
Priority to JP9523384A priority Critical patent/JPS60241542A/en
Publication of JPS60241542A publication Critical patent/JPS60241542A/en
Publication of JPH0127290B2 publication Critical patent/JPH0127290B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/02Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
    • F16F1/04Wound springs
    • F16F1/042Wound springs characterised by the cross-section of the wire

Abstract

PURPOSE:To obtain a lightweight coil spring by making uniform the shear stress generated on a strand in the peripheral direction of a coil. CONSTITUTION:A spring strand 1 is formed by smoothly connecting a circular- arc part (a) having a smaller curvature and a circular-arc part (b) having a larger curvature by curves (c) and (c) and has a circular section. When said strand 1 is extended and contracted, keeping straight the center line X-X of a coil, the spring constant of the circular-arc part (a) having a smaller curvature increases and the stress correction coefficient reduces, and the spring constant of the circular-arc part (b) having a large curvature reduces, and the stress correction coefficient increases. Therefore, the max. shear stress generated on the inner periphery of the coil reduces on the circular-arc part (a) in comparison with the circular-arc part (b).

Description

【発明の詳細な説明】 発明の目的 産業上の利用分野 本発明は、使用状態においてコイルの中心線が自由状態
と異なる曲率に変形するコイルばねに関し、圧縮コイル
ばねと引張コイルばねの両方に適用し得るものである。
DETAILED DESCRIPTION OF THE INVENTION Object of the Invention Industrial Field of Application The present invention relates to a coil spring in which the center line of the coil deforms to a curvature different from that in the free state in the used state, and is applicable to both compression coil springs and tension coil springs. It is possible.

発明が解決しようとする問題点 例えば、独立懸架式の車輌懸架装置にシャシばねとして
使用されるコイルばねは、車体と車軸の相対的な上下運
動によりコントロールアームが揺動運動するのに伴って
アコーデオンのようにコイルの中心線が彎曲しつつ伸縮
するのであるが、このような場合には、コイルの周方向
において素線に生ずる剪断応力が不均一となって部分的
に過大な応力が生ずるため、コイルの中心線を真直ぐに
保って伸縮する場合に比べて素線径を太くする必要があ
って重量が増大し、車輌の軽量化に反する結果となって
いる。
Problems to be Solved by the Invention For example, a coil spring used as a chassis spring in an independent vehicle suspension system is an accordion spring that is used as a chassis spring when a control arm swings due to the relative vertical movement of the vehicle body and axle. The center line of the coil expands and contracts while curving, as shown in Figure 2. In such cases, the shear stress generated in the strands in the circumferential direction of the coil becomes uneven, resulting in excessive stress in some parts. Compared to the case where the coil expands and contracts while keeping the center line of the coil straight, it is necessary to increase the diameter of the strands, resulting in an increase in weight, which is contrary to the goal of reducing the weight of the vehicle.

本発明は、このように、使用状態においてコイルの中心
線が自由状態と異なる曲率に変形するコイルばわにおい
て、コイルの周方向において素線に生ずる剪断応力を均
一化し、軽量化を可能にすることを目的とするものであ
る。
As described above, the present invention makes it possible to equalize the shear stress generated in the strands in the circumferential direction of the coil in a coil whose center line deforms to a curvature different from that in the free state in the use state, thereby making it possible to reduce the weight. The purpose is to

実施例 本発明を圧縮コイルばねに適用した一実施例を第1図乃
至第5図に基づいて説明すると1本実施例の圧縮コイル
ばねは、第1図に拡大して示すように、互いに向き合う
幅の狭い円弧部分イと幅の広い円弧部分口とを曲線ハ、
ハで滑らかに接続した卵形断面のばね素線lを、第2図
及び第4図に示すように、真直ぐな中心線X−Xの周り
に、幅の狭い円弧部分イを内周側に向けて、等ピッチで
コイル形に巻回したものであるが、そのコイルの平面形
状は、第3図に示すように、互いに向き合う曲率の小さ
い円弧部分aと曲率の大きい円弧部分すとを曲Jtlc
、cで滑らかに接続した卵形をなす。
Embodiment An embodiment in which the present invention is applied to compression coil springs will be explained based on FIGS. The narrow arc part A and the wide arc part opening are curved C,
As shown in Figs. 2 and 4, the spring wire l with an egg-shaped cross section connected smoothly with C is placed around the straight center line The planar shape of the coil is as shown in Fig. 3, where an arc portion a with a small curvature and an arc portion with a large curvature face each other. Jtlc
, c form a smoothly connected oval shape.

この圧縮コイルばねを、第5図に示すように、コイルの
中心線X−Xが彎曲するように圧縮して使用する場合に
、コイルの曲率の小さい円弧部分aを中心線X−X方向
の撓み量の小さい側、すなわち、彎曲の外側に配するこ
とにより、コイルの周方向においてばね素線1に生ずる
剪断応力が均一化されるのである。 その理由を第4図
及び第5図に基づいて説明する。
When this compression coil spring is compressed and used so that the center line XX of the coil is curved, as shown in FIG. By arranging it on the side where the amount of deflection is small, that is, on the outside of the curve, the shear stress generated in the spring wire 1 in the circumferential direction of the coil is made uniform. The reason for this will be explained based on FIGS. 4 and 5.

第5図に示すようにコイルの中心線X−Xが彎曲して圧
縮される場合における彎曲の内側、すなわち、圧縮量が
最大となる側におけるばね素線1上の位置をB1、B2
、B3、旧とし、彎曲の外側。
As shown in FIG. 5, when the center line XX of the coil is curved and compressed, the positions on the spring wire 1 on the inside of the curve, that is, on the side where the amount of compression is maximum, are B1 and B2.
, B3, old and outside of the curve.

すなわち、ばね素gA1上において圧縮量が最小となる
側におけるばね素線1上の位置をA1、Az、A3、A
4とすると、この圧縮コイルばねは等ピッチで巻回され
ているから、第4図に示す自由状態においては、 /A+ Bz Az =lAz B3 A3 =lA3
Bq A+=/B+ AIBz=/BλAzBs =l
B3A3 B+=αであるが、第5図に示す圧縮状態に
おいては、/A+BzAλ=/AλB3 A3 = /
Ax B+ A÷=β/BIAIBz=/BzAzB3
=/B5A3B+=yとすると、 α〉β〉γ となるのであって、ばね素線1上の位置A1.Az、A
3、A+における捩り角度α−γが位置B+、BZ、B
3.B+における捩り角度α−βより大となり。
That is, the position on the spring element gA1 on the side where the amount of compression is the smallest is A1, Az, A3, A
4, this compression coil spring is wound at the same pitch, so in the free state shown in Fig. 4, /A+ Bz Az = lAz B3 A3 = lA3
Bq A+=/B+ AIBz=/BλAzBs =l
B3A3 B+=α, but in the compressed state shown in FIG. 5, /A+BzAλ=/AλB3 A3 = /
Ax B+ A÷=β/BIAIBz=/BzAzB3
If =/B5A3B+=y, then α>β>γ, and the position A1 on the spring wire 1. Az, A
3. The torsion angle α-γ at A+ is at positions B+, BZ, B
3. It is larger than the torsion angle α-β at B+.

この捩り変形によって生ずる平均剪断応力は位置A、 
、 A、、 A3、A4の方が位MB+、 Bz、 B
J、B+より大となる。 ところで、円形断面のばね素
線を円形に巻回したコイルばねを、そのコイルの中心線
を真直ぐに保って伸縮させた場合にばね素線は単位長さ
当り一定角度ずつ捩り変形を生ずるのであるが、コイル
の内周の弧は外周の弧より短かいため、コイルの内周が
外周より剪断ひずみが大きぐ、これに伴って生ずる剪断
応力もコイルの内周の方が外周より大となるのであり、
しかも、この傾向は、ばね指数、すなわち、コイル径り
と素線径dの比D/dが小さくなるのに伴って著しくな
るのであって、ばね素線の内周に生ずる最大剪断応力の
その断面の平均剪断応力に対する比。
The average shear stress caused by this torsional deformation is at position A,
, A,, A3, A4 are better MB+, Bz, B
J, larger than B+. By the way, when a coil spring made by winding a spring wire with a circular cross section in a circle is expanded or contracted while keeping the center line of the coil straight, the spring wire will be twisted by a certain angle per unit length. However, since the arc on the inner circumference of the coil is shorter than the arc on the outer circumference, the shear strain is greater on the inner circumference of the coil than on the outer circumference, and the resulting shear stress is also greater on the inner circumference of the coil than on the outer circumference. It is,
Moreover, this tendency becomes more pronounced as the spring index, that is, the ratio D/d of the coil diameter to the wire diameter d, decreases, and the maximum shear stress generated on the inner circumference of the spring wire becomes smaller. The ratio of the cross-section to the average shear stress.

すなわち、応力修正係数にとばね指数D/dとの関係は
第8図のグラフに示す通りであり、例えば、ばね指数D
/dが12.0の場合はコイルの内側に生ずる最大剪断
応力はその断面の平均剪断応力の約1.1倍であるのに
対し、ばね指数D/dが4.0の場合は約1.4倍とな
るのである。
That is, the relationship between the stress correction coefficient and the spring index D/d is as shown in the graph of FIG.
When /d is 12.0, the maximum shear stress generated inside the coil is approximately 1.1 times the average shear stress of its cross section, whereas when the spring index D/d is 4.0, it is approximately 1. .4 times.

しかるに、本実施例の圧縮コイルばねは、第2図に示す
ように、互いに向き合う曲率の小さい円弧部分aと曲率
の大きい円弧部分すとを曲線C1Cで滑らかに接続した
平面形状をなすから、ばね素線1が円形断面であると仮
定した場合には、コイルの中心線X−Xを真直ぐに保っ
て伸縮させると、曲率の小さい円弧部分aではばね指数
D/dが大きくなって応力修正係数にが小さく9曲率の
大きい円弧部分b″Q、はD/dが小さくなってにが大
となるのであり、このため、コイルの内周に生ずる最大
剪断応力は曲率の小さい円弧部分aの方が曲率の大きい
円弧部分すより小となるのである。
However, as shown in FIG. 2, the compression coil spring of this embodiment has a planar shape in which a circular arc portion a with a small curvature and a circular arc portion with a large curvature facing each other are smoothly connected by a curve C1C. Assuming that the strand 1 has a circular cross section, if the coil is expanded and contracted while keeping the center line In the arc portion b''Q, where the curvature is small and the curvature is large, D/d is small and the ni is large. Therefore, the maximum shear stress generated on the inner circumference of the coil is greater than the arc portion a where the curvature is small. is smaller than the arc portion with large curvature.

したがって、先に説明したように1本実施例の圧縮コイ
ルばねをその中心線を彎曲させるように圧縮した場合に
、中心線X−X方向の撓み量の小さい彎曲の外側の位置
A1、Ax、 A3. A4に生ずる平均剪断応力の方
が撓み量の大きい彎曲の内側の位置Bl、BZ、B3.
 B+に生ずる平均剪断応力より大きいことを考え合わ
せると、ばね素線Iが円形断面であると仮定した場合に
は、コイルの中心線X−Xを真直ぐに保って伸縮する場
合の応力修正係数にが小さくなる曲率の小さい円弧部分
aを、中心線を彎曲させるように圧縮した場合に生ずる
平均剪断応力が大きくなる中心線X−X方向の撓み量の
小さい彎曲の外側の位1iA+、Aλ、A3、 A+の
側に配し、逆に、応力修正係数にが大きくなる曲率の大
きい円弧部分すを、平均剪断応力がitSさくなる位I
B+、Bz、 B3.84mに配すると、コイルの周方
向におけるばね素線lの各断面に生ずる最大剪断応力が
均一化されるのである。
Therefore, as explained earlier, when the compression coil spring of this embodiment is compressed so that its center line is curved, the positions A1, Ax, outside the curve where the amount of deflection in the direction of the center line XX is small, A3. Positions Bl, BZ, B3 .
Considering that the stress is larger than the average shear stress generated in B+, assuming that the spring wire I has a circular cross section, the stress correction factor when expanding and contracting while keeping the center line X-X of the coil straight is 1iA+, Aλ, A3 , Place it on the A+ side, and conversely, place the circular arc part with a large curvature where the stress correction coefficient becomes large, on the side where the average shear stress is small.
By arranging them at B+, Bz, and B3.84m, the maximum shear stress generated in each cross section of the spring wire l in the circumferential direction of the coil is made uniform.

一方、ばね素線1の各断面においては、既述のように、
コイルの内周側に生ずる剪断応力が外周側より高く、高
荷重が作用するとコイルの内周側から亀裂が生じて破損
するという問題があるが。
On the other hand, in each cross section of the spring wire 1, as already mentioned,
However, there is a problem in that the shear stress generated on the inner circumferential side of the coil is higher than on the outer circumferential side, and when a high load is applied, cracks occur from the inner circumferential side of the coil and breakage occurs.

本実施例のように卵形断面のばね素線1を、その断面の
幅の狭い円弧部分イを内周側に向けて巻回したコイルば
ねにおいては、特公昭27−3261号公報に記載され
ているように、その捩り変形の中心が外周側へ移動する
ことにより内周側と外周側の剪断応力が均一化されるの
であって、本実施例においては、コイルの周方向におけ
るばね素線1の各断面に生ずる最大剪断応力が均一化さ
れるのに加えて、ばね素線1の各断面内における内周側
と外周側の剪断応力が均一化されるため、コイルの全周
における剪断応力の最大値が低く抑えられるのである。
A coil spring in which a spring wire 1 having an oval cross section is wound with the narrow circular arc portion A of the cross section facing the inner circumferential side as in this embodiment is described in Japanese Patent Publication No. Sho 27-3261. As shown in FIG. In addition to equalizing the maximum shear stress that occurs in each cross section of spring wire 1, the shear stress on the inner and outer circumferential sides in each cross section of spring wire 1 is also equalized, so that the shear around the entire circumference of the coil is equalized. This allows the maximum stress to be kept low.

次に1本発明を引張コイルばねに適用した実施例を第6
図及び第7図に基づいて説明すると9本実施例のコイル
ばねも、上記実施例と同様に卵形断面のばね素@iを第
3図に示すように、互いに向き合う曲率の小さい円弧部
分aと曲率の大きい円弧部分すとを曲線C,Cで滑らか
に接続した卵形に1幅の狭い円弧部分イを内周側に向け
て9等ピッチで巻回したものであって、自由状態におい
ては、第6図に示すように、コイルの中心線X−Xが真
直をなしており、この引張コイルばねを。
Next, a sixth example in which the present invention is applied to a tension coil spring will be described.
9 and 7, the coil spring of this embodiment also has a spring element @i with an oval cross section, as in the above embodiment, as shown in FIG. It is an egg shape in which the circular arc part A with a large curvature is smoothly connected by curves C and C, and one narrow circular arc part A is wound toward the inner circumference at 9 equal pitches, and in a free state. As shown in Fig. 6, this is a tension coil spring in which the center line XX of the coil is straight.

第7図に示すように、中心線X−Xが彎曲するように引
張して使用する場合に、コイルの曲率の小さい円弧部分
aを中心@X−X方向の撓み量の小さい側、すなわち、
彎曲の内側に配すると、第6図及び第7図において、 β′〈β′〈γ′ となって、彎曲の内側の位置において捩り変形が最大と
なり、ばね素線1に生ずる平均剪断応力も最大となるの
であるが、この位置にはコイルの曲率の小さい円弧部分
aが配されていて、ばね指数D/dが大きいため、応力
修正係数χが小さくなるのに対し、彎曲の外側の位置に
おいては捩り変形が最/IXで平均剪断応力も最ホであ
るが、ばね指数D/dが小さく応力修正係数にが大とな
るのであって、コイルの周方向におけるばね素線lの各
断面に生ずる最大剪断応力が均一化され、さらに、卵形
断面のばね素vAlの幅の狭い円弧部分が内周側を向い
ているため、ばね素線1の内周側と外周−側の剪断応力
も均一化され、ばね素線1の内周側に生ずる剪断応力の
最大値が著しく低く抑えられるのである。
As shown in FIG. 7, when the coil is tensioned so that the center line XX is curved, the circular arc portion a of the coil with a small curvature is the center @ the side with a small amount of deflection in the XX direction, that is,
If it is placed inside the curve, β'<β'<γ' as shown in FIGS. However, since the arc portion a of the coil with a small curvature is arranged at this position and the spring index D/d is large, the stress modification coefficient χ becomes small, whereas the position outside the curvature , the torsional deformation is the highest /IX and the average shear stress is the highest, but the spring index D / d is small and the stress modification coefficient is large, and each cross section of the spring wire l in the circumferential direction of the coil Furthermore, since the narrow arc portion of the spring element vAl with an oval cross section faces the inner circumference side, the shear stress on the inner circumference side and the outer circumference side of the spring element wire 1 is reduced. Also, the maximum value of the shear stress generated on the inner peripheral side of the spring wire 1 can be suppressed to a significantly low value.

なお、ばね素線1の断面形状を第9図に示すように、互
いに向き合う幅の狭い直線部分イと幅の広い直線部分口
を斜辺ハ、ハで結んだ台形とし、幅の狭い直線部分イを
内周側に向けて巻回した場合においても、上記実施例と
同様に捩り変形の中心が外周側へ移動し、内外周の剪断
応力が均一化されてその最大値が低く抑えられる。
As shown in Fig. 9, the cross-sectional shape of the spring wire 1 is a trapezoid with the narrow straight part A and the wide straight part facing each other connected by hypotenuses C and C. Even when the wire is wound toward the inner circumference, the center of torsional deformation moves toward the outer circumference as in the above embodiment, and the shear stress on the inner and outer circumferences is made uniform and its maximum value is kept low.

また、本発明は、自由状態においてコイルの中心線が彎
曲して成形されているコイルばねを、その中心線の曲率
が変化するように圧縮または引張して使用する場合にも
適用し得るのであって、このような場合にも、中心線方
向の撓み量の小さい側の平均剪断応力が最大となるので
あり、この位置に応力修正係数にが小さくなる曲率の小
さい円弧部分を配することにより等応力化を図ることが
できるのである。
Furthermore, the present invention can also be applied to the case where a coil spring, which is formed so that the center line of the coil is curved in the free state, is compressed or tensioned so that the curvature of the center line changes. Therefore, even in such a case, the average shear stress on the side where the amount of deflection in the center line direction is small is the maximum, and by placing an arc portion with a small curvature that reduces the stress correction coefficient at this position, it is possible to It is possible to create stress.

発明の構成及び効果 上記実施例によって具体的に説明したように、本発明の
コイルばねは、使用状態においてコイルの中心線が自由
状態と異なる曲率に変形するコイルばねであって、−側
から他側へ向かって幅が徐々に減少する断面形状のばね
素線を、その断面の幅の狭い側を内周に向けて、互いに
向き合う曲率の小さい円弧部分と曲率の大きい円弧部分
とを滑らかに接続した形状に巻回してなり、曲率の小さ
い円弧部分裂中心線方向の撓み亙の小さい側に配置して
使用することを要旨とするものであって、平均剪断応力
が人さくなる撓み爪の小さい側に応力修正係数が小さく
なる曲率の小さい円弧部分を配置して使用するようにし
たから、コイルの周方向の各断面においてばね素線の内
周に生ずる最大剪断応力を均一化することができ、さら
に、ばね素線の断面形状の幅の狭い側を内周側に向けて
巻回したから、素線の内外周の応力を均一化することが
できてばね素線に生ずる剪断応力の最大値を著しく低く
抑えることができ、ばね素線の径を小さくして素材の節
減及び軽量化を達成し得る効果を奏する。
Structure and Effects of the Invention As specifically explained in the above embodiments, the coil spring of the present invention is a coil spring in which the center line of the coil deforms to a curvature different from that in the free state in the use state, A spring element wire with a cross-sectional shape that gradually decreases in width toward the side, with the narrow side of the cross-section facing the inner circumference, smoothly connects the circular arc part with a small curvature and the circular arc part with a large curvature that face each other. It is designed to be wound into a shape with a small curvature and placed on the side with a small deflection in the direction of the splitting centerline of the arcuate part, and has a small deflection claw where the average shear stress is small. Since the circular arc portion with a small curvature where the stress modification coefficient is small is placed on the side, the maximum shear stress generated on the inner periphery of the spring wire can be made uniform in each cross section in the circumferential direction of the coil. Furthermore, since the narrow side of the cross-sectional shape of the spring wire is wound toward the inner circumference, the stress on the inner and outer circumferences of the wire can be equalized, and the maximum shear stress generated in the spring wire can be The value can be kept extremely low, and the diameter of the spring wire can be reduced to achieve the effect of saving materials and reducing weight.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を圧縮コイルばねに適用した実施例ばね
素線の拡大断面図、第2図はその部分斜視図、第3図は
その平面図、第4図はその自由状態の縦断面図、第5図
は使用状態の縦断面図、第6図は本発明を引張コイルば
ねに適用した実施例の自由状態の部分縦断面図、第7図
はその使用状態の部分縦断面図、第8図はばね指数と応
力修正係数の関係を示すグラフ、第9図はばね素線の断
面形状の変形例を示す拡大断面図である。 1;ばね素fiat(コイルの)曲率の小さい円弧部分
 b:曲率の大きい円弧部分 イ:(ばね素線の断面形
状の)幅の狭い部分 ロ二幅の広い部分 出願人 中央発條株式会社 代理人 弁理士 野 口 宏 寡2図 第1回
Fig. 1 is an enlarged cross-sectional view of an example spring wire in which the present invention is applied to a compression coil spring, Fig. 2 is a partial perspective view thereof, Fig. 3 is a plan view thereof, and Fig. 4 is a vertical cross-section of the spring wire in its free state. Figure 5 is a vertical sectional view in a used state, Figure 6 is a partial longitudinal sectional view in a free state of an embodiment in which the present invention is applied to a tension coil spring, and Figure 7 is a partial vertical sectional view in a used state. FIG. 8 is a graph showing the relationship between the spring index and the stress modification coefficient, and FIG. 9 is an enlarged sectional view showing a modification of the cross-sectional shape of the spring wire. 1: Arc part with small curvature (of the spring element fiat (coil)) b: Arc part with large curvature A: Narrow part (of the cross-sectional shape of the spring wire) ii) Wide part Applicant: Agent for Chuo Spring Co., Ltd. Person Patent Attorney Hiroki Noguchi Figure 2 Part 1

Claims (1)

【特許請求の範囲】[Claims] 使用状態においてコイルの中心線が自由状態と異なる曲
率に変形するコイルばねであって、−側から他側へ向か
って幅が徐々に減少する断面形状のばね素線を、その断
面の幅の狭い側を内周に向けて、互°いに向き合う曲率
の小さい円弧部分と曲率の大きい円弧部分とを滑らかに
接続した形状に巻回してなり1曲率の小さい円弧部分を
中心線方向の撓み量の小さい側に配置して使用すること
を特徴とするコイルばね
A coil spring in which the center line of the coil deforms to a curvature different from that in the free state when in use, and whose cross-sectional shape gradually decreases from the negative side to the other side, is called a coil spring whose cross-sectional width is narrow. With the side facing the inner circumference, the circular arc portion with a small curvature and the circular arc portion with a large curvature that face each other are wound in a shape that smoothly connects them. A coil spring characterized by being used by placing it on the smaller side.
JP9523384A 1984-05-11 1984-05-11 Coil spring Granted JPS60241542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9523384A JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9523384A JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Publications (2)

Publication Number Publication Date
JPS60241542A true JPS60241542A (en) 1985-11-30
JPH0127290B2 JPH0127290B2 (en) 1989-05-29

Family

ID=14132040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9523384A Granted JPS60241542A (en) 1984-05-11 1984-05-11 Coil spring

Country Status (1)

Country Link
JP (1) JPS60241542A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320330A (en) * 1988-06-21 1989-12-26 Murata Hatsujo Kk Coil spring for damper
FR2678035A1 (en) * 1991-06-20 1992-12-24 Valeo SPRING SPRING, ESPECIALLY FOR A TORSION SHOCK ABSORBER.

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01320330A (en) * 1988-06-21 1989-12-26 Murata Hatsujo Kk Coil spring for damper
FR2678035A1 (en) * 1991-06-20 1992-12-24 Valeo SPRING SPRING, ESPECIALLY FOR A TORSION SHOCK ABSORBER.
US5259599A (en) * 1991-06-20 1993-11-09 Valeo Coil spring, in particular for a torsion damper

Also Published As

Publication number Publication date
JPH0127290B2 (en) 1989-05-29

Similar Documents

Publication Publication Date Title
US4735403A (en) Wire for coiled spring
JP3258004B2 (en) Aneurysm clip using torsion spring
JP5268261B2 (en) Coil spring
US4377280A (en) Cylindrical helical compression spring
US4627232A (en) Link chain
JPS60241542A (en) Coil spring
JPH0160705B2 (en)
JPS60237235A (en) Coil spring
US20040164472A1 (en) Torsion or spiral spring made of single rods
JPS6069337A (en) Coiled spring of strand having deformed section
JPS647249B2 (en)
JPS60184735A (en) Torsion bar
JPS61105317A (en) Coiled spring
JP2750457B2 (en) Metal bellows tube
JPH07117428A (en) Link member of vehicle suspension
JPS6249037A (en) Composite spring for high rigid elastomer and metallic coil spring
JPS6165925A (en) U-shape leaf spring for cab suspension
JP2815097B2 (en) Radial tires for heavy loads
JP2811186B2 (en) Compression transformation type metal seal member
JPH06173986A (en) Leaf spring for vehicle suspension device
JPH0217741B2 (en)
JPS5832033Y2 (en) Deformed compression coil spring with linear spring characteristics
JPS5838657B2 (en) taper coil spring
JPH0454396Y2 (en)
JPS582647Y2 (en) radial tires