JPH01272181A - Manufacture of protective film for protecting end face of semiconductor laser - Google Patents

Manufacture of protective film for protecting end face of semiconductor laser

Info

Publication number
JPH01272181A
JPH01272181A JP10176788A JP10176788A JPH01272181A JP H01272181 A JPH01272181 A JP H01272181A JP 10176788 A JP10176788 A JP 10176788A JP 10176788 A JP10176788 A JP 10176788A JP H01272181 A JPH01272181 A JP H01272181A
Authority
JP
Japan
Prior art keywords
semiconductor laser
monitoring
reflectance
face
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10176788A
Other languages
Japanese (ja)
Inventor
Takashi Takamura
高村 孝士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10176788A priority Critical patent/JPH01272181A/en
Publication of JPH01272181A publication Critical patent/JPH01272181A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a method of monitoring reflectance directly by using a semiconductor laser oscillating at a wavelength similar to that of a semiconductor laser to be monitored as a monitoring light source. CONSTITUTION:An active layer is formed of GaAs, and Al2O3 is vapor-deposited on the end face of a semiconductor laser 104 oscillating at a wavelength of 870nm and on a GaAs substrate 105 for monitoring. For monitoring, a semiconductor laser oscillating at 870nm is used in constant optical output operation. An optical system 107 is used for making the laser beam parallel with the optical axis, which are projected onto the monitoring GaAs substrate 105, and the light reflected from the substrate 105 is received by a monitoring photodiode 108. Reflectance of the GaAs coated with Al2O3 can be controlled between 40% and 3% by altering the thickness of the Al2O3 film.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は半導体レーザの端面保護膜の反射率制御法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the reflectance of a facet protection film of a semiconductor laser.

[従来の技術] 従来、半導体レーザの端面保護膜の反射率の監視法とし
ては、例えば真空蒸着法を用いる場合半導体レーザと共
に水晶振動子を入れ、水晶振動子に蒸着物が付着するた
めに生じる発概周波数変化を検出し膜厚を算出し、その
価から各波長に対する反射率を計算する方法が知られて
いた。
[Prior Art] Conventionally, as a method for monitoring the reflectance of the end face protection film of a semiconductor laser, for example, when a vacuum evaporation method is used, a crystal oscillator is inserted together with the semiconductor laser, and the problem that occurs due to deposits adhering to the crystal oscillator is A known method is to detect a change in the emission frequency, calculate the film thickness, and calculate the reflectance for each wavelength from the value.

〔発明が解決しようとする課題1 しかしながら、従来の反射率監視法は水晶振動子に付着
した蒸着物の密度などの係数を校正して膜厚を算出する
ため結果としてどうしても反射率の誤算が大きくなって
しまう。
[Problem to be Solved by the Invention 1] However, the conventional reflectance monitoring method calculates the film thickness by calibrating coefficients such as the density of deposits attached to the crystal resonator, which inevitably results in large miscalculations of the reflectance. turn into.

また1本来の目的が反射率制御であるのに従来の方法で
は反射率に対する情報を得ることができないという直接
問題点があった。
Furthermore, although the original purpose is to control reflectance, there is a direct problem in that information regarding reflectance cannot be obtained using conventional methods.

そこで本発明は従来のこのような問題点を解決し、直接
反射率を監視する方法を得ることを目的としている。
Therefore, the present invention aims to solve these conventional problems and provide a method for directly monitoring reflectance.

【課題を解決する為の手段] 上記問題点を解決するため、本発明の半導体し−ザの端
面保護膜製造方法は、半導体レーザの端面保護膜膜厚を
監視する手段として、モニタ用光源と、前記モニタ用光
源からの出射光を膜厚モニタに出射する手段と、前記膜
厚モニタからの反射光強度または透過光強度を検出する
手段とを有する半導体レーザの端面保護膜製造方法にお
いて、前記モニタ用光源に、発振波長が前記半導体レー
ザの発振波長と同程度である半導体レーザを用いたこと
を特徴とする。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the method for manufacturing a semiconductor laser end face protection film of the present invention uses a monitoring light source as a means for monitoring the end face protection film thickness of a semiconductor laser. , a method for producing an end face protection film for a semiconductor laser, comprising means for emitting light emitted from the monitoring light source to a film thickness monitor; and means for detecting reflected light intensity or transmitted light intensity from the film thickness monitor; The present invention is characterized in that a semiconductor laser whose oscillation wavelength is approximately the same as the oscillation wavelength of the semiconductor laser is used as the monitoring light source.

[実 施 例] 以下に本発明の実施例を図面にもとすいて説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図は電子ビーム蒸着法による半導体レーザ端面保護
膜製造装置である。
FIG. 1 shows an apparatus for manufacturing a semiconductor laser end face protection film using an electron beam evaporation method.

真空容器101中に電子ビーム加熱装置103を備えた
蒸着系を用い、保護膜材料102にはA 12 t O
sを用いている。
A vapor deposition system equipped with an electron beam heating device 103 in a vacuum container 101 was used, and the protective film material 102 was made of A 12 t O.
s is used.

そして、GaAsを活性層とし、波長870nmで発振
する半導体レーザ104の端面と、モニタ用GaAs基
板105にA I2 s Onが蒸着される。
Then, A I2 s On is deposited on the end face of the semiconductor laser 104, which uses GaAs as an active layer and oscillates at a wavelength of 870 nm, and on the monitoring GaAs substrate 105.

そして、モニタ用半導体レーザ106は870nmで発
振するものを定光出力動作で用い、光学系107を用い
て平行光線とし、モニタ用GaAs基板105に照射し
、その反射光をモニタフォトダイオード108に受光す
る形式を取っている。
The monitor semiconductor laser 106 is one that oscillates at 870 nm and is operated in a constant light output operation, and an optical system 107 is used to convert it into parallel light, which is irradiated onto the monitor GaAs substrate 105 , and the reflected light is received by the monitor photodiode 108 . It takes a form.

また、A 12 z OsをコーディングしたGaAs
の反射率は、AI2*Osの膜厚を変えることにより、
波長870nmでは第2図のような反射率特性を示し、
この場合反射率40%から3%までの間で反射率制御が
行なえる。
In addition, GaAs coded with A 12 z Os
By changing the film thickness of AI2*Os, the reflectance of
At a wavelength of 870 nm, it exhibits reflectance characteristics as shown in Figure 2.
In this case, the reflectance can be controlled between 40% and 3%.

次に、動作説明を行なう。Next, the operation will be explained.

高出力半導体レーザな作るため、半導体レーザ端面の反
射率を下げ、3%の反射率を持つ端面保護膜を作る場合
を考える。
In order to create a high-power semiconductor laser, consider the case where the reflectance of the semiconductor laser end face is lowered and an end face protection film with a reflectance of 3% is created.

この場合、モニタ用GaAs基板105と半導体レーザ
104は同じ条件で蒸着が行なわれるため、モニタ用G
aAs基板の反射率と半導体レーザは104の端面反射
率はA A m On蒸着によりまったく同じ変化を示
す、そのためモニタフォトダイオード108からの出力
変化はそのまま反射率の変化となる。
In this case, since the monitoring GaAs substrate 105 and the semiconductor laser 104 are vapor-deposited under the same conditions, the monitoring GaAs substrate 105 and the semiconductor laser 104 are deposited under the same conditions.
The reflectance of the aAs substrate and the end face reflectance of the semiconductor laser 104 show exactly the same change due to A m On deposition, so a change in the output from the monitor photodiode 108 directly becomes a change in the reflectance.

ここで、モニタフォトダイオード108の出力100%
を、モニタ用GaAs基板105の代わりに鏡を置いた
ときの出力価と定義する。
Here, the output of the monitor photodiode 108 is 100%.
is defined as the output value when a mirror is placed in place of the monitor GaAs substrate 105.

すると、モニタフォトダイオード108の出力が3%を
示したとき蒸着を停止すれば半導体レーザ104の端面
反射率も確実に3%となる。
Then, if the vapor deposition is stopped when the output of the monitor photodiode 108 shows 3%, the end face reflectance of the semiconductor laser 104 will surely become 3%.

また、このときのAj2 、 O、膜厚は1300人で
ある。
Further, Aj2, O and film thickness at this time were 1300.

また、高出力かつ低閾値電流値を持つ半導体レーザを得
るため、端面反射率を適当な値に選びたいときには、モ
ニタフォトダイオード108の出力が所望の値となった
ときに蒸着を停止すれば確実に所望の端面反射率が得ら
れるわけである。
Furthermore, when it is desired to select an appropriate value for the end face reflectance in order to obtain a semiconductor laser with high output and a low threshold current value, it is possible to ensure that the vapor deposition is stopped when the output of the monitor photodiode 108 reaches the desired value. Therefore, the desired end face reflectance can be obtained.

以上、GaAs基板を反射率モニタとし、GaAs活性
層を持つ半導体レーザの端面反射率をモニタした実施例
について述べたが、反射率モニタはGaAs基板に限る
ことはなく、シリコンやガラスなどを用いてももちろん
よく、若干の校正を行なうだけで十分なモニタ特性を得
ることができる。
Above, we have described an example in which the end face reflectance of a semiconductor laser having a GaAs active layer was monitored using a GaAs substrate as a reflectance monitor. However, the reflectance monitor is not limited to GaAs substrates, and may be made of silicon, glass, etc. Of course, it is also possible to obtain sufficient monitor characteristics by performing some calibration.

また、モニタ用半導体レーザの波長が蒸着しようとする
半導体レーザの波長と少々違っていても、若干の校正を
行なうだけで十分なモニタ特性を得ることができる。
Further, even if the wavelength of the monitoring semiconductor laser is slightly different from the wavelength of the semiconductor laser to be deposited, sufficient monitoring characteristics can be obtained by just performing some calibration.

また、端面保護膜を形成する半導体レーザはGaAs系
の半導体レーザに限らずInP系のものなど半導体レー
ザ一般に適用することができる。特に、分布帰還型半導
体レーザなと、端面からの反射をきらうものには有効で
ある。
Further, the semiconductor laser forming the end face protection film is not limited to GaAs-based semiconductor lasers, but can be applied to general semiconductor lasers such as InP-based ones. This is particularly effective for devices such as distributed feedback semiconductor lasers where reflection from the end face is to be avoided.

また、保護膜材料はA I!、 * Osに限らずアモ
ルファスSiやSiO□など多様なものを用いてもよい
In addition, the protective film material is AI! , *In addition to Os, various materials such as amorphous Si and SiO□ may be used.

また、保護膜は単層に限らず、多層膜にしてももちろん
よく、さらに高反射率や逆に低反射率を得ることができ
る。
Further, the protective film is not limited to a single layer, and may of course be a multilayer film, and a high reflectance or, conversely, a low reflectance can be obtained.

また、モニタ用半導体レーザと蒸着しようとする半導体
レーザとの波長差は小さいほうが好ましいが、±loo
nm程度であれば屈折率分散などによる誤差が十分小さ
くなるため、精密な反射率制御が行なえる。しかし、十
分な校正を行なうことにより2つのレーザの波長が75
0nmから1600nmの間にあれば通常十分な精度が
得られる。
In addition, it is preferable that the wavelength difference between the monitoring semiconductor laser and the semiconductor laser to be vapor-deposited is small;
If it is on the order of nm, errors due to refractive index dispersion etc. will be sufficiently small, allowing precise reflectance control. However, by performing sufficient calibration, the wavelength of the two lasers can be adjusted to 75
Sufficient accuracy is usually obtained between 0 nm and 1600 nm.

もちろん、モニタフォトダイオードは他の光検知素子で
も良い。
Of course, the monitor photodiode may be any other photodetecting element.

また、モニタフォトダイオードの出力を電子ビーム加熱
装置にフィードバックし、閉ループ制御系を成してもよ
い。
Alternatively, the output of the monitor photodiode may be fed back to the electron beam heating device to form a closed loop control system.

〔発明の効果] 本発明の半導体レーザの端面保護膜製造方法には次に述
べるような利点を有する。
[Effects of the Invention] The method for manufacturing a semiconductor laser end face protection film of the present invention has the following advantages.

(i)直接反射率制御を行なうため、端面保護膜材質に
どのようなものを選んでも精密かつ高再現性をもつ反射
率制御ができる。
(i) Since direct reflectance control is performed, reflectance control can be performed with precision and high reproducibility no matter what material is selected for the end face protective film.

(ii)反射率観察用に発振波長と同じ程度の波長のレ
ーザを用いるため、測定誤差が小さくできる。
(ii) Since a laser having a wavelength similar to the oscillation wavelength is used for reflectance observation, measurement errors can be reduced.

特に、膜厚モニタに半導体レーザの活性層材料と同じ材
料を用い、モニタ用半導体レーザに同一の発振波長を持
つものを用いれば、反射率誤差は常に2%以内に抑^る
ことができる。
In particular, if the film thickness monitor is made of the same material as the active layer material of the semiconductor laser and the monitoring semiconductor laser has the same oscillation wavelength, the reflectance error can always be kept within 2%.

(iii)モニタ用半導体レーザもモニタフォトタイオ
ードも光学系も極めて小型なため、真空装置中に収納す
ることができ、光軸合わせなどの手間を必要としない。
(iii) Since the monitor semiconductor laser, the monitor photodiode, and the optical system are extremely small, they can be housed in a vacuum apparatus, and there is no need for trouble such as optical axis alignment.

しかも、光学系の位置精度は測定精度にまったく影響を
及ぼさないため光学系の製作が容易である。
Moreover, since the positional accuracy of the optical system has no effect on the measurement accuracy, the optical system is easy to manufacture.

(iv)光学的な測定を用いるため、電子ビーム加熱な
どを行なう礫土じる強力な電磁ノイズに対しても誤動作
しない。
(iv) Since optical measurement is used, there is no malfunction even in the presence of strong electromagnetic noise caused by gravel from electron beam heating, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる実施例を説明するための電子ビ
ーム蒸着法による半導体レーザ端面保護膜製造装置の構
成図。 第2図は本発明にかかる実施例を説明するためのGaA
s基板にAi、o、を蒸着した時のAi、0.膜厚と波
長870nmの光反射率との関係を示すグラフ。 101・・・真空容器 102・・・保護膜材料 103・・・電子ビーム加熱装置 104・・・半導体レーザ 105・・・モニタ用GaAs基板 106・・・モニタ用半導体レーザ 107・・・光学系 108・・・モニタフォトダイオード 以上 出願人 セイコーエプソン株式会社
FIG. 1 is a configuration diagram of a semiconductor laser end face protection film manufacturing apparatus using an electron beam evaporation method for explaining an embodiment of the present invention. FIG. 2 shows GaA for explaining the embodiment according to the present invention.
Ai, 0. A graph showing the relationship between film thickness and light reflectance at a wavelength of 870 nm. 101... Vacuum container 102... Protective film material 103... Electron beam heating device 104... Semiconductor laser 105... GaAs substrate for monitor 106... Semiconductor laser for monitor 107... Optical system 108 ...Monitor photodiode and above Applicant: Seiko Epson Corporation

Claims (1)

【特許請求の範囲】[Claims] 半導体レーザの端面保護膜膜厚を監視する手段として、
モニタ用光源と、前記モニタ用光源からの出射光膜厚を
モニタに出射する手段と、前記膜厚モニタからの反射光
強度または透過光強度を検出する手段とを有する半導体
レーザの端面保護膜製造方法において、前記モニタ用光
源に発振波長が前記半導体レーザの発振波長と同程度で
ある半導体レーザを用いたことを特徴とする半導体レー
ザの端面保護膜製造方法。
As a means of monitoring the thickness of the end face protection film of a semiconductor laser,
Manufacture of an end face protection film for a semiconductor laser having a monitoring light source, a means for emitting the film thickness of the light emitted from the monitoring light source to a monitor, and a means for detecting the reflected light intensity or transmitted light intensity from the film thickness monitor. 1. A method of manufacturing a facet protection film for a semiconductor laser, characterized in that the monitoring light source is a semiconductor laser whose oscillation wavelength is approximately the same as the oscillation wavelength of the semiconductor laser.
JP10176788A 1988-04-25 1988-04-25 Manufacture of protective film for protecting end face of semiconductor laser Pending JPH01272181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10176788A JPH01272181A (en) 1988-04-25 1988-04-25 Manufacture of protective film for protecting end face of semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10176788A JPH01272181A (en) 1988-04-25 1988-04-25 Manufacture of protective film for protecting end face of semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01272181A true JPH01272181A (en) 1989-10-31

Family

ID=14309375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10176788A Pending JPH01272181A (en) 1988-04-25 1988-04-25 Manufacture of protective film for protecting end face of semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01272181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351692A (en) * 2005-06-14 2006-12-28 Fuji Xerox Co Ltd Surface-emitting laser, its manufacturing method, and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351692A (en) * 2005-06-14 2006-12-28 Fuji Xerox Co Ltd Surface-emitting laser, its manufacturing method, and apparatus

Similar Documents

Publication Publication Date Title
KR100203229B1 (en) Optical film thickness measurement method film formation method, and semiconductor laser fabrication method
US5056099A (en) Rugate filter on diode laser for temperature stabilized emission wavelength
US3999146A (en) Semiconductor laser device
US5668826A (en) Electro-optical device comprising a controlled laser diode
EP0670618B1 (en) Light-sensing device using a semiconductor laser
US6347107B1 (en) System and method of improving intensity control of laser diodes using back facet photodiode
JPH06338659A (en) Laser element
EP0749154A2 (en) Method of fabricating a III-V compound semiconductor layer
US7239654B2 (en) Wave length plate, wavelength filter and wavelength monitor
JP3264369B2 (en) Optical modulator integrated semiconductor laser and method of manufacturing the same
JPH01272181A (en) Manufacture of protective film for protecting end face of semiconductor laser
JPH0391278A (en) Semiconductor laser diode
US4549300A (en) Semiconductor laser device
JPH07211992A (en) Semiconductor laser and modulator
KR19980050571A (en) How to make Bragg Reflective Film
JPH03195076A (en) External resonator type variable wavelength semiconductor laser
JPH06140717A (en) External resonator type semiconductor laser light source
JPS59165481A (en) Distributed feedback type semiconductor laser
US7065120B2 (en) Integrated laser with Perot-Fabry cavity
JPWO2016167071A1 (en) Grating element and external resonator type light emitting device
JPH0669607A (en) Measuring device for thickness of thin film and formation of reflecting mirror of semiconductor laser by use of the device
JPH01175277A (en) Semiconductor light emitting device and light modulation
JPS607790A (en) Semiconductor laser device
JPH07210893A (en) Semiconductor beam splitter and its production
JPH1022565A (en) Semiconductor laser element and its manufacture