JPH01272011A - Superconductive material - Google Patents

Superconductive material

Info

Publication number
JPH01272011A
JPH01272011A JP62206236A JP20623687A JPH01272011A JP H01272011 A JPH01272011 A JP H01272011A JP 62206236 A JP62206236 A JP 62206236A JP 20623687 A JP20623687 A JP 20623687A JP H01272011 A JPH01272011 A JP H01272011A
Authority
JP
Japan
Prior art keywords
paste
superconducting
particle diameter
plasticizer
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62206236A
Other languages
Japanese (ja)
Inventor
Kyoji Odan
恭二 大段
Tokuo Matsuzaki
徳雄 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP62206236A priority Critical patent/JPH01272011A/en
Publication of JPH01272011A publication Critical patent/JPH01272011A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To aim at increasing critical current density by mixing superconductive ceramic powder having a specific particle diameter with a solvent, binder, plasticizer, deflocculant and penetrant to form a paste, and applying it on a supporting body and sintering it. CONSTITUTION:A paste that is produced as a result of mixing superconductive ceramic powder having a particle diameter in range from 0.1mum or more to less than 1mum with a solvent, binder, plasticizer, deflocculant and penetrant, is applied on a supporting body, sintered, thus a superconductive material shaped in a thin membrane of 5mum or more in its thickness is produced. If the particle diameter of the superconductive ceramic particles is less than 0.1mum, it is extremely difficult to disperse the particles evenly in the paste because then primary particles may strongly aggregate together. On the other hand, if the particle diameter exceeds 1mum, any thin superconductive ceramic membrane having a higher density can not be formed and its critical current density becomes smaller. Water or methyl ethyl ketone, etc., may be used as a solvent, acrylic polymer, etc., as a binder, butyl ethylene phthalate, etc., as a plasticizer, phosphate, etc., as a deflocculant and alcohol, as a penetrant.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、支持体と、該支持体上に形成された超電導セ
ラミックスの薄膜からなる超電導材料に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a superconducting material comprising a support and a thin film of superconducting ceramics formed on the support.

(従来の技術) 最近、La、Yなどのランタノイド元素、アルカリ土類
金属元素、銅などを中心とする複合酸化物が、液体水素
温度(20K)、あるいは液体窒素温度(77K)以上
の高い臨界温度Tcを持つ超電導セラミックスとして注
目を集めている。
(Prior art) Recently, composite oxides mainly containing lanthanide elements such as La and Y, alkaline earth metal elements, copper, etc. have been developed to have a high criticality at liquid hydrogen temperature (20K) or liquid nitrogen temperature (77K). It is attracting attention as a superconducting ceramic with a temperature Tc.

中でも、Y−Ba−Cu−0系超電導セラミツクスには
、Tcが液体窒素温度よりも高いものがあることから、
広い分野での実用化が期待されている。
Among them, some Y-Ba-Cu-0-based superconducting ceramics have a Tc higher than the liquid nitrogen temperature.
It is expected that it will be put to practical use in a wide range of fields.

これらのY−Ba−Cu−0系高温超電導セラミツクス
は、液体窒素のような安価な冷媒で冷却することによっ
ても超電導状態になるため、液体ヘリウム中でしか超電
導状態を示さないNb−Ti系超電導合金などの代わり
に、超電導マグネットなどに使えれば、経済的に大きな
メリットがある。
These Y-Ba-Cu-0-based high-temperature superconducting ceramics also become superconducting when cooled with an inexpensive coolant such as liquid nitrogen, so Nb-Ti-based superconductors, which only exhibit a superconducting state in liquid helium, If it can be used in superconducting magnets instead of alloys, it would have great economic benefits.

しかし、これらの超電導セラミックスを実用的な超電導
材料にするためには、線材や薄膜などに加工できなけれ
ばならない。
However, in order to make these superconducting ceramics into practical superconducting materials, they must be able to be processed into wires, thin films, etc.

このような材料の一つに、支持体上に超電導セラミック
スの薄膜を形成したものがある。
One such material is one in which a thin film of superconducting ceramic is formed on a support.

支持体上に、超電導セラミックスの薄膜を形成する方法
としては、これまで、CVD法やスパッタリング法など
の気相法が行われてきた。
As a method for forming a thin film of superconducting ceramics on a support, vapor phase methods such as CVD and sputtering have been used so far.

気相法は設備が大掛かりになるという問題点があるので
、より容易な薄膜形成法が種々開発されてきた。
Since the gas phase method has the problem of requiring large-scale equipment, various easier thin film forming methods have been developed.

このような薄膜形成法の例としては、ペースト・塗布法
などがある。
Examples of such thin film forming methods include paste and coating methods.

ペースト塗布法は、超電導セラミックスの粉末に溶媒、
結合剤、可塑剤、解こう剤1.及び湿潤剤を混合して作
られたペーストを支持体上に塗布し、焼結する超電導セ
ラミックスの薄膜の製法である。
The paste coating method involves adding a solvent to superconducting ceramic powder,
Binders, plasticizers, peptizers 1. This is a method for producing a thin film of superconducting ceramics, in which a paste made by mixing a wetting agent and a wetting agent is applied onto a support and sintered.

ペースト塗布法において、従来はペーストに用いる超電
導セラミックス粉末の粒子径が1〜5μmと大きかった
ため、形成された超電導セラミックスの薄膜の臨界電流
が数+A/cdと小さいという問題点があった。
Conventionally, in the paste coating method, the particle size of the superconducting ceramic powder used in the paste was large, 1 to 5 μm, and therefore the critical current of the formed superconducting ceramic thin film was as small as several + A/cd.

(問題点解決のための技術的手段) 本発明は、従来の気相法、液相塗布法、ペースト塗布法
などの方法によって支持体の表面に超電導セラミックス
の薄膜を形成することにより作られた超電導材料の欠点
を、解決した、超電導材料である。
(Technical means for solving the problem) The present invention provides a superconducting ceramic film made by forming a thin film of superconducting ceramics on the surface of a support by conventional methods such as vapor phase coating, liquid phase coating, and paste coating. This is a superconducting material that solves the drawbacks of superconducting materials.

本発明は、粒子径0.1am以上1μm未満の超電導セ
ラミックスの粉末に溶媒、結合剤、可塑剤、解こう剤、
及び湿潤剤を混合して作られたペーストを支持体上に塗
布し、それを焼結することによって得られる超電導材料
である。
The present invention provides superconducting ceramic powder with a particle size of 0.1 am or more and less than 1 μm, a solvent, a binder, a plasticizer, a peptizer,
It is a superconducting material obtained by applying a paste made by mixing a wetting agent and a wetting agent onto a support and sintering it.

本発明の超電導材料の製造に用いられるペースト中の超
電導セラミックス粒子の粒子径が0.1μmより小さい
と、−成粒子の凝集性が強すぎて、ペースト中に粒子を
均一に分散させることが、極めて困難になるため、好ま
しくない。
If the particle diameter of the superconducting ceramic particles in the paste used for manufacturing the superconducting material of the present invention is smaller than 0.1 μm, the agglomeration of the particles is too strong, making it difficult to uniformly disperse the particles in the paste. This is not desirable because it becomes extremely difficult.

一方、ペースト中の超電導セラミックスの粒子の粒子径
が1μm以上であると、密度の高い超電導セラミックス
の薄膜が得られず、従って臨界電流密度も小さいので好
ましくない。
On the other hand, if the particle size of the superconducting ceramic particles in the paste is 1 μm or more, a thin film of superconducting ceramic with high density cannot be obtained, and therefore the critical current density is also low, which is not preferable.

粒子径が0.1am以上1am未満の超電導セラミック
スの粒子を得る方法は特に限定されないが、以下に述べ
るような方法が例として用いられる。
Although the method for obtaining superconducting ceramic particles having a particle size of 0.1 am or more and less than 1 am is not particularly limited, the following method is used as an example.

(a)共沈法 (b)多段湿式法 (C)乾湿式法 (d)水熱法 (e)ツルーゲル法 (f)融剤法 次にこれらの方法について説明する。(a) Co-precipitation method (b) Multi-stage wet method (C) Wet-dry method (d) Hydrothermal method (e) True gel method (f) Flux method Next, these methods will be explained.

(a)共沈法; 目的とする超電導セラミックスの各成分に対応する金属
の化合物の溶液と沈澱形成剤とを混合して、共沈澱物を
形成する。ついでこの共沈澱物を仮焼結する。
(a) Co-precipitation method: A solution of a metal compound corresponding to each component of the target superconducting ceramic and a precipitate forming agent are mixed to form a coprecipitate. This coprecipitate is then pre-sintered.

(b)多段湿式法; 目的とする超電導セラミックスの各成分に対応する金属
の化合物の溶液と沈澱形成剤とを接触させて、共沈澱物
を形成する際に、沈澱形成を数段階に分けて行う方法で
ある。共沈澱物を形成後仮焼結を行う。
(b) Multi-stage wet method: When a solution of a metal compound corresponding to each component of the target superconducting ceramic is brought into contact with a precipitate forming agent to form a coprecipitate, the precipitate formation is divided into several stages. This is the way to do it. After forming a coprecipitate, temporary sintering is performed.

(C)乾湿式法; 目的とする超電導セラミックスの成分の一部に対応する
金属の化合物の溶液と沈澱形成剤とを接触させて、共沈
澱物を形成する。ついでこの共沈澱物に、残りの成分に
対応する化合物を乾式混合法で混合する。この混合物を
仮焼結する。
(C) Wet-dry method: A solution of a metal compound corresponding to a part of the components of the target superconducting ceramic is brought into contact with a precipitate to form a coprecipitate. Next, compounds corresponding to the remaining components are mixed into this coprecipitate by a dry mixing method. This mixture is pre-sintered.

(d)水熱法; 共沈法で形成した共沈澱物を、オートクレーブなどを用
い水熱処理する方法である。水熱処理の後、共沈澱物を
仮焼結する。
(d) Hydrothermal method: This is a method in which the coprecipitate formed by the coprecipitation method is hydrothermally treated using an autoclave or the like. After the hydrothermal treatment, the coprecipitate is pre-sintered.

(e)ゾル−ゲル法 目的とする超電導セラミックスの各成分に対応する金属
の硝酸塩の水溶液にヒドロキシカルボン酸及びグリコー
ル類を加えて、共沈澱物を形成する。生成した共沈澱物
を300〜400℃で熱分解した後、仮焼結する。
(e) Sol-gel method Hydroxycarboxylic acid and glycols are added to an aqueous solution of metal nitrates corresponding to each component of the target superconducting ceramic to form a coprecipitate. The generated coprecipitate is thermally decomposed at 300 to 400°C and then pre-sintered.

(「)融剤法 目的とする超電導セラミックスの各成分に対応する金属
の化合物及び融剤を乾式混合法で混合しこの混合物を仮
焼結する。融剤にはアルカリ土属又はアルカリ土類金属
のハロゲン化物が一般に用いられる。
(") Flux method A metal compound corresponding to each component of the target superconducting ceramic and a flux are mixed using a dry mixing method, and this mixture is pre-sintered. The flux includes an alkaline earth metal or an alkaline earth metal. halides are commonly used.

これらの方法において、仮焼結は500〜950℃で行
うのが好ましい。
In these methods, temporary sintering is preferably performed at 500 to 950°C.

ペーストに用いられる溶媒、結合剤、可塑剤、解こう剤
、及び湿潤剤は、ファインセラミックスをペーストにし
てドクターブレード法や鋳込み法で成形するときに通常
用いられるものから選ぶことができる。このようなもの
としては、以下の例に示すものが挙げられる。
The solvent, binder, plasticizer, peptizer, and wetting agent used in the paste can be selected from those commonly used when fine ceramics are made into a paste and molded by a doctor blade method or a casting method. Examples of this include those shown in the following examples.

[を容媒1 水系:水(消泡剤として非イオン系界面活性剤やアロコ
ール類を含むことができる。) 非水系:メチルエチルケトン、アセトン、エタノール、
ベンゼン、プロクロロメタン、ブタノール、ジアセトン
、プロパツール、メチルイソブチルケトン、トルエン、
トリクロロエチレン、キシレン、イソプロパツール、変
成アルコール、エステル類。
[Container 1] Aqueous: Water (Can contain nonionic surfactants and allocols as antifoaming agents.) Non-aqueous: methyl ethyl ketone, acetone, ethanol,
Benzene, prochloromethane, butanol, diacetone, propatool, methyl isobutyl ketone, toluene,
Trichlorethylene, xylene, isopropanol, denatured alcohols, esters.

[結合剤] 水系ニアクリル系ポリマー、アクリル系ポリマーの工゛
ンルジジン、ポリエチレンオキサイド、ヒドロキシエチ
ルセルロース、メチルセルロース、ポリビニルアルコー
ル、イソシアネート、水性ウレタン、メタクリル酸共重
合体の塩、ワックスエマルジジン、エチレン−酢酸ビニ
ル共重合体のエマルジョン。
[Binding agent] Water-based acrylic polymer, acrylic polymer enylzidine, polyethylene oxide, hydroxyethyl cellulose, methyl cellulose, polyvinyl alcohol, isocyanate, water-based urethane, methacrylic acid copolymer salt, wax emulsion, ethylene-vinyl acetate copolymer Polymer emulsion.

非水系:セルロースアセテート、セルロースブチレート
、セルロースアセテートブチレート、ニトロセルロース
、石油レジン、ポリエチレン、ポリアクリル酸エステル
、ポリメチルメタクリレート、ポリビニルアルコール、
ポリビニルブチラール、塩化ビニル、ポリメタクリル酸
エステル、エチルセルロース、アビエチン酸レジン。
Non-aqueous: cellulose acetate, cellulose butyrate, cellulose acetate butyrate, nitrocellulose, petroleum resin, polyethylene, polyacrylic acid ester, polymethyl methacrylate, polyvinyl alcohol,
Polyvinyl butyral, vinyl chloride, polymethacrylate, ethyl cellulose, abietic acid resin.

[可塑剤1 水系ニブチルエチレンフタレート、ジブチルフタレート
、エチルトルエンスルファミド、グリセリン、ポリアル
キルグリコール、トリエチレングリコール、トリーN−
ブチルフォスフェート、ベトリオール、ポリオール。
[Plasticizer 1 Water-based Nibutyl ethylene phthalate, Dibutyl phthalate, Ethyl toluene sulfamide, Glycerin, Polyalkyl glycol, Triethylene glycol, Tri-N-
Butyl phosphate, vetriol, polyol.

非水系ニブチルベンジルフタレート、ジブチルフタレー
ト、ブチルステアレート、ジメチルフタレート、フタル
酸エステル混合物、ポリエチレングリコールEft導体
、トリクレゾールフォスフェート。
Non-aqueous Nibutylbenzyl phthalate, dibutyl phthalate, butyl stearate, dimethyl phthalate, phthalate ester mixture, polyethylene glycol Eft conductor, tricresol phosphate.

[解こう剤] 水系:燐酸塩、燐酸錯塩、アリルスルフォン酸、天然ナ
トリウム塩、アクリル系オリゴマー。
[Peptizer] Water-based: phosphate, phosphoric acid complex salt, allylsulfonic acid, natural sodium salt, acrylic oligomer.

非水系:脂肪酸、脂肪酸エステル、グリセリントリエス
テル、不飽和脂肪酸、魚油、合成界面活性剤、ベンゼン
スルフォン酸、オクタジエン。
Non-aqueous: fatty acids, fatty acid esters, glycerin triesters, unsaturated fatty acids, fish oil, synthetic surfactants, benzenesulfonic acid, octadiene.

[湿潤剤] 水系:オクチルフェノキシエタノール、アルコール類、
非イオン型界面活性剤。
[Wetting agent] Water-based: octylphenoxyethanol, alcohol,
Nonionic surfactant.

非水系: アルキルアリールポリエーテルアルコール、ポリエチレ
ングリコールアルキルエーテル、ポリエチレングリコー
ルアリールエーテル、ポリオキシエチレネステル、グリ
セリンエステル類、アルコール類。
Non-aqueous: alkylaryl polyether alcohol, polyethylene glycol alkyl ether, polyethylene glycol aryl ether, polyoxyethylene ester, glycerin esters, alcohols.

本発明の超電導材料の支持体としては、従来からペース
ト塗布法に用いられているものを用いることができる。
As the support for the superconducting material of the present invention, those conventionally used in paste coating methods can be used.

このような支持体の例としては、線材、管材、板材、繊
維、織物、不織布、フィルム、金属の多孔基板、及びセ
ラミックスの多孔性基板を挙げることができる。
Examples of such supports include wires, tubes, plates, fibers, woven fabrics, nonwoven fabrics, films, porous metal substrates, and porous ceramic substrates.

−F記の支持体上へのペーストの塗布も、公知の方法で
行うことができる。このような方法の例としては、スク
リーン印刷やドクターブレード法などが挙げられる。
Application of the paste on the support described in -F can also be performed by a known method. Examples of such methods include screen printing and doctor blading.

ペーストは、焼結後の超電導セラミックスの薄膜の厚さ
が5μm以上になるような厚みで塗布することが好まし
い。
The paste is preferably applied to a thickness such that the thickness of the superconducting ceramic thin film after sintering is 5 μm or more.

支持体上にペーストを塗布した後、乾燥してペースト中
の溶媒を除去し、次いでこの支持体を、200℃〜50
0℃に加熱して、結合剤、可塑剤、解こう剤、及び湿潤
剤を蒸発、熱分解させて除去する。次に、この支持体を
500〜950″Cに加熱して、支持体表面に形成され
た超電導セラミックスの粉末の層を焼結して、超電導セ
ラミックスの薄Jf9とする。
After applying the paste on the support, it is dried to remove the solvent in the paste, and then the support is heated at 200°C to 50°C.
Heating to 0° C. removes binders, plasticizers, peptizers, and wetting agents by evaporation and thermal decomposition. Next, this support is heated to 500-950''C to sinter the layer of superconducting ceramic powder formed on the surface of the support to form a thin layer of superconducting ceramic Jf9.

(本発明の効果) 本発明の超電導材料は、気相法のような大掛かりな設備
を用いないで、製造できる。又、液相塗布法により製造
された超電導材料は、臨界電流密度がl OOA/CI
!以上で、従来のペースト法による材料の数十A/cd
よりもはるかに大きな値を示す。
(Effects of the present invention) The superconducting material of the present invention can be manufactured without using large-scale equipment such as a vapor phase method. In addition, superconducting materials manufactured by liquid phase coating have a critical current density of 1 OOA/CI
! With the above, several tens of A/cd of material using the conventional paste method
shows a much larger value than .

(実施例) 以下に本発明の超電導材料の製造例を示す。(Example) Examples of manufacturing the superconducting material of the present invention are shown below.

参考例1 塩化イツトリウム(YCf2・6H,O)0.1モル、
塩化バリウム(B a CI!2−2 H,O)0.2
モル、及び塩化銅(CuCI!、、・2H,O)0.3
モルを水11に溶解した。この溶液に2Mの苛性ソーダ
水溶液5QOdを加えて、中和、及び沈澱形成を行った
。この共沈澱物スラリーをオートクレーブで250℃で
4hr水熱処理した。
Reference example 1 Yttrium chloride (YCf2.6H,O) 0.1 mol,
Barium chloride (B a CI! 2-2 H, O) 0.2
mole, and copper chloride (CuCI!, .2H,O) 0.3
mol was dissolved in 11 mol of water. To this solution, 5QOd of 2M aqueous sodium hydroxide solution was added to perform neutralization and precipitate formation. This coprecipitate slurry was hydrothermally treated at 250°C for 4 hours in an autoclave.

水熱処理の後、共沈澱物を、Na”イオンが検出されな
くなるまで水洗し、次いで乾燥した。
After the hydrothermal treatment, the coprecipitate was washed with water until no Na'' ions were detected and then dried.

この共沈澱物を850℃で2hr仮焼結した。This coprecipitate was pre-sintered at 850°C for 2 hours.

iitられた粉末の結晶構造をX線回折により調べたと
ころ、Y B a zCLl:107−Xなる酸素欠損
型層状ペロブスカイト構造であることがわかった。
When the crystal structure of the obtained powder was examined by X-ray diffraction, it was found to be an oxygen-deficient layered perovskite structure of YB a zCLl:107-X.

またこの粉末の平均粒子径は、0.1〜0.3μmであ
った。
Moreover, the average particle diameter of this powder was 0.1 to 0.3 μm.

参考例2 塩化イツトリウム(ycz2・6H,O)0.1モルと
塩化バリウム(BaCfz・2 H□0)0.05モル
とを水11に溶解し、これに3N炭酸アンモニウム水溶
液11を加えて共沈澱物を生成させた。
Reference Example 2 0.1 mole of yttrium chloride (ycz2.6H,O) and 0.05 mole of barium chloride (BaCfz.2H□0) were dissolved in water 11, and 3N ammonium carbonate aqueous solution 11 was added thereto. A precipitate formed.

この共沈澱物を蒸留水で洗浄後、乾燥し、空気中700
℃で仮焼結した。
This coprecipitate was washed with distilled water, dried, and
Temporary sintering was carried out at ℃.

この焼結粉末に、炭酸バリウム(B a Co、)0.
15モルと塩基性炭酸銅[CuzCO2(OH)210
.15モルを加えてボールミルで混合した。
This sintered powder contains 0.0% barium carbonate (B a Co).
15 mol and basic copper carbonate [CuzCO2(OH)210
.. 15 mol was added and mixed in a ball mill.

ボールミルで混合後、この粉末を空気中800℃で仮焼
結した。
After mixing in a ball mill, this powder was pre-sintered in air at 800°C.

この粉末の結晶構造をX線回折により調べたところ、Y
 B a z Cu 30 ?−になる酸素欠損型層状
ペロブスカイト構造であることがわかった。
When the crystal structure of this powder was investigated by X-ray diffraction, it was found that Y
B az Cu 30? It was found that it has an oxygen-deficient layered perovskite structure.

またこの粉末の平均粒子径は、0.3〜0.5μmで均
一であった。
Moreover, the average particle diameter of this powder was uniform at 0.3 to 0.5 μm.

実施例1 参考例1の超電導セラミックス粉末100部に対して、
溶媒としてトルエン34部、結合剤としてポリビニルブ
チラール10部、可塑剤としてジブチルフタレート4.
5部、及び解こう剤としてオレイン酸0.9部を加え、
ペーストを製した。
Example 1 For 100 parts of superconducting ceramic powder of Reference Example 1,
34 parts of toluene as a solvent, 10 parts of polyvinyl butyral as a binder, and 4 parts of dibutyl phthalate as a plasticizer.
5 parts, and 0.9 parts of oleic acid as a peptizer,
A paste was made.

このペーストを真空脱泡で充分に泡を除去して、101
00X100X1のアルミナ板上にドクターブレードに
より30μmの厚みで塗布した。
After thoroughly removing bubbles from this paste using vacuum defoaming,
It was coated onto a 00x100x1 alumina plate to a thickness of 30 μm using a doctor blade.

このアルミナ板を乾燥後、400℃で熱処理して有機物
を除去した後、900℃で2hr焼結した。得られた超
電導セラミックスの薄膜の厚みは約25μmであった。
After drying this alumina plate, it was heat treated at 400°C to remove organic substances, and then sintered at 900°C for 2 hours. The thickness of the obtained superconducting ceramic thin film was about 25 μm.

この薄膜の臨界温度は85に、@界電流密度は+ 50
 A/cdであった。
The critical temperature of this thin film is 85, and the field current density is +50
It was A/cd.

実施例2〜5 超電導セラミックス粉末、結合剤、可塑剤、及び解こう
剤は、実施例1と同様なものを用いて、溶媒の種類、及
び結合剤と超電導セラミックス粉末との比率をかえたペ
ーストを製し、種々の支持対土に塗布して、超電導材料
を作成した。その結果を表1に示す。
Examples 2 to 5 The same superconducting ceramic powder, binder, plasticizer, and peptizer as in Example 1 were used, but the type of solvent and the ratio of the binder to the superconducting ceramic powder were changed. We prepared superconducting materials by applying them to various supporting soils. The results are shown in Table 1.

実施例6 参考例2の超電導セラミックス粉末を実施例1と同様に
して、アルミナ基板上に塗布し、乾燥、熱処理、及び焼
結を行い、超電導セラミックスの薄1模とした。
Example 6 The superconducting ceramic powder of Reference Example 2 was coated on an alumina substrate in the same manner as in Example 1, dried, heat treated, and sintered to form a thin model of superconducting ceramic.

この薄膜の臨界温度は93に、臨界電流密度は152 
A/cdであった。
The critical temperature of this thin film is 93, and the critical current density is 152.
It was A/cd.

表1 比較例1 酸化イツトリウム(Y2O,)0.05モル、炭酸バリ
ウム(B a CO:+) 0.2モル、酸化鋼(Cu
b)0.3モルを水502に加え、ボールミルを用いて
充分混合して、混合粉末を調製した。
Table 1 Comparative Example 1 Yttrium oxide (Y2O,) 0.05 mol, barium carbonate (B a CO:+) 0.2 mol, oxidized steel (Cu
b) 0.3 mol was added to water 502 and thoroughly mixed using a ball mill to prepare a mixed powder.

この混合粉末を含む懸濁液から混合粉末を濾別しこの粉
末を乾燥器に入れて乾燥し、水分を除去した。
The mixed powder was separated from the suspension containing the mixed powder by filtration, and this powder was placed in a drier to dry it to remove water.

この粉末を乾燥後、850℃空気中でahr仮焼結した
。仮焼結した混合粉末を、ボールミルで粉砕した。仮焼
結と粉砕を4回繰り返した。
After drying this powder, it was pre-sintered at 850°C in air. The pre-sintered mixed powder was pulverized with a ball mill. Temporary sintering and crushing were repeated four times.

この粉末を透過型電子顕微鏡により観察したところ、粒
子径が1〜5μmで粒子径分布も不均一であることが分
かった。
When this powder was observed using a transmission electron microscope, it was found that the particle size was 1 to 5 μm and the particle size distribution was nonuniform.

この粉末を、実施例1と同様にアルミナ板の支持体上に
塗布し、乾燥後、熱処理次いで焼成を行って、アルミナ
板の支持体上に超電導セラミックスの薄膜の形成された
超電導材料を作成した。
This powder was applied onto an alumina plate support in the same manner as in Example 1, and after drying, heat treatment and firing were performed to create a superconducting material in which a thin film of superconducting ceramic was formed on the alumina plate support. .

この超電導材料の臨界温度は85に1臨界型流密度は3
0 A/ct!であった。
The critical temperature of this superconducting material is 85%, and the critical flow density is 3%.
0 A/ct! Met.

比較例2 参考例1と同様な方法で、Y成分、Ba成分、及びCu
成分からなる共沈澱物を作成し、1000℃でShr仮
焼結した。得られた超電導セラミックスの粉末の粒子径
は1〜3μmであった。
Comparative Example 2 In the same manner as in Reference Example 1, Y component, Ba component, and Cu
A coprecipitate consisting of the components was prepared and pre-sintered at 1000°C. The particle size of the obtained superconducting ceramic powder was 1 to 3 μm.

溶媒、結合剤、可塑剤、解こう剤には実施例1と同様な
ものを用い、上記の超電導セラミックス粉末のペースト
を製した。このペーストをアルミナ基板の上にドクター
ブレードで25μmの厚みで塗布した。乾燥後の熱処理
及び焼結も、実施例1と同様にして行った。得られた超
電導材料は、臨界温度が85に、臨界電流密度が45A
/cdに過ぎなかった。
A paste of the above superconducting ceramic powder was prepared using the same solvent, binder, plasticizer, and peptizer as in Example 1. This paste was applied onto an alumina substrate with a doctor blade to a thickness of 25 μm. The heat treatment and sintering after drying were also performed in the same manner as in Example 1. The obtained superconducting material has a critical temperature of 85 and a critical current density of 45 A.
It was just a CD.

比較例3 アルミナ基板への塗布厚みが2μmであることを除いて
は、実施例1と同様にして、超電導材料を作成した。こ
の超電導材料の臨界温度は30に臨界電流密度はIOA
/c+!に過ぎなかった。
Comparative Example 3 A superconducting material was produced in the same manner as in Example 1, except that the coating thickness on the alumina substrate was 2 μm. The critical temperature of this superconducting material is 30, and the critical current density is IOA.
/c+! It was nothing more than

Claims (3)

【特許請求の範囲】[Claims] (1)粒子径が0.1μm以上1μm未満の超電導セラ
ミックス粉末からなる、厚さ5μm以上の薄膜が支持体
上に形勢されていることを特徴とする超電導材料。
(1) A superconducting material characterized in that a thin film of 5 μm or more in thickness, made of superconducting ceramic powder with a particle size of 0.1 μm or more and less than 1 μm, is formed on a support.
(2)超電導セラミックスの薄膜の厚さが5μm以上で
ある特許請求の範囲第1項に記載の超電導材料。
(2) The superconducting material according to claim 1, wherein the superconducting ceramic thin film has a thickness of 5 μm or more.
(3)支持体上に、粒子径が0.1μm以上1μm未満
である超電導セラミックスのペーストを塗布し、これを
加熱焼成することを特徴とする超電導材料の製法。
(3) A method for producing a superconducting material, which comprises applying a superconducting ceramic paste having a particle size of 0.1 μm or more and less than 1 μm onto a support, and heating and firing the paste.
JP62206236A 1987-08-21 1987-08-21 Superconductive material Pending JPH01272011A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62206236A JPH01272011A (en) 1987-08-21 1987-08-21 Superconductive material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62206236A JPH01272011A (en) 1987-08-21 1987-08-21 Superconductive material

Publications (1)

Publication Number Publication Date
JPH01272011A true JPH01272011A (en) 1989-10-31

Family

ID=16520004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62206236A Pending JPH01272011A (en) 1987-08-21 1987-08-21 Superconductive material

Country Status (1)

Country Link
JP (1) JPH01272011A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234305A (en) * 1988-03-11 1989-09-19 I M C:Kk Superconducting material and its production
JPH02152109A (en) * 1988-11-29 1990-06-12 Tsuaitowan Fuaaren Koniejishuien Jiouyuen Y-ba-cu-o group superconductor film formed onto alumina base material and forming method thereof
JPH03150209A (en) * 1989-11-04 1991-06-26 Dowa Mining Co Ltd Paste for preparing superconductive film
JPH03252349A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of superconductive oxide paste and oxide superconductor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248720A (en) * 1987-04-02 1988-10-17 Kanegafuchi Chem Ind Co Ltd Superconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248720A (en) * 1987-04-02 1988-10-17 Kanegafuchi Chem Ind Co Ltd Superconductor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01234305A (en) * 1988-03-11 1989-09-19 I M C:Kk Superconducting material and its production
JPH02152109A (en) * 1988-11-29 1990-06-12 Tsuaitowan Fuaaren Koniejishuien Jiouyuen Y-ba-cu-o group superconductor film formed onto alumina base material and forming method thereof
JPH03150209A (en) * 1989-11-04 1991-06-26 Dowa Mining Co Ltd Paste for preparing superconductive film
JPH03252349A (en) * 1990-02-27 1991-11-11 Kokusai Chodendo Sangyo Gijutsu Kenkyu Center Production of superconductive oxide paste and oxide superconductor

Similar Documents

Publication Publication Date Title
US5620945A (en) Process for forming a superconductive fiberform ceramic composite
JP2938505B2 (en) Method for producing a crystallographically oriented surface layer from ceramic high-temperature superconductors
JPH0733257B2 (en) Lanthanum chromite particularly suitable for low temperature firing
US3287112A (en) Production of filter membranes
AU599488B2 (en) Processes for film preparation
JPH01272011A (en) Superconductive material
DE69304897T2 (en) Process for producing an aqueous slip containing a moisture-resistant aluminum nitride powder
JPH027307A (en) Barrier layer arrangement for conductive layer on silicon substrate
CN108069713B (en) ST-NBT-BT ceramic material with high energy storage density and preparation method thereof
JP2001192274A (en) Setter for debindering/sintering and manufacturing process for the same
US6291403B1 (en) Method of manufacturing superconducting ceramics under a magnetic field
US5589441A (en) Superconductive fiberform ceramic composite
AU617357B2 (en) Process for preparing superconducting materials and materials thereby obtained
US5260263A (en) Superconductive ceramic wire and method for producing the same
LOCKHART et al. Ferroelectrics of Ultrafine Particle Size: III, Thin Barium Titanate Layers for Capacitors
JPS63256564A (en) Superconductive ceramic of scalelike oxide and its production
Munakata et al. Relationship between oxygen nonstoichiometry and structural changes in Bi-2212 superconductors
CN1031829A (en) The production method of superconducting ceramics and products thereof
JP2629819B2 (en) Manufacturing method of thick film forming paste
JPH1067573A (en) Porous ceramic material
JP2523687B2 (en) Method of forming superconducting film pattern
JPH0222124A (en) Preparation of raw material powder for readily sinterable high-temperature superconducting ceramic
JPH01133936A (en) Production of raw material powder for easily sinterable high temperature superconducting ceramic
JPH035358A (en) Production of orientable oxide superconductor
JPH02129055A (en) Production of ceramic green sheet