JPH01271402A - Material curable with energetic radiation - Google Patents

Material curable with energetic radiation

Info

Publication number
JPH01271402A
JPH01271402A JP63099886A JP9988688A JPH01271402A JP H01271402 A JPH01271402 A JP H01271402A JP 63099886 A JP63099886 A JP 63099886A JP 9988688 A JP9988688 A JP 9988688A JP H01271402 A JPH01271402 A JP H01271402A
Authority
JP
Japan
Prior art keywords
group
curable
energetic radiation
compound
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63099886A
Other languages
Japanese (ja)
Other versions
JP2716451B2 (en
Inventor
Toshiyuki Uryu
瓜生 敏之
Masayuki Ando
雅之 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP63099886A priority Critical patent/JP2716451B2/en
Publication of JPH01271402A publication Critical patent/JPH01271402A/en
Application granted granted Critical
Publication of JP2716451B2 publication Critical patent/JP2716451B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)

Abstract

PURPOSE:To produce a polymer material having excellent physical properties by polymerization crosslinkage through irradiation with an energetic radiation, by incorporating a curable compound wherein a methogenic group and two or more energetic radiation reactive groups are bonded to the skeleton structure via a spacer. CONSTITUTION:A curable compound wherein a methogenic group (e.g., biphenyl) and two or more energetic radiation reactive groups [e.g., a (meth)acryloyl or mercapto group)] are bonded to the skeleton structure via a spacer (e.g., a methylene chain) is used to produce a material curable with an energetic radiation (e.g., a compound having the given formula). The curable material can give a cured product which has characteristics not attainable in prior art concerning various properties such as dynamic or thermal properties, and also is excellent in workability, by polymerization crosslinkage through irradiation with an energetic radiation such as radioactive ray, ultraviolet ray, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子線を含む放射線や紫外線などのエネルギ
ー線の照射によって硬化し得る硬化性材料に関し、更に
詳しくは、骨格構造にメソーゲン基とスペーサ一部を有
し、放射線ないし紫外線によって容易に重合架橋反応し
てすぐれた物性の高分子材料を製造し得るエネルギー線
硬化性材料に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a curable material that can be cured by irradiation with radiation including electron beams or energy rays such as ultraviolet rays. The present invention relates to an energy ray-curable material that can easily undergo a polymerization and crosslinking reaction with radiation or ultraviolet rays to produce a polymeric material with excellent physical properties.

〔発明の背景〕[Background of the invention]

従来知られている放射線ないし紫外線硬化性材料は、加
工適性の観点から、主として(メタ)アクリロイル基を
有する反応性上ツマ−、オリゴマーを主成分とする液状
樹脂組成物が用いられてきた。従って、この様な硬化性
材料としては、粘度を低く抑えるために分子配向性の低
い或は故意に低くした化合物が用いられてきた。このた
め、その硬化物は、非品性架橋物となり、力学的、熱的
等の諸性質は主として架橋密度に依存し、種々の用途に
応じた優れた物性を発現させることは困難であった。
Conventionally known radiation or ultraviolet curable materials have mainly been liquid resin compositions containing reactive polymers and oligomers having (meth)acryloyl groups as main components from the viewpoint of processability. Therefore, as such curable materials, compounds with low or intentionally low molecular orientation have been used in order to keep the viscosity low. For this reason, the cured product becomes a non-quality crosslinked product, and its mechanical, thermal, and other properties depend mainly on the crosslink density, making it difficult to develop excellent physical properties suitable for various uses. .

一方、近年、高強度高耐性高分子材料としてサーモトロ
ピック液晶高分子が成形材料とし2て開発されているが
、融点が高く溶解性に乏しいために加工することが極め
て困難である。
On the other hand, in recent years, thermotropic liquid crystal polymers have been developed as high-strength, high-durability polymeric materials as molding materials, but they are extremely difficult to process due to their high melting points and poor solubility.

〔発明の概要〕[Summary of the invention]

本発明は上述した点に鑑みてなされたものであり、放射
線や紫外線などのエネルギー線の照射による重合架橋に
よって、力学的や熱的等の諸性質において従来にない特
徴を有する硬化物を得ることができ、さらに加工性にも
優れた工木ルギー線硬化性材料を提供することを目的と
している。
The present invention has been made in view of the above-mentioned points, and aims to obtain a cured product having unprecedented mechanical and thermal properties by polymerization crosslinking by irradiation with energy rays such as radiation and ultraviolet rays. The purpose of the present invention is to provide a Lugie wire-curable material for engineered wood that can be used in a variety of ways, and that also has excellent workability.

このような目的を達成するために、本発明に係るエネル
ギー線硬化材料は、メソーゲン基と、少なくとも2個以
上のエネルギー線反応性基が、スペーサーを介して骨格
構造に結合された硬化性化合物を含有してなることを特
徴としている。
In order to achieve such an object, the energy ray curable material according to the present invention comprises a curable compound in which a mesogen group and at least two or more energy ray reactive groups are bonded to a skeletal structure via a spacer. It is characterized by containing.

本発明の硬化性材料は、極めて高い配向性、場合によっ
ては良好な液晶性を示すと共に低融点でかつ一般の溶媒
に可溶であることを特徴としている。さらに、本発明の
硬化性材料を従来の放射線及び紫外線硬化材料と組み合
わせて用いることによって幅広い物性を発現させること
が可能である。
The curable material of the present invention is characterized by exhibiting extremely high orientation and, in some cases, good liquid crystallinity, as well as having a low melting point and being soluble in common solvents. Furthermore, by using the curable material of the present invention in combination with conventional radiation- and ultraviolet-curable materials, it is possible to develop a wide range of physical properties.

〔発明の詳細な説明〕[Detailed description of the invention]

以下、本発明を実施例も含めて更に詳細に説明する。 Hereinafter, the present invention will be described in further detail including Examples.

本発明の硬化性材料は、従来の液晶高分子の骨格構造と
して用いられてきたメソーゲン基、例えば、ビフェニル
、ターフェニル、アゾベンゼン、ベンジリデンアニリン
、フェニルベンゾエート、ベンゾイルアニリン、スチル
ベン、トランス−シクロヘキサン、ペンジデンアセトフ
エノン、ベンジリデンアジン、ナフタレン等を、少なく
とも2個以上のエネルギー線反応性基、例えば、(メタ
)アクリロイル基、メルカプト基、ビニル基、シンナモ
イル基、プロパギル基、ジアセチレン基等とメチレン鎖
、オキシエチレン鎖、オキシプロピレン鎖、オキシテト
ラメチレン鎖、シロキサン鎖等のスペーサーを介して化
学的に結合させることによって作製されうる。但し、メ
ルカプト基を結合した化合物にあっては、ビニル基ある
いは(メタ)アクリロイル基を有する化合物と混合して
用いることが特に好ましい。
The curable material of the present invention uses mesogenic groups that have been used as the skeleton structure of conventional liquid crystal polymers, such as biphenyl, terphenyl, azobenzene, benzylideneaniline, phenylbenzoate, benzoylaniline, stilbene, trans-cyclohexane, penzylidene. Acetophenone, benzylideneazine, naphthalene, etc., with at least two or more energy ray-reactive groups, such as (meth)acryloyl group, mercapto group, vinyl group, cinnamoyl group, propargyl group, diacetylene group, etc., and a methylene chain, It can be produced by chemically bonding via a spacer such as an oxyethylene chain, oxypropylene chain, oxytetramethylene chain, or siloxane chain. However, it is particularly preferable to use a compound having a mercapto group in combination with a compound having a vinyl group or a (meth)acryloyl group.

本明細書において、エネルギー線は、α線、β線、γ線
、電子線等の通常の放射線の他に紫外線や熱エネルギー
をも包含する。
In this specification, energy rays include not only normal radiation such as alpha rays, beta rays, gamma rays, and electron beams, but also ultraviolet rays and thermal energy.

メソーゲン基は、高い配向性を得るために導入されるの
であって、公知の化学物質だけでも置換基も含め多数存
在するが、そのいずれであってもよい。スペーサーは、
メソーゲン基と反応性基を結合するために用いられるが
、その壜さ、種類、対称性等によって配向性、溶解性、
融解性等が支配されるため、メソーゲン基の種類との組
合せで適宜選択され得る。反応性基は、エネルギー線に
よって架橋されてはじめて硬化物の物性を発現させるこ
とができるので、この点からすると反応性に優れた(メ
タ)アクリロイル基が最も好ましい。
The mesogen group is introduced in order to obtain high orientation, and there are many known chemical substances and substituents, and any of them may be used. The spacer is
It is used to bond mesogen groups and reactive groups, but depending on the size, type, symmetry, etc., the orientation, solubility,
Since it is controlled by the melting property and the like, it can be appropriately selected in combination with the type of mesogen group. Since the reactive group can exhibit the physical properties of the cured product only after being crosslinked by energy rays, from this point of view, a (meth)acryloyl group with excellent reactivity is most preferable.

また、紫外線を用いるような場合にあっては、−般の光
重合開始剤を必要とする場合もある。
Further, in cases where ultraviolet rays are used, a general photopolymerization initiator may be required.

これら3種の構成要素の化学結合様式としては、エーテ
ル結合、エステル結合、ウレタン結合、アミド結合のい
ずれを用いても良いが、溶解性、融解性を考慮して選択
する必要がある。このようにして調製された硬化性材料
は、液晶性を有することが硬化物の物性の向上という観
点から好ましい。
As for the chemical bonding mode of these three constituent elements, any of ether bonds, ester bonds, urethane bonds, and amide bonds may be used, but they must be selected in consideration of solubility and meltability. The curable material thus prepared preferably has liquid crystallinity from the viewpoint of improving the physical properties of the cured product.

次に本発明の硬化性材料の具体的な構成ならびに調製方
法について説明する。
Next, the specific structure and preparation method of the curable material of the present invention will be explained.

本発明に係る硬化性材料の主要成分として用い得る重合
性2官能アクリレートモノマーとして、メソーゲン基が
ビフェニル基の場合を示すと、下記一般式(I)で表さ
れ得る。
In the case where the mesogen group is a biphenyl group, the polymerizable bifunctional acrylate monomer that can be used as the main component of the curable material according to the present invention can be represented by the following general formula (I).

(I) (但し、上式(1)中、R1は、−Hまたは−CHであ
り、R2は、無置換基であるか、エ−チル結合、アミド
結合、エステル結合またはウレタン結合の少なくとも1
種を有する炭化水素括であり、n−2〜11である。) 上記重合性アクリレートモノマーは、液晶性を付与する
ことができるメソーゲン基を、比較的分子二の低いメチ
レンスペーサーを介して(メタ)アクリレートと結合さ
せ、メチレン基の数によっては液晶性をも有するアクリ
レートモノマーを合成することによって得られる。
(I) (However, in the above formula (1), R1 is -H or -CH, and R2 is an unsubstituted group or at least one of an ethyl bond, an amide bond, an ester bond, or a urethane bond.
It is a hydrocarbon group having species, and is n-2 to 11. ) The above polymerizable acrylate monomer combines mesogen groups capable of imparting liquid crystallinity with (meth)acrylate via a methylene spacer with a relatively low molecular weight, and depending on the number of methylene groups, also has liquid crystallinity. Obtained by synthesizing acrylate monomers.

この具体例においては、上記一般式(1)において、R
2は、好ましくは、下記の基すなわち、−CH−CH(
OH)−CH2−0−1−(CH2) m−NH−CO
−0− (m=2〜4)、 から選ぶことができる。上記例においては、R2の種類
に応じて種々の性質を有する重合体を得ることが可能な
モノマーが得られる。
In this specific example, in the above general formula (1), R
2 is preferably the following group, namely -CH-CH(
OH)-CH2-0-1-(CH2) m-NH-CO
-0- (m=2 to 4), can be selected from. In the above examples, monomers are obtained that allow polymers with various properties to be obtained depending on the type of R2.

また、上記の重合性アクリレートモノマーにおいては、
上記一般式(I)中のnが奇数の場合に、液晶相として
安定性に優れたものが得られるという傾向がある。
In addition, in the above polymerizable acrylate monomer,
When n in the above general formula (I) is an odd number, there is a tendency that a liquid crystal phase with excellent stability can be obtained.

次に、上記の重合体性アクリレートモノマーの製造方法
について説明する。
Next, a method for producing the above polymeric acrylate monomer will be explained.

まず、下記式(1)の化合物、 をNa0HSK2CO3等の塩基性触媒を用いて、下記
式(2)の化合物 X−(CH2) n−0H (但し、X二C1,Br、I% n:2〜11)・・・
(2) と反応させて、下記式(3)を得る・ ・・・(3) この化合物(3)と、たとえば、(メタ)アクリル酸ク
ロライド、(メタ)アクリル酸、グリシジル(メタ)ア
クリレート、イソシアネートエチル(メタ)アクリレー
ト、イソシアネートブチル(メタ)アクリレート、2−
ヒドロキシエチル(メタ)アクリレート/2.4−トル
イレンジイソシアネート付加体、2−ヒドロキシエチル
(メタ)アクリレート/イソホロンジイソシアネート付
加体などを適当な触媒存在下で反応させることによって
目的とする前記一般式(I)の新規化合物が得られる。
First, a compound of the following formula (1) is converted to a compound of the following formula (2) using a basic catalyst such as Na0HSK2CO3 ~11)...
(2) to obtain the following formula (3)... (3) This compound (3) and, for example, (meth)acrylic acid chloride, (meth)acrylic acid, glycidyl (meth)acrylate, Isocyanate ethyl (meth)acrylate, isocyanate butyl (meth)acrylate, 2-
The target general formula (I ) new compounds are obtained.

なお、上記製造方法において、n−4の化合物を得る場
合においては、通常、上記式(2)の化合物の一〇H基
を常法に従って保護基化したのちに上記式(1)の化合
物と反応させることが、好ましくない環化反応を防止し
収率を向上させる上で好ましい。
In addition, in the above production method, when obtaining the compound n-4, the 10H group of the compound of formula (2) above is usually converted into a protective group according to a conventional method, and then the compound of formula (1) is combined with the compound of formula (1) above. It is preferable to carry out the reaction in order to prevent undesirable cyclization reactions and improve the yield.

上記の様にして得られる重合性2官能アクリレートモノ
マーは、それ自体、溶媒溶解性あるいは溶融性にすぐれ
ているので、材料としての使用に際しては、溶媒に溶か
してコーティングした後、あるいは溶融成形した後、放
射線、紫外線の照射あるいは熱エネルギーの印加、ある
いは触媒の添加によって重合架橋が生じ硬化され得る。
The polymerizable bifunctional acrylate monomer obtained as described above itself has excellent solvent solubility or meltability, so when using it as a material, it should be dissolved in a solvent and coated, or after melt molding. Polymerization crosslinking can be caused and cured by irradiation with radiation, ultraviolet rays, application of thermal energy, or addition of a catalyst.

また、上記の重合性2官能アクリレートモノマーは、そ
れ自体、液晶ともなり得るが、他の液晶化合物との相溶
性にもすぐれているので、他の液晶化合物との混合物と
しても用いられ得る。この場合、これを所望状態に架橋
させることによって、2次元的ないし3次元的ミクロ構
造を有する液晶構造体を形成することができ、これらの
構造体は耐熱性にすぐれると共に高弾性率、高強度の構
造体となり得る。
Further, the above-mentioned polymerizable bifunctional acrylate monomer can itself become a liquid crystal, but since it has excellent compatibility with other liquid crystal compounds, it can also be used as a mixture with other liquid crystal compounds. In this case, by crosslinking this to a desired state, it is possible to form a liquid crystal structure having a two-dimensional or three-dimensional microstructure, and these structures have excellent heat resistance, high elastic modulus, and high It can be a strong structure.

上記の様に、本発明の硬化性材料は、溶媒に溶解してコ
ーテイング後、あるいは融解して成形した後、エネルギ
ー線を照射することによって硬化することができるが、
溶解状態でエネルギー線を照射してもよい。特に、液晶
性を示す硬化材料の場合、液晶状態で照射すること、液
晶状態で電場をかけて配向させたまま、あるいは、その
まま冷却して照射することが好ましい。その方法によっ
て、メソーゲン基による配向状態が保持されたままで架
橋し、物性が向上する。さらに、公知の放射線および紫
外線硬化材料、高分子材料と混合して用いることができ
る。
As mentioned above, the curable material of the present invention can be cured by irradiating energy rays after being dissolved in a solvent and coated, or after being melted and molded.
Energy rays may be irradiated in a dissolved state. In particular, in the case of a curable material exhibiting liquid crystallinity, it is preferable to irradiate the material in the liquid crystal state, or while applying an electric field to align the material in the liquid crystal state, or to irradiate the material after cooling as it is. By this method, crosslinking is performed while maintaining the orientation state due to mesogen groups, and physical properties are improved. Furthermore, it can be used in combination with known radiation and ultraviolet curing materials and polymeric materials.

放射線源としては、α線、β線、γ線、電子線、および
紫外線を用いることができる。本発明の硬化材料は、透
明性が悪いため、透過力の大きいγ線、電子線を用いる
ことが好ましいが、溶解状態ではその限りではない。他
方、硬化手段は放射線、紫外線以外にも、反応性基に応
じた触媒を用いて、場合によっては無触媒で熱硬化する
ことができる。
As a radiation source, alpha rays, beta rays, gamma rays, electron beams, and ultraviolet rays can be used. Since the cured material of the present invention has poor transparency, it is preferable to use gamma rays or electron beams that have large penetrating power, but this is not the case in a dissolved state. On the other hand, as a curing means, in addition to radiation and ultraviolet rays, thermal curing can be performed using a catalyst depending on the reactive group, or in some cases without a catalyst.

本発明の硬化材料を用いて得られた硬化物は、力学的、
熱的、光学的、あるいは電気的に優れた性質を示す上、
加工性に優れているため、フィルム、シート、木材、金
属等のコーティング材料、プラスティック成形材料等幅
広い用途に使用できる。
The cured product obtained using the cured material of the present invention has mechanical,
In addition to exhibiting excellent thermal, optical, or electrical properties,
Because it has excellent processability, it can be used in a wide range of applications, including coating materials for films, sheets, wood, and metals, and plastic molding materials.

以下、本発明を実施例によって説明するが、本発明はこ
れら実施例よって制限されるものではない。
EXAMPLES The present invention will be explained below with reference to Examples, but the present invention is not limited by these Examples.

実施例1 4.4′ −ビフェノールlao+ に対して6−クロ
ロ−1−ヘキサノール2.  liolを加え、NaO
H触媒下、エタノール中で反応させた後、再結晶法で精
製して4.4’  −(ω−ヒドロキシへキシルオキシ
)ビフェノール[13を得た。次いで、CI)liol
に対してアクリル酸クロライド2.  liolをトリ
エチルアミン触媒下、ジメチルホルムアミド中で反応さ
せた。カラム(シリカゲル、塩化メチレン展開剤)で分
離精製後、再結晶により目的とする4、4’  −(ア
クリロイルオキシへキシルオキシ)ビフェノール(DA
HB)を得た。下記にその化学構造を示す。
Example 1 6-chloro-1-hexanol 2.4'-biphenol lao+ versus 6-chloro-1-hexanol. Add liol, NaO
After reacting in ethanol under H catalyst, the product was purified by a recrystallization method to obtain 4.4'-(ω-hydroxyhexyloxy)biphenol [13]. Then CI)liol
against acrylic acid chloride 2. liol was reacted in dimethylformamide under triethylamine catalysis. After separation and purification using a column (silica gel, methylene chloride developer), the desired 4,4'-(acryloyloxyhexyloxy)biphenol (DA) is obtained by recrystallization.
HB) was obtained. Its chemical structure is shown below.

この化合物をクロロホルムに溶解して、厚さ15μmと
なるようにポリエチレンテレフタレートフィルムに塗布
乾燥後、窒素雰囲気下で電子線を30Mrad照射した
。比較のため、液状の放射線及び紫外線硬化材料である
エポキシアクリレート(エピコート828のアクリロイ
ル化したもの)を同様にして硬化した。
This compound was dissolved in chloroform, coated on a polyethylene terephthalate film to a thickness of 15 μm, dried, and then irradiated with an electron beam of 30 Mrad under a nitrogen atmosphere. For comparison, an epoxy acrylate (acryloylated version of Epikote 828), a liquid radiation and UV curable material, was similarly cured.

エポキシアクリレートの硬化フィルムは折り曲げると破
壊されるのに対して、DAHBの硬化フィルムは破壊す
ることはなかった。しかも、示差走差熱量分析により軟
化温度を測定したところ、エポキシアクリレートの硬化
フィルムが約120℃を示したのに対し、DAHB硬化
物は約255℃まで変化が認められず、135℃も耐熱
性が向上した。
The cured film of epoxy acrylate broke when bent, whereas the cured film of DAHB did not break. Moreover, when the softening temperature was measured by differential scanning calorimetry, the cured film of epoxy acrylate showed a temperature of about 120°C, whereas the cured DAHB product showed no change up to about 255°C, and it is heat resistant even at 135°C. has improved.

出願人代理人  佐  藤  −雄Applicant's representative: Mr. Sato

Claims (1)

【特許請求の範囲】 1、メソーゲン基と、少なくとも2個以上のエネルギー
線反応性基が、スペーサーを介して骨格構造に結合され
た硬化性化合物を含有してなることを特徴とする、エネ
ルギー線硬化性材料。 2、前記エネルギー線反応性基が、(メタ)アクリロイ
ル基、ビニル基、メルカプト基、プロパギル基およびジ
アセチレン基からなる群から選ばれることを特徴とする
、請求項1のエネルギー線硬化性材料。 3、エネルギー線が、放射線ないし紫外線からなる、請
求項1のエネルギー線硬化性材料。
[Claims] 1. An energy beam characterized by containing a curable compound in which a mesogen group and at least two or more energy beam-reactive groups are bonded to a skeletal structure via a spacer. Curable material. 2. The energy ray-curable material according to claim 1, wherein the energy ray-reactive group is selected from the group consisting of a (meth)acryloyl group, a vinyl group, a mercapto group, a propargyl group, and a diacetylene group. 3. The energy ray curable material according to claim 1, wherein the energy ray consists of radiation or ultraviolet rays.
JP63099886A 1988-04-22 1988-04-22 Energy ray curable material Expired - Lifetime JP2716451B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099886A JP2716451B2 (en) 1988-04-22 1988-04-22 Energy ray curable material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099886A JP2716451B2 (en) 1988-04-22 1988-04-22 Energy ray curable material

Publications (2)

Publication Number Publication Date
JPH01271402A true JPH01271402A (en) 1989-10-30
JP2716451B2 JP2716451B2 (en) 1998-02-18

Family

ID=14259266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099886A Expired - Lifetime JP2716451B2 (en) 1988-04-22 1988-04-22 Energy ray curable material

Country Status (1)

Country Link
JP (1) JP2716451B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508882A (en) * 1994-11-23 1998-09-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for coating and printing a support
JP2007106998A (en) * 2005-09-26 2007-04-26 Dejima Tech Bv Ultraviolet-curable urethane-(meth)acrylate polymer
WO2009110631A1 (en) * 2008-03-04 2009-09-11 国立大学法人山梨大学 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
JPWO2018096726A1 (en) * 2016-11-28 2019-06-24 Toyo Tire株式会社 Photocrosslinkable liquid crystalline polymer, and method of producing photocrosslinkable liquid crystalline polymer
JPWO2018096724A1 (en) * 2016-11-28 2019-06-24 Toyo Tire株式会社 Photocrosslinkable liquid crystalline polymer, and method of producing photocrosslinkable liquid crystalline polymer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595241A (en) * 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト Radiation polymerizable mixture
JPS595240A (en) * 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト Radiation polymerizable mixture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS595241A (en) * 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト Radiation polymerizable mixture
JPS595240A (en) * 1982-06-21 1984-01-12 ヘキスト・アクチエンゲゼルシヤフト Radiation polymerizable mixture

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10508882A (en) * 1994-11-23 1998-09-02 ビーエーエスエフ アクチェンゲゼルシャフト Method for coating and printing a support
JP2007106998A (en) * 2005-09-26 2007-04-26 Dejima Tech Bv Ultraviolet-curable urethane-(meth)acrylate polymer
WO2009110631A1 (en) * 2008-03-04 2009-09-11 国立大学法人山梨大学 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
JP2009211942A (en) * 2008-03-04 2009-09-17 Univ Of Yamanashi Proton transport material, its manufacturing material, ion exchanger using it, membrane-electrode assembly, and fuel cell
KR20100128289A (en) * 2008-03-04 2010-12-07 고쿠리츠다이가쿠호징 야마나시다이가쿠 Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material
US8338054B2 (en) 2008-03-04 2012-12-25 University Of Yamanashi Proton transporting material, starting material thereof, ion exchange membrane, membrane electrolyte assembly, and fuel cell using the same
JPWO2018096726A1 (en) * 2016-11-28 2019-06-24 Toyo Tire株式会社 Photocrosslinkable liquid crystalline polymer, and method of producing photocrosslinkable liquid crystalline polymer
JPWO2018096724A1 (en) * 2016-11-28 2019-06-24 Toyo Tire株式会社 Photocrosslinkable liquid crystalline polymer, and method of producing photocrosslinkable liquid crystalline polymer

Also Published As

Publication number Publication date
JP2716451B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JPH01272551A (en) Polymerizable bifunctional acrylate monomer
AU2003272716B2 (en) Liquid uncrosslinked michael addition oligomers prepared in the presence of a catalyst having both an epoxy moiety and a quaternary salt
BRPI1012721B1 (en) THERMOSTABLE COMPOSITIONS CONTAINING ISOCIANURATE RINGS
JPH01271402A (en) Material curable with energetic radiation
JPH03106918A (en) Ultraviolet-curable resin composition
JPH0341043A (en) Polymerization of liquid crystal monomer
JPH11181055A (en) Curable composition and its production
JP4010583B2 (en) Monofunctional polymerizable compound and liquid crystalline polymer comprising the polymer
JPH1160540A (en) Aromatic ester (meth)acrylate dendrimer and curable resin composition
JP5620858B2 (en) Epoxy acrylate, acrylic composition, cured product and method for producing the same
JPS58138766A (en) Photo-setting type adhesive composition for glass
KR20020018685A (en) Curable composition
Brady Jr Volume change in the polymerization of spirocyclic monomers: causes, effects, and applications
JPS61145268A (en) Moisture-curing self-adhesive composition
US3733311A (en) Thermoset resin from glycidol and a cyclic anhydride
JP4643295B2 (en) Compound having one oxetanyl group and two carboxyl groups, polymer, radiation curable compound, and cured product
EP4293088A1 (en) Additive for epoxy adhesive, and structural epoxy adhesive composition comprising same
JPH0587539B2 (en)
JPS6099181A (en) Curable composition
JPS61192730A (en) Novel reactive oligomer
JPS61190519A (en) Novel urethane compound and production thereof
JPS63500183A (en) Polymerizable compositions for producing polymers with good thermal properties, methods for obtaining them and their uses
JPS61192731A (en) Novel reactive oligomer
JPH05117326A (en) Curable resin and composition containing the same
JPH0657736B2 (en) Epoxy methacrylate resin and method for producing the same

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11