JPH01270742A - Charging circuit for storage battery - Google Patents

Charging circuit for storage battery

Info

Publication number
JPH01270742A
JPH01270742A JP9672488A JP9672488A JPH01270742A JP H01270742 A JPH01270742 A JP H01270742A JP 9672488 A JP9672488 A JP 9672488A JP 9672488 A JP9672488 A JP 9672488A JP H01270742 A JPH01270742 A JP H01270742A
Authority
JP
Japan
Prior art keywords
circuit
charging
voltage
storage battery
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9672488A
Other languages
Japanese (ja)
Other versions
JP2610298B2 (en
Inventor
Nobuo Shiojima
塩島 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd filed Critical Toshiba Battery Co Ltd
Priority to JP63096724A priority Critical patent/JP2610298B2/en
Publication of JPH01270742A publication Critical patent/JPH01270742A/en
Application granted granted Critical
Publication of JP2610298B2 publication Critical patent/JP2610298B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PURPOSE:To obtain a suitable charging amount without excessive or insufficient charge by controlling the charge of a storage battery on the basis of the detected value of the output voltage of a differentiator for obtaining a differentiated value for the timing change of the terminal voltage of the battery. CONSTITUTION:When a start pulse generated at the time of turning ON a power source of a charging circuit is applied to the set terminal S of an FF 11, an output terminal Q becomes a high level, and a charge controller 2 becomes a quickly charging state. The output voltage Vout of a differentiator 4 for differentiating the terminal voltage VB of a storage battery 1 is input to a detector 9, and compared with a reference voltage Vth1 by a voltage comparator 10. When it becomes the Vout < the Vth1 at the end of charging (point P1), the output of the detector 9 becomes a low level. Accordingly, the FF 11 becomes a reset state. Since the output terminal Q of the FF 11 becomes a low level in the reset state, the controller 2 becomes a charge control state to stop charging of the battery 1 or to reduce charging current.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は蓄電池の充電回路に係り、特に蓄電池の端子電
圧またはこれに比例した電圧の時間変化に対する微分値
を検出して充電を制御する充電回路に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a charging circuit for a storage battery, and particularly to a charging circuit that controls charging by detecting a terminal voltage of a storage battery or a differential value with respect to a time change in a voltage proportional to this. Regarding circuits.

(従来の技術) 蓄電池の充電方法としては種々のものが知られているが
、特に急速充電に用いられるものとして、充電時におけ
る蓄電池の端子電圧の時間変化に対する微分値を検出し
て充電を制御する(充電を停止または充電電流を減少さ
せる)方法がある。この方法の具体例は、例えば特公昭
61−5339号公報に記載されている。この従来技術
では電池の両端にコンデンサと抵抗の直列回路からなる
微分回路を接続し、この微分回路の出力電圧(抵抗とコ
ンデンサとの接続点の電圧)が、ピーク前に発生する谷
点電圧より低い所定値まで低下した時点で充電を停止さ
せるようにしている。
(Prior art) Various methods are known for charging storage batteries, but one method used in particular for rapid charging is to control charging by detecting the differential value of the terminal voltage of the storage battery with respect to time changes during charging. There is a way to stop charging or reduce charging current. A specific example of this method is described in, for example, Japanese Patent Publication No. 61-5339. In this conventional technology, a differentiating circuit consisting of a series circuit of a capacitor and a resistor is connected across the battery, and the output voltage of this differentiating circuit (the voltage at the connection point between the resistor and the capacitor) is higher than the trough voltage that occurs before the peak. Charging is stopped when the voltage drops to a low predetermined value.

(発明が解決しようとする課題) 従来技術において抵抗とコンデンサの直列回路からなる
微分回路の出力電圧v outは、抵抗の値をR,コン
デンサの容量値をC1蓄電池の端子電圧をVBとすると
、次式(1)で表される。
(Problem to be Solved by the Invention) In the prior art, the output voltage v out of a differentiator circuit consisting of a series circuit of a resistor and a capacitor is as follows: where R is the resistance value, C is the capacitance value of the capacitor, and VB is the terminal voltage of the storage battery. It is expressed by the following formula (1).

Vout −R−C(dVB/clt −dVout/
dt) −(1)端子電圧VBの正確な微分値は式(1
)の右辺第1項であり、第2項は誤差分である。この誤
差分の影響はRCO値が大きくなるに従って大きくなる
Vout -R-C (dVB/clt -dVout/
dt) - (1) The exact differential value of the terminal voltage VB is given by the formula (1
), and the second term is the error. The influence of this error increases as the RCO value increases.

ここで、蓄電池の端子電圧VBの時間変化は一般に小さ
いから、その微分値を微分回路で検出するためには、R
Cの値(時定数)を数10秒と著しく大きくする必要が
ある。この結果、上記の誤差分が大きくなってしまい、
VBの正確な微分出力が得られない。
Here, since the time change of the terminal voltage VB of the storage battery is generally small, in order to detect its differential value with a differentiator circuit, R
It is necessary to significantly increase the value of C (time constant) to several tens of seconds. As a result, the above error increases,
Accurate differential output of VB cannot be obtained.

従って蓄電池の充電量を適切に制御することが難しくば
かりでなく、充電初期から微分回路の出力電圧V ou
tが所定値に達してしまい、著しい充電不足となること
があった。
Therefore, it is not only difficult to appropriately control the amount of charge of the storage battery, but also the output voltage of the differentiator circuit V ou
There have been cases where t has reached a predetermined value, resulting in a significant charging shortage.

(課題を解決するための手段) 本発明に係る蓄電池の充電回路は、蓄電池の端子電圧ま
たはそれに比例した電圧の時間変化に対する微分値を得
る微分回路を、演算増幅器と、この演算増幅器の反転入
力端子と微分回路の入力端子との間に接続されたコンデ
ンサと、演算増幅器の反転入力端子と出力端子との間に
接続された抵抗とを主体として構成し、この微分回路の
出力電圧を検出する検出回路の出力に基づいて蓄電池の
充電を制御するようにしたものである。
(Means for Solving the Problems) A storage battery charging circuit according to the present invention includes a differential circuit for obtaining a differential value with respect to a time change of a terminal voltage of a storage battery or a voltage proportional to the terminal voltage, an operational amplifier, and an inverting input of the operational amplifier. It mainly consists of a capacitor connected between the terminal and the input terminal of the differentiating circuit, and a resistor connected between the inverting input terminal and the output terminal of the operational amplifier, and detects the output voltage of this differentiating circuit. The charging of the storage battery is controlled based on the output of the detection circuit.

(作 用) 本発明において微分回路の出力電圧は、抵抗の値をR,
コンデンサの容量値をC1蓄電池の端子電圧をVBとす
ると、C−R(dV B/dt) 、すなわちVBの正
確な微分値に比例した値となり、従来技術における微分
回路の出力に含まれていた微分回路自体の出力の微分値
に相当する誤差分の項は含まれない。
(Function) In the present invention, the output voltage of the differentiating circuit is determined by setting the resistance value to R,
If the capacitance value of the capacitor is C1 and the terminal voltage of the storage battery is VB, it becomes C-R (dV B/dt), that is, a value proportional to the exact differential value of VB, which was included in the output of the differential circuit in the conventional technology. An error term corresponding to the differential value of the output of the differentiating circuit itself is not included.

従って、この微分回路の出力電圧V outが例えばピ
ーク前に発生する谷点電圧より低い所定値まで低下する
か、またはv outが所定値に達するか、あるいはv
 outの最大値から所定値ないし所定率だけ低下した
ことを検出回路で検出して充電を制御すれば、適切な充
電量が得られる。
Therefore, the output voltage V out of this differentiating circuit decreases to a predetermined value lower than the trough voltage that occurs before the peak, or v out reaches a predetermined value, or v
If the detection circuit detects that out has decreased by a predetermined value or a predetermined rate from the maximum value and controls charging, an appropriate amount of charge can be obtained.

(実施例) 第1図は本発明の一実施例に係る蓄電池の充電回路を示
したものである。
(Embodiment) FIG. 1 shows a charging circuit for a storage battery according to an embodiment of the present invention.

第1図において、蓄電池1は充電制御回路2を介して充
電用電源3に接続されている。充電制御回路2は例えば
スイッチング回路によって構成される。充電用電源2は
交流電源を整流して直流を得る直流電源か、または他の
比較的大容量の電池が使用される。
In FIG. 1, a storage battery 1 is connected to a charging power source 3 via a charging control circuit 2. As shown in FIG. The charging control circuit 2 is composed of, for example, a switching circuit. As the charging power source 2, a DC power source that rectifies an AC power source to obtain a direct current, or another relatively large capacity battery is used.

蓄電池1にはさらに微分回路4が接続されている。この
微分回路4は従来技術におけるような単なるCR微分回
路でなく、微分演算回路5と、反転増幅回路6とで構成
されている。
A differentiation circuit 4 is further connected to the storage battery 1 . This differentiating circuit 4 is not just a CR differentiating circuit as in the prior art, but is composed of a differential calculation circuit 5 and an inverting amplifier circuit 6.

微分演算回路5は非反転入力端子が接地された演算増幅
器7と、この演算増幅器7の反転入力端子と微分回路4
の入力端子a(蓄電池1の一端)との間に接続された抵
抗R1,コンデンサC1の直列回路と、演算増幅器7の
反転入力端子と出力端子との間に接続された抵抗R2,
コンデンサC2の並列回路とで構成され、演算増幅器7
の出力端子が微分演算回路5の出力端子すとなっている
。なお、抵抗R1,コンデンサC2は微分演算回路5の
動作を安定化するためのもので、必ずしも必要なもので
はない。
The differential calculation circuit 5 includes an operational amplifier 7 whose non-inverting input terminal is grounded, and an inverting input terminal of the operational amplifier 7 and the differential circuit 4.
A series circuit of a resistor R1 and a capacitor C1 is connected between the input terminal a (one end of the storage battery 1), and a resistor R2 is connected between the inverting input terminal and the output terminal of the operational amplifier 7.
It consists of a parallel circuit of a capacitor C2, and an operational amplifier 7.
The output terminal of the differential calculation circuit 5 is the output terminal of the differential calculation circuit 5. Note that the resistor R1 and capacitor C2 are provided to stabilize the operation of the differential calculation circuit 5, and are not necessarily necessary.

一方、反転増幅回路6は非反転入力端子が接地された演
算増幅器8と、この演算増幅器8の反転入力端子と反転
増幅回路6の入力端子Cとの間に接続された抵抗R3、
および演算増幅器8の反転入力端子と出力端子との間に
接続された抵抗R4により構成され、演算増幅器8の出
力端子が反転増幅回路6の出力端子dとなっている。
On the other hand, the inverting amplifier circuit 6 includes an operational amplifier 8 whose non-inverting input terminal is grounded, a resistor R3 connected between the inverting input terminal of the operational amplifier 8 and the input terminal C of the inverting amplifier circuit 6;
and a resistor R4 connected between the inverting input terminal and the output terminal of the operational amplifier 8, and the output terminal of the operational amplifier 8 serves as the output terminal d of the inverting amplifier circuit 6.

ここで、蓄電池1の端子電圧をVBとすると、微分演算
回路5の出力電圧Vlは、 Vl −−C1−R2(dVB/dt)であり、また反
転増幅回路6の増幅率AはA−−R4/R3であるから
微分回路4の出力電圧v outは次式(3)で表され
る。
Here, if the terminal voltage of the storage battery 1 is VB, the output voltage Vl of the differential calculation circuit 5 is Vl - - C1 - R2 (dVB/dt), and the amplification factor A of the inverting amplifier circuit 6 is A - - Since R4/R3, the output voltage v out of the differentiating circuit 4 is expressed by the following equation (3).

Vout −A−C1・R2(dVB/dt)   =
13)これは式(2)と同一(C−C1,R−R2)で
あり、v outは誤差分の項を含まず、VBの時間変
化に対する微分値に正確に比例した値となる。
Vout-A-C1・R2(dVB/dt)=
13) This is the same as Equation (2) (C-C1, R-R2), and v out does not include an error term and is a value exactly proportional to the differential value of VB with respect to time change.

微分回路4の出力端子(反転増幅回路6の出力端子d)
は、検出回路9の入力端子eに接続されている。検出回
路9はこの例では電圧比較器10により構成され、電圧
比較器10の非反転入力端子は検出回路9の入力端子e
に、出力端子は検出回路9の出力端子fに接続されてい
る。また、電圧比較器10の反転入力端子には基準電圧
v thiが印加されている。
Output terminal of the differentiating circuit 4 (output terminal d of the inverting amplifier circuit 6)
is connected to the input terminal e of the detection circuit 9. In this example, the detection circuit 9 is constituted by a voltage comparator 10, and the non-inverting input terminal of the voltage comparator 10 is connected to the input terminal e of the detection circuit 9.
In addition, the output terminal is connected to the output terminal f of the detection circuit 9. Further, a reference voltage v thi is applied to the inverting input terminal of the voltage comparator 10.

検出回路9の出力端子fは、フリップフロップ回路11
のリセット端子Rに接続されている。フリップフロップ
回路11のセット端子Sには、電源投入時やスイッチ等
の動作に連動して発生するスタートパルスが印加される
。フリップフロラ回路11の出力端子Qは、充電制御回
路2の制御入力端子に接続されている。
The output terminal f of the detection circuit 9 is connected to the flip-flop circuit 11.
is connected to the reset terminal R of. A start pulse is applied to the set terminal S of the flip-flop circuit 11, which is generated when the power is turned on or in conjunction with the operation of a switch or the like. An output terminal Q of the flip-flora circuit 11 is connected to a control input terminal of the charging control circuit 2.

充電制御回路2はフリップフロップ回路11の出力端子
Qが高レベルのとき急速充電状態となり、低レベルのと
き充電制御状態となる。充電制御状態では、蓄電池1の
充電を完全に停止させるか、または充電電流を減少させ
る。
The charging control circuit 2 enters a rapid charging state when the output terminal Q of the flip-flop circuit 11 is at a high level, and enters a charging control state when the output terminal Q is at a low level. In the charging control state, charging of the storage battery 1 is completely stopped or the charging current is reduced.

次に、第1図の充電回路の動作を第2図に示す電圧波形
を参照して説明する。
Next, the operation of the charging circuit shown in FIG. 1 will be explained with reference to the voltage waveform shown in FIG. 2.

充電回路の電源投入時やスイッチ等の動作に連動して発
生するスタートパルスがフリップフロップ回路11のセ
ット端子Sに加わると、フリップフロップ11の出力端
子Qは高レベルとなり、充電制御回路2は急速充電状態
となる。この状態では充電用電源3から蓄電池1に大電
流が供給され、急速充電が開始される。このとき蓄電池
1の端子電圧VBは、第2図(a)に示すように充電時
間の経過に伴い徐々に上昇する。充電が進んで充電末期
になるとVBは急激に上昇し、やがてピークに達し、そ
の後は次第に低下する。
When a start pulse generated when the charging circuit is powered on or in conjunction with the operation of a switch, etc. is applied to the set terminal S of the flip-flop circuit 11, the output terminal Q of the flip-flop 11 goes to a high level, and the charging control circuit 2 quickly It will be in a charging state. In this state, a large current is supplied from the charging power source 3 to the storage battery 1, and rapid charging is started. At this time, the terminal voltage VB of the storage battery 1 gradually increases as the charging time passes, as shown in FIG. 2(a). As charging progresses to the end of charging, VB rises rapidly, eventually reaches a peak, and then gradually decreases.

このような蓄電池1の端子電圧VBの変化に応じて、微
分回路4の出力電圧v outは第2図(b)のように
変化する。微分回路4の出力電圧V outは検出回路
9に入力され、電圧比較器1oで基準電圧V thlと
比較される。基準電圧v thtは微分回路4の出力電
圧V outがピーク(P点)となる前に発生する谷点
電圧VLより低い値に設定されている。充電末期になり
、V out < V thlになると(P1点)、検
出回路9の出力が低レベルとなるから、フリップフロッ
プ回路11はリセット状態となる。フリップフロップ回
路11の出力端子Qはリセット状態において低レベルと
なるから、充電制御回路2は充電制御状態となり、蓄電
池1の充電を停止させるか、または充電電流を減少させ
る。
In accordance with such changes in the terminal voltage VB of the storage battery 1, the output voltage v out of the differentiating circuit 4 changes as shown in FIG. 2(b). The output voltage V out of the differentiating circuit 4 is input to the detection circuit 9 and compared with the reference voltage V thl by the voltage comparator 1o. The reference voltage v tht is set to a value lower than the trough voltage VL that occurs before the output voltage V out of the differentiating circuit 4 reaches its peak (point P). At the end of charging, when V out < V thl (point P1), the output of the detection circuit 9 becomes low level, so the flip-flop circuit 11 enters the reset state. Since the output terminal Q of the flip-flop circuit 11 is at a low level in the reset state, the charging control circuit 2 enters the charging control state and stops charging the storage battery 1 or reduces the charging current.

このようにして1、本発明では蓄電池1の端子電圧VB
の時間変化に対する正確な微分値が微分回路4により得
られるので、微分回路4の出力電圧v outが基準電
圧V thlで与えられる設定、値より低下したとき充
電制御を行なうことにより、蓄電池1に充電不足等を生
じることなく、適切な量だけ充電することができる。
In this way, 1, in the present invention, the terminal voltage VB of the storage battery 1
Since an accurate differential value with respect to the time change of is obtained by the differentiating circuit 4, when the output voltage v out of the differentiating circuit 4 falls below the set value given by the reference voltage V thl, charging control is performed to charge the storage battery 1. It is possible to charge an appropriate amount without causing insufficient charging or the like.

本発明は上記実施例に限定されるものではなく、例えば
第1図では検出回路9における電圧比較器10の反転入
力端子に、微分回路4の出力電圧V outがピー22
点に達する前に発生する谷点電圧VLより低い基準電圧
V thlを印加しておき、Vout < Vthlの
とき充電制御を行なうようにしたが、検出回路9を第3
図〜第5図に示すように構成してもよい。
The present invention is not limited to the embodiments described above. For example, in FIG.
A reference voltage V thl that is lower than the valley point voltage VL that occurs before reaching the point Vout is applied, and charging control is performed when Vout < Vthl.
It may be configured as shown in FIGS.

第3図においては、検出回路9を構成する電圧比較器1
0の反転入力端子に微分回路4の出力端子を接続し、非
反転入力端子に基準電圧V th2を印加している。こ
の基準電圧V th2は第2図(b)に示すように、微
分回路4の出力電圧v outがピー22点に達する前
に発生する谷点電圧VLより高(、ピーク値vPより低
い値に設定されている。
In FIG. 3, the voltage comparator 1 constituting the detection circuit 9
The output terminal of the differentiating circuit 4 is connected to the inverting input terminal of 0, and the reference voltage V th2 is applied to the non-inverting input terminal. As shown in FIG. 2(b), this reference voltage V th2 is higher than the trough voltage VL that occurs before the output voltage V out of the differentiator circuit 4 reaches the peak value VP (and lower than the peak value vP). It is set.

この場合には、充電が進んで充電末期となり、v ou
t > v thzとなる第2図(b)の22点で充電
制御を行なえばよい。このようにすると、充電電流をさ
らに大きくしてより短時間(1時間未満)で充電する場
合に問題となるP点とPL点点間過充電を防ぐことがで
き、電池寿命を損なうことがない。
In this case, charging progresses to the final stage of charging, and v ou
Charging control may be performed at 22 points in FIG. 2(b) where t > v thz. In this way, it is possible to prevent overcharging between points P and PL, which is a problem when charging in a shorter time (less than 1 hour) by increasing the charging current, and the battery life is not impaired.

第4図は微分回路4の出力電圧v outと、このv 
outを微小電圧ΔV分だけ低い方向にシフトした電圧
の最大値を保持するピーク保持回路12の出力電圧Vh
lとを電圧比較器10で比較し、この電圧比較器10の
比較結果に基づいて、Vout<vhtとなる第2図(
b)の23点で充電制御を行なうようにしたものである
FIG. 4 shows the output voltage v out of the differentiating circuit 4 and this v
Output voltage Vh of the peak holding circuit 12 that holds the maximum value of the voltage obtained by shifting out in the lower direction by a minute voltage ΔV
1 is compared with the voltage comparator 10, and based on the comparison result of the voltage comparator 10, it is determined that Vout<vht as shown in FIG.
Charging control is performed at 23 points in b).

また、第5図は微分回路4の出力電圧V outと、こ
のv outを抵抗R5,R6によって分圧した電圧V
dの最大値を保持するピーク保持回路13の出力電圧V
 th2とを電圧比較器10で比較し、この電圧比較器
10の比較結果に基づいて、Volt<Vh2、すなわ
ち微分回路4の出力電圧Voutが所定率だけ低下する
第2図(b)の24点で充電制御を行なうようにしたも
のである。
In addition, FIG. 5 shows the output voltage V out of the differentiating circuit 4 and the voltage V out obtained by dividing this v out by resistors R5 and R6.
The output voltage V of the peak holding circuit 13 that holds the maximum value of d
th2 with the voltage comparator 10, and based on the comparison result of the voltage comparator 10, Volt<Vh2, that is, the 24 points in FIG. 2(b) where the output voltage Vout of the differentiating circuit 4 decreases by a predetermined rate. Charging control is performed using

なお、第4図および第5図の検出回路9をそれぞれ用い
た場合の充電制御点P3.P4は、ピーク点であるP点
に近く、かつ互いに接近している。
Note that the charging control point P3. when using the detection circuits 9 of FIGS. 4 and 5 respectively. P4 is close to point P, which is the peak point, and close to each other.

従って、これらの実施例によると、充電電流をより大き
くし、より短時間(例えば1時間未満)で充電を行なう
場合に問題となるP点とPL点点間過充電を防ぐことが
できる。これにより電池寿命を損なうことがなくなるだ
けでなく、微分回路4の出力電圧v outがピーク値
vPを過ぎて下降し始めた時点を検出しているため、充
Kmを適切にでき、かつより確実に充電制御を行なうこ
とが可能となる。
Therefore, according to these embodiments, it is possible to prevent overcharging between points P and PL, which is a problem when charging is performed in a shorter time (for example, less than one hour) by increasing the charging current. This not only prevents the battery life from being degraded, but also detects the point in time when the output voltage v out of the differentiator circuit 4 passes the peak value vP and begins to fall, so charging Km can be done appropriately and more reliably. This makes it possible to perform charging control.

なお、上記実施例では微分回路4を微分演算回路5と反
転増幅回路6とにより構成したが、反転増幅回路6を用
いず、微分演算回路5の出力を直接検出回路に入力して
もよい。その場合、検出回路において基準電圧の極性を
変えればよい。
In the above embodiment, the differentiator circuit 4 is constituted by the differential arithmetic circuit 5 and the inverting amplifier circuit 6, but the inverting amplifying circuit 6 may not be used and the output of the differential arithmetic circuit 5 may be input directly to the detection circuit. In that case, the polarity of the reference voltage may be changed in the detection circuit.

また、本発明に基づく充電制御は、例えばタイマー制御
・電圧制御・温度制御等の従来の各種の充電制御法と組
合わせて実施することもできる。
Further, the charging control based on the present invention can also be implemented in combination with various conventional charging control methods such as timer control, voltage control, and temperature control.

その他、本発明は要旨を逸脱しない範囲で種々変形して
実施することが可能である。
In addition, the present invention can be implemented with various modifications without departing from the scope.

(発明の効果) 本発明によれば、蓄電池の端子電圧またはそれに比例し
た電圧の時間変化に対する微分値を得る微分回路を、演
算増幅器とコンデンサおよび抵抗からなる微分演算回路
によって構成することによって、蓄電池の端子電圧の正
確な微分値に比例した値を得ることができるので、この
微分回路の出力電圧を検出する検出回路の出力に基づい
て蓄電池の充電を制御することで、過不足充電を起こす
ことがなく、常に適切な充電量が得られる。
(Effects of the Invention) According to the present invention, by configuring a differential circuit that obtains a differential value with respect to a time change in terminal voltage of a storage battery or a voltage proportional to the terminal voltage of a storage battery using a differential operation circuit consisting of an operational amplifier, a capacitor, and a resistor, It is possible to obtain a value proportional to the accurate differential value of the terminal voltage of the differential circuit, so by controlling the charging of the storage battery based on the output of the detection circuit that detects the output voltage of this differentiating circuit, it is possible to prevent over- or under-charging. There is no charge, and the appropriate amount of charge is always obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る蓄電池の充電回路の回
路図、第2図は同実施例の動作を説明するための電圧波
形図、第3図〜第5図は検出回路の他の構成例を示す図
である。 1・・・蓄電池、2・・・充電制御回路、3・・・充電
用電源、4・・・微分回路、5・・・微分演算回路、6
・・・反転増幅回路、7.8・・・演算増幅器、9・・
・検出回路。 出願人代理人 弁理士 鈴江武彦 第2図
Fig. 1 is a circuit diagram of a storage battery charging circuit according to an embodiment of the present invention, Fig. 2 is a voltage waveform diagram for explaining the operation of the embodiment, and Figs. It is a figure showing an example of composition. DESCRIPTION OF SYMBOLS 1... Storage battery, 2... Charging control circuit, 3... Charging power supply, 4... Differential circuit, 5... Differential calculation circuit, 6
... Inverting amplifier circuit, 7.8... Operational amplifier, 9...
・Detection circuit. Applicant's agent Patent attorney Takehiko Suzue Figure 2

Claims (1)

【特許請求の範囲】 蓄電池の端子電圧またはそれに比例した電圧の時間変化
に対する微分値を得る微分回路と、この微分回路の出力
電圧を検出する検出手段と、この検出手段の出力に基づ
いて前記蓄電池の充電を制御する充電制御手段とを備え
た蓄電池の充電回路において、 前記微分回路は演算増幅器と、この演算増幅器の反転入
力端子と前記微分回路の入力端子との間に接続されたコ
ンデンサと、前記演算増幅器の反転入力端子と出力端子
との間に接続された抵抗とを有することを特徴とする蓄
電池の充電回路。
[Scope of Claims] A differentiation circuit that obtains a differential value with respect to a time change in a terminal voltage of a storage battery or a voltage proportional to the voltage, a detection means for detecting the output voltage of the differentiation circuit, and a detection means for detecting the output voltage of the storage battery based on the output of the detection means. A storage battery charging circuit comprising: a charging control means for controlling charging of a storage battery, wherein the differentiating circuit includes an operational amplifier; a capacitor connected between an inverting input terminal of the operational amplifier and an input terminal of the differentiating circuit; A storage battery charging circuit comprising a resistor connected between an inverting input terminal and an output terminal of the operational amplifier.
JP63096724A 1988-04-21 1988-04-21 Battery charging circuit Expired - Lifetime JP2610298B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63096724A JP2610298B2 (en) 1988-04-21 1988-04-21 Battery charging circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63096724A JP2610298B2 (en) 1988-04-21 1988-04-21 Battery charging circuit

Publications (2)

Publication Number Publication Date
JPH01270742A true JPH01270742A (en) 1989-10-30
JP2610298B2 JP2610298B2 (en) 1997-05-14

Family

ID=14172682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63096724A Expired - Lifetime JP2610298B2 (en) 1988-04-21 1988-04-21 Battery charging circuit

Country Status (1)

Country Link
JP (1) JP2610298B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345162A (en) * 1991-09-19 1994-09-06 Toshiba Battery Co., Ltd. Charging circuit of secondary battery
JPH06315233A (en) * 1993-04-28 1994-11-08 Fujitsu Ltd Battery charge control method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542576A (en) * 1978-09-22 1980-03-25 Masami Umemori Rice plant growth promoting method by coloring growth water and coloring agent

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542576A (en) * 1978-09-22 1980-03-25 Masami Umemori Rice plant growth promoting method by coloring growth water and coloring agent

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5345162A (en) * 1991-09-19 1994-09-06 Toshiba Battery Co., Ltd. Charging circuit of secondary battery
JPH06315233A (en) * 1993-04-28 1994-11-08 Fujitsu Ltd Battery charge control method

Also Published As

Publication number Publication date
JP2610298B2 (en) 1997-05-14

Similar Documents

Publication Publication Date Title
US5449997A (en) Battery charging system having logarithmic analog-to-digital converter with automatic scaling of analog signal
US4246529A (en) Current integrating battery charger
JPH10214643A (en) Charging method of secondary battery
US4341988A (en) Voltage level detector for battery charger control circuit
US4290002A (en) Method and apparatus for controlling battery recharging
JPH01270742A (en) Charging circuit for storage battery
ATE127633T1 (en) METHOD AND DEVICE FOR CHARGING A BATTERY.
JPH05336679A (en) Charging circuit for secondary battery
JP3713828B2 (en) Charging method, charging device and charging control circuit
JPH04150734A (en) Charging circuit for secondary battery
JPH0295140A (en) Secondary battery charging circuit
JP2003032909A (en) Battery charger for secondary battery
JP3175839B2 (en) Charging device and charging method
JPS63206124A (en) Charger
JPH0588155U (en) Charging circuit
JPS6023733Y2 (en) Power supply voltage monitoring circuit
JPH028146B2 (en)
JPH01160328A (en) Recharge controller for secondary cell
JPS6122544B2 (en)
JPH0724915Y2 (en) Battery charger
JPH0214295Y2 (en)
JPH03253230A (en) Charge controller
JPH0749538Y2 (en) Electronic load device
JPH04197042A (en) Constant current, constant voltage type charger
JPH0197141A (en) Charging circuit for storage battery