JPH01270618A - Method and sensor for detecting depth of deposit - Google Patents

Method and sensor for detecting depth of deposit

Info

Publication number
JPH01270618A
JPH01270618A JP9997788A JP9997788A JPH01270618A JP H01270618 A JPH01270618 A JP H01270618A JP 9997788 A JP9997788 A JP 9997788A JP 9997788 A JP9997788 A JP 9997788A JP H01270618 A JPH01270618 A JP H01270618A
Authority
JP
Japan
Prior art keywords
photosensitive elements
snow
sensor
light
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9997788A
Other languages
Japanese (ja)
Inventor
Masanaga Namekawa
滑川 真永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP9997788A priority Critical patent/JPH01270618A/en
Publication of JPH01270618A publication Critical patent/JPH01270618A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make the title constitution light and small-sized and to detect the accumulation height of snow or the like accurately, by arranging many photosensitive elements on an elongated base stand and setting at least one or more of them to a reference light quantity measuring element for measuring the quantity of external light. CONSTITUTION:The main body of a sensor S is formed by arranging many photosensitive elements 2 to an elongated base stand and setting one of said elements to a reference quantity measuring element 3 for measuring external light. When the sensor S is arranged on the ground or on a building, the sensor S is successively embedded in snow from the lower part thereof with snow. Therefore, only a predetermined number of the photosensitive elements 2a corresponding to a depth are positioned in a dark part and the parts protruding above the ground of the photosensitive elements 2b are positioned in a bright part and, when the resistance values or generated energies of the respective photosensitive elements are measured, the number of the photosensitive elements 2 blocked from light, that is, the accumulation depth of snow is detected. Because of light and small-sized constitution, installation and maintenance are easy and power consumption is low and this sensor is suitable for long-term measurement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は堆積物の深度検知方法及び深度検知のためのセ
ンサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for detecting depth of deposits and a sensor for detecting depth.

〔従来の技術〕[Conventional technology]

従来より、積雪量の深度を検知する際には棒状のスケー
ルを雪中に立設し、これを双眼鏡等で目視する方法が採
られている。しかしこの方法では視界に依存するもので
あるため計測範囲が限定され、また悪天候時にはデータ
が得られないという問題がある。
Conventionally, when detecting the depth of snowfall, a method has been adopted in which a rod-shaped scale is set up in the snow and visually observed with binoculars or the like. However, this method has the problem that the measurement range is limited because it depends on visibility, and data cannot be obtained in bad weather.

そこで無人の自動計測が開発され、種々提案されている
。その例として、雪面に超音波を発射しその反射波を受
ける方法、また、雪を受皿に受けそれを融解してその水
量を計測する方法がある。
Therefore, unmanned automatic measurement has been developed and various proposals have been made. Examples include a method in which ultrasonic waves are emitted onto the snow surface and the reflected waves are received, and a method in which snow is placed in a saucer and melted to measure the amount of water.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、前記した従来のものにおいては夫々の方法特有
の問題点がある。
However, the conventional methods described above have their own problems.

即ち、前者の方法にあっては、超音波ディテクタが大形
とならざるを得ないため、超音波ディテクタに積雪する
。このためその直下の積雪量が少なくなり、データに正
確を欠くという問題がある。
That is, in the former method, since the ultrasonic detector has to be large in size, snow accumulates on the ultrasonic detector. As a result, there is a problem in that the amount of snow directly below the area decreases and the data lacks accuracy.

また、超音波の送受信システムが装置の大形化を招き、
山中等への設置が困難である。しがち超音波の送信には
相当の電力を必要とするため大容量の電池が不可欠であ
る。
In addition, the ultrasonic transmission and reception system causes the equipment to become larger.
Difficult to install in mountains etc. Transmission of ultrasonic waves tends to require a considerable amount of power, so a large-capacity battery is essential.

一方、後者のものにおいては、受けた雪を融解してその
水量を計測するものであるため、吹雪等の気象条件下で
は受ける雪の竜が不正確となる。
On the other hand, in the latter method, the amount of water is measured by melting the received snow, so under weather conditions such as a blizzard, the received snow dragon becomes inaccurate.

また、可動部分か存在するため凍結の虞れがある。Also, since there are moving parts, there is a risk of freezing.

しかも電気ヒーターが不可欠であるため、消費電力が極
めて大きく、電池で駆動することは困難である。またこ
の方法では火山灰のように融解しないものの堆積高さを
検知することは不可能である。
Moreover, since an electric heater is essential, power consumption is extremely large and it is difficult to drive it with batteries. Furthermore, with this method, it is impossible to detect the height of accumulation of materials that do not melt, such as volcanic ash.

以」二述べたように従来のものにおいては、装置自体が
大掛かりなものとなるため、設置条件に大きな制限を受
けるという問題がある。
As mentioned above, in the conventional device, the device itself is large-scale, and there is a problem in that the installation conditions are severely restricted.

本発明は前記事項に鑑みてなされたもので、軽量小形で
消費電力が低く、設置が極めて容易で、しかも正確に雪
等の堆積高を検知することができるようにした堆積物の
深度検知方法及び深度検知センサることを技術的課題と
する。
The present invention has been made in view of the above-mentioned matters, and is a method for detecting the depth of deposits that is lightweight, compact, has low power consumption, is extremely easy to install, and can accurately detect the height of deposits of snow, etc. The technical challenge is to develop a depth detection sensor.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は前記技術的課題を解決するために、以下のよう
な方法とした。
In order to solve the above technical problem, the present invention employs the following method.

即し、長形基台1に感光素子2を複数個配列し、これら
感光素子の内少なくとも1個以−1−の感光素子を外光
量測定用の基準光量測定素子としてなるセンサS本体を
堆積物落下位置に垂設し、堆積物の落下に伴って感光素
子2を順次堆積物に埋入且しめ、その受光量変化により
堆積物の深度を検知するようにした。
That is, a plurality of photosensitive elements 2 are arranged on a long base 1, and at least one of these photosensitive elements is used as a reference light amount measuring element for measuring the amount of external light.The main body of the sensor S is stacked. The photosensitive element 2 is installed vertically at the position where an object falls, and the photosensitive element 2 is sequentially embedded in the deposit as the deposit falls, and the depth of the deposit is detected by the change in the amount of light received.

また、長形基台Iに感光素子2を複数個配列し、これら
感光素子の内少なくとも1個以上の感光素子を外光量測
定用の基準光量測定素子3として堆積物の深度検知セン
サを構成した。この感光素子としてはCd5(力)・ミ
ウム)セル、フォ)・トランジスタ、光電池等を使用す
ることができ、また、長形基台1としては透明管を使用
することかできる。
Further, a plurality of photosensitive elements 2 are arranged on the elongated base I, and at least one of these photosensitive elements is used as a reference light amount measuring element 3 for measuring the amount of external light to constitute a depth detection sensor for the deposit. . As this photosensitive element, a Cd5 (force).mium) cell, a phototransistor, a photovoltaic cell, etc. can be used, and as the elongated base 1, a transparent tube can be used.

〔作用〕[Effect]

地上または建造物」−にセンサSを立設すると、積雪に
伴ってセンサSが順次下部から雪中に埋入する。すると
深度に対応した所定個数の感光素子だけが暗部に位置し
、地」−に出ている部分の感光素子は明部に位置する。
When the sensor S is installed on the ground or on a building, the sensor S is gradually buried in the snow from the bottom as the snow accumulates. Then, only a predetermined number of photosensitive elements corresponding to the depth are located in the dark area, and the photosensitive elements that are exposed to the ground are located in the bright area.

ここで各感光素子の抵抗値または発電里を計測すること
により遮光された感光素子の数、即ち、堆積深度を検知
することかできる。
Here, by measuring the resistance value or power generation rate of each photosensitive element, it is possible to detect the number of light-shielded photosensitive elements, that is, the deposition depth.

計測する対象としては、積雪量、灰等の堆積高、及び水
位等がある。
The objects to be measured include the amount of snowfall, the height of accumulation of ash, etc., and the water level.

〔実施例〕〔Example〕

本発明の実施例を第1図ないし第4図に基ついて説明す
る。
Embodiments of the present invention will be described with reference to FIGS. 1 to 4.

第1図に示す基本実施例は、長形基台Iとして耐寒性合
成樹脂製半透明管を用い、この耐寒性合成樹脂製半透明
管の内部に感光素子2としてのCdSセルを50mm間
隔で11個個配列したものである。これら感光素子2の
うぢ最上部のものは外光量測定用の基準光量測定素子3
となっている。この基準光量測定素子3は受光面が−1
−向きになっており、他の感光素子2は下向きとなって
いる。そして、総ての感光素子2は並列接続されており
、この出力端には電圧検知装置(図示しない)が接続さ
れている。
In the basic embodiment shown in FIG. 1, a semi-transparent tube made of cold-resistant synthetic resin is used as the elongated base I, and CdS cells as photosensitive elements 2 are arranged at 50 mm intervals inside the semi-transparent tube made of cold-resistant synthetic resin. This is an array of 11 pieces. The topmost one of these photosensitive elements 2 is a reference light amount measuring element 3 for measuring the amount of external light.
It becomes. This reference light amount measuring element 3 has a light receiving surface of −1
-, and the other photosensitive elements 2 are facing downward. All of the photosensitive elements 2 are connected in parallel, and a voltage detection device (not shown) is connected to the output terminal.

本発明の作用を第3図により説明する。The operation of the present invention will be explained with reference to FIG.

図においてセンサSは地上に立設してあり、積雪に伴っ
てセンサSは順次下部から雪中に埋入する。そして破線
Aに示す部分まで積雪があるものとする。すると深度り
に対応した3個の感光素子2aたけが暗部に位置し、地
」−に出ている部分の感光素子2b、及び基準光量測定
素子3は明部に位置する。
In the figure, the sensor S is installed upright on the ground, and as the snow accumulates, the sensor S is gradually embedded into the snow from the bottom. It is assumed that there is snow up to the part indicated by the broken line A. Then, only the three photosensitive elements 2a corresponding to the depth are located in the dark area, and the photosensitive elements 2b, which are exposed to the ground, and the reference light amount measuring element 3 are located in the bright area.

ここで各感光素子2の抵抗値についてみると、感光素子
2aの内、最下部及び最下部から2番目  ・のちのが
IOKΩとなり、その上の感光素子は雪の透過光の影響
により5にΩとなった。一方、感光素子2b及び基準光
量測定素T3は一律に100Ωとなった。
Here, looking at the resistance value of each photosensitive element 2, among the photosensitive elements 2a, the bottom and second from the bottom are IOKΩ, and the photosensitive element above it is 5Ω due to the influence of the light transmitted through the snow. It became. On the other hand, the resistance of the photosensitive element 2b and the reference light amount measuring element T3 was uniformly 100Ω.

ここで総ての感光素子2の並列抵抗を算出すると、 7/I 00(Q)+]15K(Q)−+−2/]、0
(KQ)=]4..2045(Ω) となる。
Here, if we calculate the parallel resistance of all photosensitive elements 2, we get: 7/I 00(Q)+]15K(Q)-+-2/], 0
(KQ)=]4. .. It becomes 2045 (Ω).

これを基準光量測定素子3の抵抗値(100Ω)で割る
と、 100/14. 2045=7. 04となる。
Dividing this by the resistance value (100Ω) of the reference light amount measuring element 3 gives 100/14. 2045=7. It becomes 04.

この数は雪の外にある感光素子2の個数となる。This number is the number of photosensitive elements 2 outside the snow.

ここで、基準光量測定素子3を除く感光素子2の全数か
ら雪の外にある感光素子2の個数を減じて、これに感光
素子2の取り付は間隔である50mmを掛けると、 (10−7,04)X50(mm)−148(mm)と
なる。
Here, subtract the number of photosensitive elements 2 outside the snow from the total number of photosensitive elements 2 excluding the reference light amount measuring element 3, and multiply this by 50 mm, which is the mounting interval of the photosensitive elements 2. (10- 7,04)X50 (mm) - 148 (mm).

このように、積雪深度の計測分解能は感光素子2の取り
付は間隔である50mmではなく、1mm単位で得るこ
とができる。これは雪に対して浅い深度にある感光素子
2の抵抗値が中間値を示すためである。
In this way, the measurement resolution of the snow depth can be obtained in units of 1 mm instead of 50 mm, which is the interval at which the photosensitive elements 2 are attached. This is because the resistance value of the photosensitive element 2 at a shallow depth relative to the snow exhibits an intermediate value.

第4図は他の実施例の内部構造を示し、長形基台1とし
て棒体を用い、この棒体に前記感光素子2を配列し、さ
らにこれら感光素子2の表面に透明の硬質保護皮膜層を
形成したものである。
FIG. 4 shows the internal structure of another embodiment, in which a rod is used as the elongated base 1, the photosensitive elements 2 are arranged on the rod, and the surfaces of the photosensitive elements 2 are coated with a transparent hard protective film. It is made up of layers.

動作については前記実施例と同様のため省略する。The operation is the same as that of the previous embodiment, so a description thereof will be omitted.

前記長形基台1として用いた耐寒性合成樹脂製=7− 半透明管は要するに透光性があれば良く、透明或は感光
素子2の感度特性に応じて着色したものであってもよい
Made of cold-resistant synthetic resin used as the elongated base 1 = 7- The semi-transparent tube only needs to be translucent, and may be transparent or colored depending on the sensitivity characteristics of the photosensitive element 2. .

なお、感光素子2の数は任意であるのは勿論、その受光
面の方向も前記した実施例に限定されるものではなく、
被検出物の光反射率や透光率等に応じて適宜変更し得る
。また、感光素子2としてフォトトランジスタ、光電池
を使用する場合には個々の感光素子2の出力端を夫々導
出して次段の回路に入力する必要がある。
Note that the number of photosensitive elements 2 is of course arbitrary, and the direction of the light-receiving surface is not limited to the above-mentioned embodiments.
It can be changed as appropriate depending on the light reflectance, light transmittance, etc. of the object to be detected. Further, when a phototransistor or a photovoltaic cell is used as the photosensitive element 2, it is necessary to derive the output terminal of each photosensitive element 2 and input it to the next stage circuit.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、軽量小形に構成することができるため
設置や保守が容易であり、また消費電力が極めて少ない
ため長期の計測に適する。また可動部分がないため信頼
性に優れており低コストで製造することができる等の優
れた特長がある。
According to the present invention, since it can be configured to be lightweight and compact, installation and maintenance are easy, and power consumption is extremely low, making it suitable for long-term measurement. Furthermore, since there are no moving parts, it has excellent reliability and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例を示し、第1図は内部構造を示す
側面図、第2図は等価回路、第3図は計測状態の具体例
を示す側面図、第4図は他の実施−8= 例の内部構造を示す側面図。 ■・・長形基台、        2・・感光素子、3
・・基準光量測定素子、   S・・センサ本体。
The drawings show an embodiment of the present invention; FIG. 1 is a side view showing an internal structure, FIG. 2 is an equivalent circuit, FIG. 3 is a side view showing a specific example of a measurement state, and FIG. 4 is a side view showing another embodiment. 8 = Side view showing the internal structure of the example. ■...Long base, 2...Photosensitive element, 3
...Reference light amount measurement element, S...Sensor body.

Claims (2)

【特許請求の範囲】[Claims] (1)長形基台1に感光素子2を複数個配列し、これら
感光素子の内少なくとも1個以上の感光素子を外光量測
定用の基準光量測定素子としてなるセンサS本体を堆積
物落下位置に垂設し、堆積物の落下に伴って感光素子2
を順次堆積物に埋入せしめ、その受光量変化により堆積
物の深度を検知することを特徴とする堆積物の深度検知
方法。
(1) A plurality of photosensitive elements 2 are arranged on a long base 1, and at least one of these photosensitive elements is used as a reference light amount measuring element for measuring the amount of external light.The main body of the sensor S is positioned at the deposit falling position. The photosensitive element 2
A method for detecting the depth of a deposit, characterized in that the depth of the deposit is detected by sequentially embedding in the deposit, and detecting the depth of the deposit based on changes in the amount of received light.
(2)長形基台1に感光素子2を複数個配列し、これら
感光素子の内少なくとも1個以上の感光素子を外光量測
定用の基準光量測定素子3としてなる堆積物の深度検知
センサ。
(2) A deposit depth detection sensor in which a plurality of photosensitive elements 2 are arranged on a long base 1, and at least one of these photosensitive elements serves as a reference light amount measuring element 3 for measuring the amount of external light.
JP9997788A 1988-04-22 1988-04-22 Method and sensor for detecting depth of deposit Pending JPH01270618A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9997788A JPH01270618A (en) 1988-04-22 1988-04-22 Method and sensor for detecting depth of deposit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9997788A JPH01270618A (en) 1988-04-22 1988-04-22 Method and sensor for detecting depth of deposit

Publications (1)

Publication Number Publication Date
JPH01270618A true JPH01270618A (en) 1989-10-27

Family

ID=14261727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9997788A Pending JPH01270618A (en) 1988-04-22 1988-04-22 Method and sensor for detecting depth of deposit

Country Status (1)

Country Link
JP (1) JPH01270618A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075371A (en) * 2013-10-08 2015-04-20 富士通株式会社 Level detector and level monitoring system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015075371A (en) * 2013-10-08 2015-04-20 富士通株式会社 Level detector and level monitoring system

Similar Documents

Publication Publication Date Title
US4745293A (en) Method and apparatus for optically measuring fluid levels
EP0064746B1 (en) Sunlight direction sensor
US4355896A (en) Cloud cover sensor
US4673287A (en) Laser-optical surveying system
US2960908A (en) Parallax interval sensing device
CN201392312Y (en) Raindrop sensing device
CN102169192A (en) Non-contact rock fall detection device using optical sensor
JPS57104809A (en) Range finder
CN101598546A (en) A kind of angle of incidence of sunlight measuring method and device based on the APS technology
Legrand et al. Thermal impact of Saharan dust over land. Part II: Application to satellite IR remote sensing
JPH01270618A (en) Method and sensor for detecting depth of deposit
Lawler et al. A simple and inexpensive turbidity meter for the estimation of suspended sediment concentrations
JP3045529B2 (en) Snow depth measuring device
JPS5925193B2 (en) Snowfall measuring device
US20040252290A1 (en) Optical strain gauge and methods of use including a wind measurement device
CN200972452Y (en) High precision film stress real-time measuring device
CA3205199A1 (en) Device and method for measuring the water content of the ground, vegetation and/or snow
CN113566707B (en) Photosensitive measuring pin, system and online correction method for measuring pin sunlight angle
GB2158230A (en) Electronic level
CN2890852Y (en) Photoelectric water level meter
CN211697376U (en) Ball falling method liquid viscosity measuring device improved based on laser extended plane method
JPS5925192B2 (en) Snowfall measuring device
GB2111196A (en) Indicating or measuring instruments
CN108983327A (en) Rain cylinder
Zaxidov et al. Device for automation of hydrostatic leveling of man-made structures with alternative power supply