JPH01270501A - Production of molded material of hydrogen occlusion alloy - Google Patents

Production of molded material of hydrogen occlusion alloy

Info

Publication number
JPH01270501A
JPH01270501A JP63095705A JP9570588A JPH01270501A JP H01270501 A JPH01270501 A JP H01270501A JP 63095705 A JP63095705 A JP 63095705A JP 9570588 A JP9570588 A JP 9570588A JP H01270501 A JPH01270501 A JP H01270501A
Authority
JP
Japan
Prior art keywords
alloy
hydrogen
phase
hydrogen storage
intermetallic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63095705A
Other languages
Japanese (ja)
Other versions
JP2627302B2 (en
Inventor
Takahiro Yonezaki
米崎 孝広
Toshihiko Saito
俊彦 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP63095705A priority Critical patent/JP2627302B2/en
Publication of JPH01270501A publication Critical patent/JPH01270501A/en
Application granted granted Critical
Publication of JP2627302B2 publication Critical patent/JP2627302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Powder Metallurgy (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE:To contrive readily improve properties such as heat conductivity in low cost, by crushing, molding and sintering an ingot of alloy containing eutectic crystal texture of intermetallic compound phase reversibly occlude and discharge H2 and pure metallic phase, etc. CONSTITUTION:An intermetallic compound phase (e.g., LaNi5) having hexagonal crystal structure expressed by the formula AB5 (A is at least one of rare earth element such as La, Ce, Nd, Pr or Sm, etc., or mixture thereof, or Ca element) B is at least one of transition metal such as Cr, Mn, Fe, Co, Ni or Cu, etc.) and metallic phase such as Ni (or solid solution phase) are molten and cast to obtain an ingot of alloy having eutectic crystal texture of two phase. Next, the ingot is crushed to below about 200mu and subjected to press molding then sintered at about 1100 deg.C for 5hour in a vacuum atmosphere to produce a molded material of hydrogen occlusion alloy.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は水素を可逆的に、且つ、迅速に吸蔵、放出し得
る水素吸蔵合金成形体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a method for manufacturing a hydrogen-absorbing alloy molded body that can reversibly and rapidly absorb and release hydrogen.

(ロ)従来の技術 近年可逆的に水素を吸蔵、放出する能力祭有する水素吸
蔵合金を用いた様々な応用システムの開発が盛んに行な
われている。例えば、大量の水素吸蔵能力に着目した水
素貯蔵システム、放出時の水素圧力変化を利用したアク
チュエータ、水素との選択的な反応に着目した水素精製
システムおよび水素との反応熱を利用した蓄熱、ヒー1
−ポンプなどの熱利用システムなど、さまざまなシステ
ムが実用化に向けて開発されている。
(b) Prior Art In recent years, various application systems using hydrogen storage alloys having the ability to reversibly absorb and release hydrogen have been actively developed. Examples include hydrogen storage systems that focus on large amounts of hydrogen storage capacity, actuators that utilize changes in hydrogen pressure during release, hydrogen purification systems that focus on selective reactions with hydrogen, and heat storage and heating systems that utilize the heat of reaction with hydrogen. 1
-A variety of systems are being developed for practical use, including heat utilization systems such as pumps.

ところで、このシステムに用いられる基礎部材となる水
素吸蔵合金は、−船釣にアーク溶解炉、高周波誘導炉な
どにより製造された金属間化合物であるため、延性、属
性に乏しい。それゆえ、そのままの状態で使用すると水
素の吸蔵、放出の繰返しに伴う応用力の作用により割れ
が生じ、数ミクロン−数十ミクロン程度に微粉化する。
By the way, the hydrogen storage alloy which is the basic member used in this system is an intermetallic compound manufactured using an arc melting furnace, a high frequency induction furnace, etc., and therefore has poor ductility and properties. Therefore, if used as is, cracks will occur due to the applied force associated with repeated absorption and release of hydrogen, and the material will be pulverized to a size of several microns to several tens of microns.

このため水素吸蔵合金を上記応用システムに使用した場
合、熱伝導の低い水素吸蔵合金の粉体層が形成されて、
反応熱の迅速な供給、除去が阻害されて、水素吸蔵、放
出速度が低下し、システ11全体の円滑な作動が困難と
なる。
Therefore, when a hydrogen storage alloy is used in the above application system, a powder layer of the hydrogen storage alloy with low thermal conductivity is formed.
Prompt supply and removal of reaction heat is inhibited, hydrogen storage and release rates are reduced, and smooth operation of the entire system 11 becomes difficult.

このため、水素吸蔵合金に延性、属性を持たせて水素吸
蔵、放出に伴う微粉化を防ぐために、従来では第2図に
示すような工程法により水素吸蔵合金を製造していた。
For this reason, in order to impart ductility and properties to hydrogen storage alloys and prevent pulverization due to hydrogen storage and release, hydrogen storage alloys have conventionally been manufactured using a process as shown in FIG. 2.

即ち同図で示すように、先ず、溶解鋳造により、水素を
金属格子に取り込む性質を有するLaNi、等の単一相
構造の合金を作成し、次いで、この単一相の合金を粉砕
、粒度調整する。次に熱伝導性が良好で、且つ、合金材
料に比較して展延性に富むNjなどの金属を粉砕、粒度
調整してN1の金属粉末を作成し、このN」金属粉末と
先のLaN」合金の粉末とを混合して成型し、焼結する
ことにより、水素吸蔵、放出に伴う微粉化を抑制し、熱
伝導性を高めた水素吸蔵合金を製造していた。
That is, as shown in the figure, first, an alloy with a single phase structure such as LaNi, which has the property of incorporating hydrogen into the metal lattice, is created by melting and casting, and then this single phase alloy is crushed and the particle size is adjusted. do. Next, a metal such as Nj, which has good thermal conductivity and is more malleable than alloy materials, is pulverized and the particle size is adjusted to create N1 metal powder, and this N1 metal powder is combined with the LaN metal powder. By mixing with alloy powder, molding, and sintering, hydrogen storage alloys were manufactured that suppressed pulverization due to hydrogen storage and release and improved thermal conductivity.

(ハ)発明が解決しようとする課題 しかしながら、上記方法では、熱伝導性の良好な金属粉
末と水素吸蔵合金粉末を均一に混合するためにその粒度
を適切に調整する必要があり、このため工程が複雑とな
る欠点がある。即ち、従来方法の第4図で、破線で囲ん
だ枠内で示されるように、水素吸蔵合金粉末とN1金属
粉末との混合工程およびその前段作業であるN1粉末の
粒度調整という2つの工程が必要となる。
(c) Problems to be Solved by the Invention However, in the above method, it is necessary to appropriately adjust the particle size in order to uniformly mix the metal powder with good thermal conductivity and the hydrogen storage alloy powder. The disadvantage is that it is complicated. That is, as shown in the frame surrounded by the broken line in FIG. 4 of the conventional method, there are two steps: the mixing step of the hydrogen storage alloy powder and the N1 metal powder, and the particle size adjustment of the N1 powder, which is the preliminary step. It becomes necessary.

本発明は」二記の点に鑑みなされたもので、熱伝導性が
高く、水素吸蔵、放出に伴う微粉化の起こりにくい水素
吸蔵合金を簡mな工程で製造する方法を提供することを
目的とする。
The present invention was made in view of the above two points, and an object of the present invention is to provide a method for producing a hydrogen storage alloy with a simple process, which has high thermal conductivity and is unlikely to become pulverized due to hydrogen absorption and release. shall be.

(ニ)課題を解決するための手段 このため、本発明の水素吸蔵合金の製造方法は、可逆的
に水素を吸蔵、放出し得る金属間化合物相と純金属相も
しくは、その固溶体相よりなる共晶組織を含む合金鋳塊
を粉砕、成形し、焼結することにより水素吸蔵合金成形
体を得るようにしたものである。即ち、本発明の製造方
法を概略的に示す第1図で理解されるように例えば水素
吸蔵合金の原料金属であるLaおよびNiを溶解鋳造し
てL a N 5なる水素吸蔵合金相(LaNi5の金
属間化合物相)とNjの金属相(または固溶体相)より
なる2相の共晶組織を含む合金を作成し、この合金鋳塊
を粉砕、粒度調整した後、この合金粉末を焼結して得る
という工程が、基本的に3工程に短縮されている水素吸
蔵合金成形体の製造方法となっている。
(d) Means for Solving the Problems Therefore, the method for producing a hydrogen storage alloy of the present invention is a eutectic consisting of an intermetallic compound phase that can reversibly absorb and release hydrogen and a pure metal phase or a solid solution phase thereof. A hydrogen-absorbing alloy molded body is obtained by crushing, molding, and sintering an alloy ingot containing a structure. That is, as can be understood from FIG. 1, which schematically shows the manufacturing method of the present invention, for example, La and Ni, which are the raw material metals of a hydrogen storage alloy, are melted and cast to form a hydrogen storage alloy phase called LaN5 (LaNi5). An alloy containing a two-phase eutectic structure consisting of an intermetallic compound phase) and a Nj metal phase (or solid solution phase) is created, this alloy ingot is crushed and the particle size is adjusted, and this alloy powder is sintered. This is a method for producing a hydrogen-absorbing alloy molded body in which the process of obtaining the hydrogen-absorbing alloy is basically shortened to three steps.

(ホ)作用 水素吸蔵、放出能力を有する金属間化合物相と゛  熱
伝導の高い純金属相あるいはその固溶体相の共晶組織は
、これらの相が各々数ミクロン程度の間−4= 隔で層状となっているため、これを単に粉砕することに
より金属間化合物粉末と純金属あるいはその固溶体の均
質な混合粉末体が得られ、これをただちに成形、焼結さ
せて所望とする水素吸蔵合金成形体を得ることができる
(e) The eutectic structure of the intermetallic compound phase that has the ability to absorb and release hydrogen and the pure metal phase with high thermal conductivity or its solid solution phase is such that these phases are layered at intervals of -4= about several microns. Therefore, by simply pulverizing this, a homogeneous mixed powder of intermetallic compound powder and pure metal or its solid solution can be obtained, which is immediately molded and sintered to obtain the desired hydrogen storage alloy compact. be able to.

従って、従来製法で必要とされていた水素吸蔵合金とな
る金属間化合物粉末に加えられる熱伝導性の高い純金属
粉末あるいはその固溶体粉末の粒度調整および両粉末の
均一な混合と言う工程が不要となり工程が極めて簡略化
される。
Therefore, the process of adjusting the particle size of a highly thermally conductive pure metal powder or its solid solution powder, which is added to the intermetallic compound powder that becomes the hydrogen storage alloy, and uniformly mixing both powders, which was required in the conventional manufacturing method, is no longer necessary. The process is extremely simplified.

(へ)実施例 以下、本発明の一実施例をLa−N32元系合金の場合
につき述べる。
(F) Example Hereinafter, an example of the present invention will be described in the case of a La-N3 binary alloy.

I、a−Ni2元系合金はその組成(重量ダ)と温度(
℃)に応じて様々の状態を取り得る。そのLa−Ni2
元系合金の状態図を示したものが第2図である。
The I, a-Ni binary alloy is characterized by its composition (weight) and temperature (
It can take various states depending on the temperature (°C). That La-Ni2
FIG. 2 shows a phase diagram of the base alloy.

先ず、同図のA点で示される組成と温度の状態を取り得
るLaNi5相とNi相の共晶合金を以下の手順で作成
した。即ち、原料金属であるLaおよびNiを粉末状、
ロット状、あるいは破片状いずれの形状であっても構わ
ないが、それらを共晶組成であるLa18重量%、 N
i82重量ぶとなるように秤量した後、コレラ混合し、
更に適当な大きさにプレス成形し、水冷銅鋳型内にてア
ルゴンアークにより溶解後、鋳造してNaNi相とNi
相の2相より共晶合金を作成した。なお、このようにし
て得た共晶合金は、光学的顕微鏡vA察の結果、相間隙
が数ミクロン程度の層状の共晶組織を呈していることが
判った。更に、この共晶合金の1、aNi5相とNi相
との比率は、状態図より3:2(重量比)と推定され遊
離NJ相は約40%含まれる。
First, a eutectic alloy of five LaNi phases and a Ni phase, which could take the composition and temperature state shown by point A in the same figure, was created by the following procedure. That is, the raw metals La and Ni are powdered,
It doesn't matter if they are in the shape of a lot or a piece, but they are mixed with a eutectic composition of 18% by weight of La and N.
After weighing the i82 weight, mix the cholera,
Furthermore, it is press-formed to an appropriate size, melted with an argon arc in a water-cooled copper mold, and then cast to form the NaNi phase and Ni.
A eutectic alloy was created from the two phases. The eutectic alloy thus obtained was found to exhibit a layered eutectic structure with a phase gap of approximately several microns, as a result of vA observation using an optical microscope. Further, the ratio of the 1, aNi5 phase and the Ni phase in this eutectic alloy is estimated to be 3:2 (weight ratio) from the phase diagram, and the free NJ phase is included at about 40%.

次に、上記の方法により得た共晶合金を単に200ミク
ロン程度以下に粉砕した後、プレス成形および焼結を行
ない、水素吸蔵合金成形体を得た。
Next, the eutectic alloy obtained by the above method was simply ground to about 200 microns or less, and then press-molded and sintered to obtain a hydrogen-absorbing alloy molded body.

ここで、焼結は真空雰囲気下のもとで、焼結温度的11
00℃、5時間の条件下にて行なった。なお、焼結雰囲
気はArなどの不活性ガスの雰囲気下でもよい。
Here, sintering is performed under a vacuum atmosphere at a temperature of 11
The test was conducted at 00°C for 5 hours. Note that the sintering atmosphere may be an atmosphere of an inert gas such as Ar.

このように、共晶組織を含む合金鋳塊を単に、粉砕、焼
結すると言う極めて簡単な工程により、熱伝導性が高く
、しかも水素吸蔵、放出の繰り返しによっても微粉化し
にくい水素吸蔵合金成形体が得られる。
In this way, by simply crushing and sintering an alloy ingot containing a eutectic structure, which is an extremely simple process, a hydrogen-absorbing alloy molded body that has high thermal conductivity and is resistant to pulverization even after repeated hydrogen absorption and release is produced. is obtained.

次に、以−にの実施例により作製した水素吸蔵合金成形
体と、公知のものとの水素吸蔵速度比較のため、以下の
要領で水素吸蔵合金成形体を作製した。
Next, in order to compare the hydrogen storage speed of the hydrogen storage alloy molded body produced in the example below with a known hydrogen storage alloy molded body, a hydrogen storage alloy molded body was produced in the following manner.

[比較例(])コ 原料金属であるLaおよびN1をそれぞれLa32.2
重量%、 Nj678重量X戸重量上戸に秤量した後、
これを混合し更に適当な大きさにプレス成形し、水冷銅
鋳型内にてアルゴンアークにより溶解後、鋳造してL 
a N i−S単一相の合金を作成した。次に上記の方
法により得たLaNi3単一相合金を200ミクロン以
下に粉砕して水素吸蔵合金粉末を得た。
[Comparative Example (]) The raw material metals La and N1 were each set to La32.2.
Weight%, after weighing Nj678 weight x door weight,
This was mixed, further press-formed into an appropriate size, melted with an argon arc in a water-cooled copper mold, and cast into L.
A Ni-S single phase alloy was created. Next, the LaNi3 single phase alloy obtained by the above method was ground to a size of 200 microns or less to obtain a hydrogen storage alloy powder.

[比較例(2)] 上記比較例(1)で得た水素吸蔵合金粉末を、更に20
0ミクロン程度以下に粒度調整したNi粉と重量比で3
:2に混合した後プレス成形し、これを真空雰囲気下に
て約1000℃、5晴間の条件下にて焼−7= 結し、水素吸蔵合金成形体を得た。なお、前記の混合重
量比は共晶合金のLaNi5相とN1相の重量比にほぼ
相当する。
[Comparative Example (2)] The hydrogen storage alloy powder obtained in Comparative Example (1) above was further
3 by weight with Ni powder whose particle size has been adjusted to about 0 microns or less
:2 was mixed and then press-molded, and this was sintered in a vacuum atmosphere at about 1000°C for 5 days to obtain a hydrogen-absorbing alloy molded body. Note that the above-mentioned mixing weight ratio approximately corresponds to the weight ratio of the LaNi5 phase and the N1 phase of the eutectic alloy.

以」−のようにして得た従来方法に基づく比較例(1)
、(2)による水素吸蔵合金粉末および水素吸蔵合金成
形体と、前述した本発明の一実施例による水素吸蔵合金
成形体との水素吸蔵速度の比較を以下に説明する。
Comparative example (1) based on the conventional method obtained as follows
A comparison of the hydrogen storage speeds of the hydrogen storage alloy powder and hydrogen storage alloy compact according to (2) and the hydrogen storage alloy compact according to one embodiment of the present invention described above will be described below.

先ず、各試料合金を反応容器に充填し、公知のジーベル
ツの反応装置を用いて初期活性化処理を行なった。初期
活性化処理はいずれの試料合金も100 ’Cの真空排
気の後室温にて10atmの水素ガスの加圧にて行なう
ことができた。これを10回程度繰り返したのち、30
℃にて初期圧力を10atmとして水素吸蔵量−時間曲
線を測定し水素吸蔵速度を調べた。
First, each sample alloy was filled into a reaction vessel and subjected to initial activation treatment using a known Sieverts reaction apparatus. Initial activation treatment for all sample alloys could be carried out by evacuation at 100'C and then pressurizing hydrogen gas at 10 atm at room temperature. After repeating this about 10 times, 30
The hydrogen storage rate was determined by measuring the hydrogen storage amount-time curve at 10 atm at an initial pressure of 10 atm.

即ち、第3図に本発明の一実施例に係る製造方法による
水素吸蔵合金成形体と、比較例(])、(2)による水
素吸蔵合金粉末および水素吸蔵合金成形体の水素吸蔵反
応率(最大水素吸蔵址に対する割合)と時間との関係を
示す。
That is, FIG. 3 shows the hydrogen storage reaction rate ( The relationship between the percentage of maximum hydrogen storage area) and time is shown.

同図より実線で示した本発明の一実施例による水素吸蔵
合金成形体は、反応時間が約3分て95%以上の反応率
となり、破線で示す比較例(])の水素吸蔵合金粉末お
よび一点鎖線で示す比較例(2)の水素吸蔵合金成形体
よりも水素吸蔵速度が大きいことが判る。これε)の傾
向は水素放出速度においても同様であった。なお、水素
吸蔵、放出速度測定後の水素吸蔵合金には、比較例(1
)を除いて他の水素吸蔵合金には微粉化は認められなか
った。
From the same figure, the hydrogen storage alloy molded body according to one embodiment of the present invention shown by the solid line has a reaction rate of 95% or more after a reaction time of about 3 minutes, and the hydrogen storage alloy powder of the comparative example (]) shown by the broken line has a reaction rate of 95% or more. It can be seen that the hydrogen storage rate is higher than that of the hydrogen storage alloy molded body of Comparative Example (2) shown by the dashed line. This tendency of ε) was also the same for the hydrogen release rate. In addition, the hydrogen storage alloy after measuring the hydrogen absorption and release rate was compared with Comparative Example (1).
), no pulverization was observed in other hydrogen storage alloys.

以上のようにLa−Nj2元系合金鋳塊を粉砕、成形、
焼結して得た本発明の一実施例による水素吸蔵合金成形
体が、従来公知の製造方法に基づく水素吸蔵合金粉末お
よび水素吸蔵合金成形体に比較して、水素吸蔵、放出速
度が優れていることが判明したが、ここで本発明の一実
施例に係る水素吸蔵合金成形体の原料体とも言うへき合
金鋳塊は必ずしも共晶組成に限るものではなく、第3図
より明らかなようにN]が67.8重量%より大きく、
10000重量満であれば共晶組織を含む合金鋳塊を得
ることができる。これを単に粉砕、成形、焼結すること
により、前述と同様の水素吸蔵合金成形体の製造が可能
である。また、焼結温度は、La−Ni2元系合金の場
合、共晶組織を含むLa−Ni2元系合金の実質的な合
金融点である共晶温度(1245°C)以下であること
が望ましい。
As described above, the La-Nj binary alloy ingot is crushed, formed,
The hydrogen storage alloy molded body obtained by sintering according to an embodiment of the present invention has superior hydrogen storage and release rates compared to hydrogen storage alloy powder and hydrogen storage alloy molded body based on conventionally known manufacturing methods. However, as is clear from FIG. N] is greater than 67.8% by weight,
If the weight is less than 10,000, an alloy ingot containing a eutectic structure can be obtained. By simply crushing, molding, and sintering this, it is possible to produce a hydrogen storage alloy molded body similar to that described above. In addition, in the case of a La-Ni binary alloy, the sintering temperature is preferably below the eutectic temperature (1245°C), which is the substantial merging point of the La-Ni binary alloy containing a eutectic structure. .

以」二、La−Ni2元系合金の場合につき、本発明の
一実施例による水素吸蔵合金成形体の製造方法を示した
が、本発明の製造方法は、第2図で示したLa−Ni2
元系合金と同様の状態図を示すと考えられるCe 、 
tlLd 、 Pr 、 smなどの希土類、あるいは
これらの混合物、もしくはCaと、Cr、Mn、Fe、
Co、Nj 、Caなとの遷移金属からなるAl15型
六方晶構造の2元系合金や多元系合金、Ti、Zr、V
又はCa+Mgなどのアルカリ土類金属と、Cr、Mn
、Fe、Co、Ni、Cuなとの遷移金属からなるAB
型立方晶構造もしくはAB2型六方晶構造である2元系
合金、多元系合金に対しても同様に適応できる。なお、
上記したAB5型合金の例としては、LaCo5.Ca
Ni5.LaCu5等があり、また、AB型金合金例と
しては、TiFe 、 T1Co 、 TjNi 、 
ZrNj等があり、AB、型合金としてはTiMn5.
ZrMu2等の合金塊が」二げられ、これらと金属相あ
るいは固溶体相との共晶合金に本発明を適用できる。
In the following, a method for manufacturing a hydrogen storage alloy molded body according to an embodiment of the present invention has been described in the case of a binary La-Ni alloy.
Ce, which is thought to show a phase diagram similar to that of the base alloy,
Rare earth elements such as tlLd, Pr, sm, or a mixture thereof, or Ca, Cr, Mn, Fe,
Binary and multi-component alloys with an Al15 hexagonal structure made of transition metals such as Co, Nj, and Ca, Ti, Zr, and V
Or alkaline earth metals such as Ca+Mg and Cr, Mn
AB consisting of transition metals such as , Fe, Co, Ni, and Cu
The present invention can be similarly applied to binary alloys and multi-component alloys having a cubic structure or an AB2 hexagonal structure. In addition,
Examples of the AB5 type alloys mentioned above include LaCo5. Ca
Ni5. Examples of AB type metal alloys include TiFe, T1Co, TjNi,
There are ZrNj, etc. AB, type alloys include TiMn5.
The present invention can be applied to eutectic alloys of alloy ingots such as ZrMu2 and a metal phase or solid solution phase.

以上述べたように、本発明の水素吸蔵合金成形体の製造
方法によれば、従来の水素吸蔵合金成形体の製造方法を
説明した比較例(2)の作成手順中の熱伝導性の高いN
j、Cuなとの金属粉末と、水素吸蔵合金粉末との粒度
調整および混合という2工程を行なうことなく、単に合
金鋳塊を粉砕、焼結するという簡単な工程で、水素吸蔵
合金成形体を得ることができる。しかも、係る水素吸蔵
合金成形体は、熱伝導が高く合金材料に苅して展延性に
富むN j、Cuが均一に混合されているため、微粉化
が起こりにくく、水素吸蔵、放出速度は第3図で示した
ように、比較例(1)で示される単なる水素吸蔵合金粉
末に比べて格段に大きく、比較例(2)で示される従来
の製造方法による水素吸蔵合金成形体に比べても、同等
もしくはそれ以上となる。5゜(1へ)発明の効果 以」二本発明の水素吸蔵合金の製造方法によれば、共晶
組織を含む合金鋳塊の粉砕、および焼結という極めて簡
単な工程により、熱伝導性が高く、水素吸蔵、放出の繰
り返しによっても微粉化しにくい水素吸蔵合金が得られ
るため、これを使用することによって初めて、低コス1
−でしかも高性能な応用システムの実現が可能になると
いう多大な効果を奏する。
As described above, according to the method for manufacturing a hydrogen storage alloy molded body of the present invention, N with high thermal conductivity is
J. A hydrogen-absorbing alloy molded body can be produced by a simple process of simply crushing and sintering an alloy ingot, without performing the two steps of particle size adjustment and mixing of Cu metal powder and hydrogen-absorbing alloy powder. Obtainable. In addition, such hydrogen-absorbing alloy molded bodies are uniformly mixed with Nj and Cu, which have high thermal conductivity and are highly malleable when mixed into the alloy material, so pulverization is difficult to occur, and the hydrogen storage and release rates are As shown in Figure 3, it is much larger than the simple hydrogen storage alloy powder shown in Comparative Example (1), and even compared to the hydrogen storage alloy molded body produced using the conventional manufacturing method shown in Comparative Example (2). , will be the same or higher. 5. (Go to 1) Effects of the Invention 2. According to the method for producing a hydrogen storage alloy of the present invention, thermal conductivity can be improved by the extremely simple process of crushing and sintering an alloy ingot containing a eutectic structure. A hydrogen-absorbing alloy that has a high hydrogen storage temperature and is difficult to be pulverized even after repeated hydrogen storage and desorption can be obtained.
- Moreover, it has the great effect of making it possible to realize a high-performance application system.

【図面の簡単な説明】[Brief explanation of the drawing]

″  第1図は本発明による水素吸蔵合金成形体の製造
方法を示す工程概略図、第2図はLa−Ni2元系合金
の一部を示した状態図、第3図は本発明の製造方法によ
る水素吸蔵合金成形体と、従来製造法による水素吸蔵合
金粉末および水素吸蔵合金成形体の、水素吸蔵の反応率
と時間との関係を示す図、第4図は従来の水素吸蔵合金
成形体の製造方法を示す工程概略図である。 代理人 弁理士  紋 1) 誠 −〇 ―ぴ酉 (○。)五lぐ ζ 手続補正書(帥) 昭和63年7月27日
'' Fig. 1 is a process schematic diagram showing the method for manufacturing a hydrogen storage alloy molded body according to the present invention, Fig. 2 is a state diagram showing a part of the La-Ni binary alloy, and Fig. 3 is a process diagram showing the manufacturing method of the present invention. Figure 4 shows the relationship between hydrogen storage reaction rate and time for a hydrogen storage alloy molded body produced by a conventional hydrogen storage alloy powder and a hydrogen storage alloy molded body produced by a conventional manufacturing method. This is a process schematic diagram showing the manufacturing method. Agent Patent Attorney Crest 1) Makoto-〇-Pi-Tori (○.) Golguζ Procedural Amendment (Written) July 27, 1988

Claims (4)

【特許請求の範囲】[Claims] (1)可逆的に水素を吸蔵、放出し得る金属間化合物相
と純金属相、もしくはその固溶体相よりなる共晶組織を
含む合金鋳塊を粉砕し、その微粒粉を成形、焼結して製
造することを特徴とする水素吸蔵合金成形体の製造方法
(1) Manufactured by crushing an alloy ingot containing a eutectic structure consisting of an intermetallic compound phase that can reversibly absorb and release hydrogen, a pure metal phase, or a solid solution phase thereof, and molding and sintering the fine powder. A method for producing a hydrogen-absorbing alloy molded body, characterized by:
(2)特許請求の範囲第1項記載において、金属間化合
物相がAB_5型六方晶構造であって、AがLa、Cc
、Nd、Pr、Sm等の希土類元素もしくはその混合物
、あるいはCa元素の少なくとも一種、BがCr、Mn
、Fe、Co、Ni、Cu等の遷移金属の少なくとも一
種より選ばれることを特徴とする水素吸蔵合金成形体の
製造方法。
(2) In claim 1, the intermetallic compound phase has an AB_5 type hexagonal structure, and A is La, Cc
, a rare earth element such as Nd, Pr, or Sm or a mixture thereof, or at least one of the Ca elements, and B is Cr or Mn.
, Fe, Co, Ni, Cu, and other transition metals.
(3)特許請求の範囲第1項記載において、金属間化合
物がAB型立方晶構造もしくはAB_2型六方晶構造で
あって、AがTi、Zr、V又はCa、Mgなどのアル
カリ土類金属、BがCr、Mn、Fe、Co、Vi、C
uなどの遷移金属の少なくとも一種より選ばれることを
特徴とする水素吸蔵合金成形体の製造方法。
(3) In claim 1, the intermetallic compound has an AB cubic structure or an AB_2 hexagonal structure, and A is an alkaline earth metal such as Ti, Zr, V or Ca or Mg; B is Cr, Mn, Fe, Co, Vi, C
1. A method for producing a hydrogen-absorbing alloy molded article, characterized in that the hydrogen-absorbing alloy molded article is selected from at least one type of transition metal such as u.
(4)特許請求の範囲第1項記載において、焼結は真空
雰囲気もしくは不活性ガス雰囲気下にて、また、その焼
結温度は合金に含まれる共晶組織の融点、即ち共晶温度
以下で行なわれることを特徴とする水素吸蔵合金成形体
の製造方法。
(4) In claim 1, sintering is performed in a vacuum atmosphere or an inert gas atmosphere, and the sintering temperature is below the melting point of the eutectic structure contained in the alloy, that is, the eutectic temperature. 1. A method for producing a hydrogen-absorbing alloy molded body, characterized in that the method is carried out.
JP63095705A 1988-04-20 1988-04-20 Method for producing hydrogen storage alloy molded product Expired - Fee Related JP2627302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63095705A JP2627302B2 (en) 1988-04-20 1988-04-20 Method for producing hydrogen storage alloy molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63095705A JP2627302B2 (en) 1988-04-20 1988-04-20 Method for producing hydrogen storage alloy molded product

Publications (2)

Publication Number Publication Date
JPH01270501A true JPH01270501A (en) 1989-10-27
JP2627302B2 JP2627302B2 (en) 1997-07-02

Family

ID=14144922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63095705A Expired - Fee Related JP2627302B2 (en) 1988-04-20 1988-04-20 Method for producing hydrogen storage alloy molded product

Country Status (1)

Country Link
JP (1) JP2627302B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364767B1 (en) * 2000-05-01 2002-12-16 한국에너지기술연구원 Removal method of Impurity gas contained in Hydrogen gas using Rare-earth type alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220911A (en) * 1975-08-11 1977-02-17 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS6456835A (en) * 1987-08-28 1989-03-03 Nippon Steel Corp Manufacture of sintered compact of fe-ti hydrogen storage alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5220911A (en) * 1975-08-11 1977-02-17 Matsushita Electric Ind Co Ltd Hydrogen storage apparatus
JPS6456835A (en) * 1987-08-28 1989-03-03 Nippon Steel Corp Manufacture of sintered compact of fe-ti hydrogen storage alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100364767B1 (en) * 2000-05-01 2002-12-16 한국에너지기술연구원 Removal method of Impurity gas contained in Hydrogen gas using Rare-earth type alloy

Also Published As

Publication number Publication date
JP2627302B2 (en) 1997-07-02

Similar Documents

Publication Publication Date Title
JP4989636B2 (en) High strength ultrafine nanostructured aluminum and aluminum nitride or aluminum alloy and aluminum nitride composite manufacturing method
KR20040077467A (en) Aluminum Base Alloys
WO1997003213A1 (en) Rare earth metal-nickel-base hydrogen absorbing alloy, process for preparing the same, and negative electrode for nickel-hydrogen secondary battery
WO2006051737A1 (en) Sputtering target for production of metallic glass film and process for producing the same
JP3869003B2 (en) Rare earth metal-nickel metal hydride alloy, process for producing the same, and negative electrode for nickel metal hydride secondary battery
JP4647910B2 (en) Hydrogen storage alloy powder, production method thereof, and negative electrode for nickel metal hydride secondary battery
CA2416704A1 (en) Electrochemical hydrogen storage alloys for nickel metal, hydride batteries, fuel cells, and methods of manufacturing same
CN113913709B (en) In-situ authigenic hybrid phase reinforced magnesium-based amorphous composite material based on selective phase dissolution and preparation method thereof
JP2007084883A (en) Method for manufacturing hydrogen occlusion alloy
JP5437544B2 (en) Manufacturing method of negative electrode for secondary battery
JP7336038B2 (en) Hydrogen storage material, hydrogen storage container and hydrogen supply device
CN111411249B (en) Preparation method of VNbMoTaW high-entropy alloy
JPH01270501A (en) Production of molded material of hydrogen occlusion alloy
JPH1180865A (en) Hydrogen storage alloy excellent in durability and its production
JPS60228651A (en) Hydrogen storage substance and increase of storage capacity
CN108070800B (en) Ti-based amorphous alloy composite material and preparation method thereof
JP3775639B2 (en) Method for producing hydrogen storage alloy
JP3953138B2 (en) Hydrogen storage alloy
CN114672740B (en) Yttrium-iron-based hydrogen storage alloy, battery and preparation method
WO2023153207A1 (en) Hydrogen storage material, hydrogen storage container and hydrogen supply device
JP4235721B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, and method for producing hydrogen storage alloy
US20070169852A1 (en) Hydrogen storage alloy material and process for producing the same
JPH11246923A (en) Hydrogen storage alloy and its production
JP2000303101A (en) Hydrogen storage alloy excellent in durability, and its manufacture
CN117821829A (en) Ti-Fe-based electrode alloy for Ni-MH battery and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees