JPH01270375A - Solid-state laser device - Google Patents

Solid-state laser device

Info

Publication number
JPH01270375A
JPH01270375A JP9981988A JP9981988A JPH01270375A JP H01270375 A JPH01270375 A JP H01270375A JP 9981988 A JP9981988 A JP 9981988A JP 9981988 A JP9981988 A JP 9981988A JP H01270375 A JPH01270375 A JP H01270375A
Authority
JP
Japan
Prior art keywords
plane
laser
laser beam
resonator
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9981988A
Other languages
Japanese (ja)
Other versions
JP2666350B2 (en
Inventor
Yasuto Nai
名井 康人
Kazuki Kuba
一樹 久場
Kimiharu Yasui
公治 安井
Masaaki Tanaka
正明 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63099819A priority Critical patent/JP2666350B2/en
Publication of JPH01270375A publication Critical patent/JPH01270375A/en
Application granted granted Critical
Publication of JP2666350B2 publication Critical patent/JP2666350B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08081Unstable resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To improve an oscillation efficiency, facilitate the transmission of laser rays, and obtain a laser beam excellent in convergence by a method wherein a resonator is constituted in such a manner that it serves as a stable type resonator at a P plane and as an unstable type resonator at an S plane perpendicular to the P plane and concurrently an outlet mirror is composed of a central part formed of a partial reflection section and both ends formed of a non-reflective section at the P plane. CONSTITUTION:An outlet mirror 3, which is provided with a partial reflection film 30 formed on its central part and a non-reflective film 31 formed on its peripheral part, and a total reflection mirror 2 constitute a stable type resonator at a P plane 8 and an unstable type resonator at an S plane 9. And, a laser beam 101 taken out from the central part of the outlet mirror 3 and a laser beam 102 which penetrates through the non-reflective film 31 formed on the peripheral part of the mirror 3 are compounded to be a solid laser beam 10 which is taken outside. And, when the laser beams 101 and 102 are largely different from each other in a phase difference, a means which makes them equal to each other in phase is provided, for instance, a step 32 is provided to an outlet face of the outlet mirror 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は固体レーザ装置のレーザビームの高品質化に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the quality of a laser beam of a solid-state laser device.

〔従来の技術〕[Conventional technology]

第1図、及び第1図は各々例えば特開昭54−8179
4号公報に示された。従来のスラブ型固体レーザ装置を
示す斜視図および断面構成図である。図において、(1
)は光軸(6)に対して傾斜した端面を有し、光軸を直
交する断面がほぼ矩形のスラブ状レーザ媒質であり、光
学的平滑面01)、(13,端面(13,Q41を有し
ている。第1図において、(2)は凹面全反射鏡、ωは
平面部分反射鏡でちり1両ミラー(2)。■によシレー
ザ共振器を構成している。(4)。
1 and 1 are, for example, Japanese Patent Publication No. 54-8179
It was shown in Publication No. 4. FIG. 1 is a perspective view and a cross-sectional configuration diagram showing a conventional slab-type solid-state laser device. In the figure, (1
) is a slab-like laser medium having an end face inclined with respect to the optical axis (6) and a substantially rectangular cross section perpendicular to the optical axis, and has optically smooth surfaces 01), (13, and end face (13, Q41). In Fig. 1, (2) is a concave total reflection mirror, ω is a flat partial reflection mirror (2), and ■ constitutes a laser resonator (4).

15)はレーザ媒質励起用の光源である。15) is a light source for exciting the laser medium.

次に動作について説明する。レーザ媒質(1)は励起用
光源(4)、 +51の発光によって面(ill、(1
3を通して励起され、凹面反射鏡(2)、平面反射fi
8■からなるレーザ共振器によりレーザビームを生じる
。レーザビームは凹面反射鏡(2)、平面反射@!■の
間を往復し、一部が出力として取シ出される。レーザビ
−ムの光路はレーザ媒質(1)外では、レーザ共振器を
構成する反射鏡(2)および■によって定まる光軸(6
)に一致する。レーザ媒質+1)内では、レーザ媒質t
llの長手方向端面αjおよび(141への入出射によ
シレーザビームが屈折し1面αDおよびα2に対しては
全反射をなすような角度となるため、レーザビームは光
路(7)で示されるようにジグザグの経路をたどる。レ
ーザビームがレーザ媒質(1)中を通過する際に反射の
平面を成す平面(8)はP平面として知られている。ま
た光軸(6)を含みながら平面(8)に対して垂直な平
面(9)はS平面として知られている。−搬にスラブ形
レーザ媒質(1)のS平面(9)内で測定された幅と、
P平面(8)内で測定された厚さとの比は通例1.5〜
2以上である。従って、平面(8)内では安定であシ、
平面(9)内では不安定であるような共振器を構成すれ
ば、レーザ媒質(1)の矩形断面に適合した断面を持つ
、収束性の良い低次横モードあるいは最低次横モードが
効率良く得られる。第1図においては平面部分反射鏡(
至)と、凹面全反射鏡(2)によシ、P平面(8)では
安定形、S平面(9)では不安定形となる共振器を構成
している。
Next, the operation will be explained. The laser medium (1) has a surface (ill, (1)
3, concave reflector (2), plane reflector fi
A laser beam is generated by a laser resonator consisting of 8 cm. The laser beam is reflected by a concave reflector (2) and a plane reflection@! It goes back and forth between (2) and a portion is taken out as output. Outside the laser medium (1), the optical path of the laser beam is along the optical axis (6) determined by the reflecting mirror (2) and ■ that constitute the laser resonator.
) matches. Within the laser medium +1), the laser medium t
The laser beam is refracted by entering and exiting the longitudinal end faces αj and (141 of ll), and the angle is such that total internal reflection takes place with respect to the first faces αD and α2, so the laser beam travels along the optical path (7). The plane (8) that forms the plane of reflection when the laser beam passes through the laser medium (1) is known as the P plane. The plane (9) perpendicular to 8) is known as the S-plane. - the width measured in the S-plane (9) of the slab-shaped laser medium (1);
The ratio to the thickness measured in the P plane (8) is typically 1.5 to
It is 2 or more. Therefore, it is stable within the plane (8),
By configuring a resonator that is unstable within the plane (9), the low-order transverse mode or the lowest-order transverse mode with good convergence, which has a cross section that matches the rectangular cross section of the laser medium (1), can be efficiently generated. can get. In Figure 1, the planar partial reflector (
) and the concave total reflection mirror (2) constitute a resonator that is stable in the P plane (8) and unstable in the S plane (9).

〔発明が解決しよつとする課題〕[Problem that the invention seeks to solve]

従来の固体レーザ装置は以上のように、平面部分反射鏡
と凹面全反射鏡とでS平面における不安定形共振器が構
成されているので、共焦点型の不安定形共振器とならず
、凹面反射鏡からの反射レーザビームが平行ビームでな
く集束性のビームとなる。このため、励起されたレーザ
媒質を全てレーザビームで満たすことができなくなり0
発振効率が低下する。また平行ビームでないため、長距
離の伝送に適さない等の問題点があった。さらに平面部
分反射鏡の透過率の値によっては、S平面内における平
面部分反射鏡からの透過レーザビームと、その周囲、即
ち、平面部分反射鏡を通らない部分からのレーザビーム
の位相差が大キく、レンズによる集光時のスポットが小
さく絞れないという問題点があった。
As described above, in conventional solid-state laser devices, an unstable resonator in the S plane is constructed by a flat partial reflecting mirror and a concave total reflecting mirror, so it is not a confocal unstable resonator, but a concave reflecting mirror. The reflected laser beam from the mirror becomes a focused beam instead of a parallel beam. For this reason, the excited laser medium cannot be completely filled with the laser beam, resulting in zero
Oscillation efficiency decreases. Furthermore, since it is not a parallel beam, it has problems such as being unsuitable for long-distance transmission. Furthermore, depending on the transmittance value of the planar partial reflector, there is a large phase difference between the transmitted laser beam from the planar partial reflector in the S plane and the laser beam from the surrounding area, that is, the part that does not pass through the planar partial reflector. However, there was a problem in that the spot when the lens focused the light was too small to narrow down.

本発明は上記のような問題点を解消するためになされた
もので1発振効率が向上されるとともに。
The present invention has been made to solve the above-mentioned problems, and the single oscillation efficiency is improved.

伝送が容易に行え、かつ集光性の良いレーザビームを得
ることのできる固体レーザ装置を得ることを目的とする
The object of the present invention is to obtain a solid-state laser device that can easily transmit a laser beam and can obtain a laser beam with good convergence.

〔課題を解決するための手段〕[Means to solve the problem]

本発明に係る固体レーザ装置は、P平面においては安定
形弁振器を構成し、上記P平面に対して垂直なS平面に
おいては、共振器内レーザビームが平行となる不安定形
共振器を構成すると共(。
The solid-state laser device according to the present invention constitutes a stable valve resonator in the P plane, and constitutes an unstable resonator in which the laser beam within the cavity is parallel in the S plane perpendicular to the P plane. Then, together (.

上記レーザ共振器を構成する出口ミラーは、上記S平面
において、中央が部分反射部0両端が無反射部で構成さ
れたものである・ さらに部分反射部と無反射部を通過するレーザビーム間
の位相差を打消す手段を設けることもできる。
The exit mirror constituting the laser resonator is composed of a partially reflecting part at the center and non-reflecting parts at both ends in the S plane.Furthermore, there is a part between the partially reflecting part and the non-reflecting part between the laser beams passing through the non-reflecting part. Means for canceling the phase difference may also be provided.

〔作用〕[Effect]

本発明によるレーザ共振器はレーザ媒質を完全に満たす
低次横モードの平行ビームを効率よく発生し、さらに位
相差を少なくできるので、レンズ等による集光スポット
のパワー集中度が向上する。
The laser resonator according to the present invention efficiently generates a low-order transverse mode parallel beam that completely fills the laser medium, and can further reduce the phase difference, thereby improving the power concentration of the focused spot by a lens or the like.

〔実施例〕〔Example〕

以下1本発明の一実施例を図について説明する。 An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の固体レーザ装置の斜視図であり。FIG. 1 is a perspective view of a solid-state laser device of the present invention.

従来技術を示す第6図に対応し、同一符号は同−又は相
当部分を示す。(21は全反射鏡、(3)は中央部に部
分反射膜1周辺部に無反射膜をもつ出口ミラーであシ、
全反射鏡(2)と共にP平面(81においては安定形弁
振器、S平面(9)においては不安定形共振器を構成す
る。第2図はS平面(9)における固体レーザ装置の断
面構成図であシ、第3図はP平面(8)における断面構
成図である。Onは出口ミラー(3)の内面中央部に施
された部分反射膜、0乃は出口ミラー(3)の内面外縁
部及び外面に施された無反射膜。
This corresponds to FIG. 6 showing the prior art, and the same reference numerals indicate the same or equivalent parts. (21 is a total reflection mirror, (3) is an exit mirror with a partially reflective film 1 in the center and a non-reflective film around the periphery.
Together with the total reflection mirror (2), the P plane (81) constitutes a stable valve resonator, and the S plane (9) constitutes an unstable resonator. Figure 2 shows the cross-sectional configuration of the solid-state laser device in the S plane (9). FIG. Anti-reflective coating applied to the outer edge and outer surface.

(1Gは外部に取)出されたレーザビームである。また
(101)は出口ミラー(3)の中央部から取シ出され
たレーザビーム、  (102)はそのまわ〕から取り
出されたレーザビームである。
(1G is the laser beam taken out to the outside). Further, (101) is a laser beam taken out from the center of the exit mirror (3), and (102) is a laser beam taken out from around it.

次に動作について説明する。第3図に示された励起用光
源(4)、(5)によシレーザ媒質(1)が励起され。
Next, the operation will be explained. The laser medium (1) is excited by the excitation light sources (4) and (5) shown in FIG.

レーザビームが発振する。S平面においては第2図の出
口ミラー(3)の中央部の部分反射膜(至)によシ拡大
反射されたレーザビーム(1OS)はレーザ媒質(1)
の端面α瘤によシ屈折し、光軸(6)に沿ってレーザ媒
質(1)内を全反射しつつ、ジグザグに進む。レーザ媒
質(1)の他の端面([3から出射した上記レーザビー
ムは全反射鏡(2)により平行ビームに変換されレーザ
媒質(りに向って反射され、レーザ媒質(1)内での内
部全反射によるジグザグ経路を経て出口ミラー(3)に
戻るが、中央部に戻ったレーザビームは部分反射膜■に
より、一部は再び拡大反射され、−部は共振器外に向う
レーザビーム(101)となる。
Laser beam oscillates. In the S plane, the laser beam (1OS) expanded and reflected by the partially reflecting film (to) at the center of the exit mirror (3) in Figure 2 is reflected by the laser medium (1).
The light beam is refracted by the end face α-bump, and travels in a zigzag pattern while being totally reflected within the laser medium (1) along the optical axis (6). The above laser beam emitted from the other end face (3) of the laser medium (1) is converted into a parallel beam by the total reflection mirror (2) and reflected towards the laser medium (1). The laser beam returns to the exit mirror (3) through a zigzag path due to total reflection, but a part of the laser beam that has returned to the center is enlarged and reflected again by the partial reflection film 2, and the - part becomes the laser beam (101) directed outside the resonator. ).

レーザビーム(101)は周辺部の無反射膜ODを通っ
てきたレーザビーム(102)と合成され、中づまシの
レーザビームOQとして外部に取り出される。第4図は
レーザビームql)をレンズで集光した場合の強度分布
の計算例である。レーザビームはそのほとんどが中心近
くに集まっているため、ノ<ワー集中度が向上したこと
がわかる。P平面においては出口ミラー(3)と全反射
鏡(2)は安定形共振器を構成するため、レーザビーム
は最低次モードで発振することが可能であり、このとき
レンズで集光した場合の強度分布はいわゆるガウス形と
な夛集光度が良い。従って、P平面、S平面ともビーム
の集光性が良く、パワー集中度が向上する。
The laser beam (101) is combined with the laser beam (102) that has passed through the non-reflection film OD at the periphery, and is extracted to the outside as a central laser beam OQ. FIG. 4 is an example of calculation of the intensity distribution when the laser beam ql) is focused by a lens. Since most of the laser beams are concentrated near the center, it can be seen that the laser concentration has improved. In the P plane, the exit mirror (3) and the total reflection mirror (2) constitute a stable resonator, so the laser beam can oscillate in the lowest order mode, and at this time, when focused by a lens, The intensity distribution has a so-called Gaussian shape, and the light concentration is good. Therefore, the beam convergence is good in both the P plane and the S plane, and the degree of power concentration is improved.

なお、上記実施例では、出口ミラー(3)として。In addition, in the above embodiment, it is used as the exit mirror (3).

P平面では平面、S平面では凸面のシリンドリカルミラ
ーを、全反射鏡(21としてはP、S平面における曲率
半径が等しいミラー構成を示したが、出口ミラー(3)
、全反射鏡(21の曲率半径は、P平面においては安定
形、S平面においては不安定形となるように、P平面と
S平面とで独立して設定された組み合せのものであれば
良い。共振器の安定。
A cylindrical mirror that is flat in the P plane and convex in the S plane is used as a total reflection mirror (21 has a mirror configuration with equal radii of curvature in the P and S planes, but the exit mirror (3)
, the radius of curvature of the total reflection mirror (21) may be a combination set independently for the P plane and the S plane so that it is stable in the P plane and unstable in the S plane. Stability of the resonator.

不安定は周知のいわゆるgパラメータを用いれば設計で
きる。
Instability can be designed using the well-known so-called g parameter.

また上記実施例では、出口ミラー(3)を通過するレー
ザビーム(101)と(102)ljはとんど同位相で
合成されると仮定したが1部分反射膜(至)を通過する
レーザビーム(101)と無反射膜C(I)を通過する
レーザビーム(102)との間に大きな位相差が生じる
場合には両者の光路長に差を生じさせ0等位相化する手
段を備えれば良く、これは例えば第5図に示すように出
口ミラー(3)の出口面に段部(至)を設けることによ
シ実現できる。
Furthermore, in the above embodiment, it was assumed that the laser beams (101) and (102) lj passing through the exit mirror (3) are combined with almost the same phase, but the laser beam passing through the partially reflecting film (to) (101) and the laser beam (102) passing through the non-reflection film C(I), if a large phase difference occurs between the laser beam (102) and the laser beam (102) passing through the non-reflection film C(I), it is possible to provide a means to create a difference in the optical path length of the two and make the phase equal to 0. Preferably, this can be realized, for example, by providing a step on the exit surface of the exit mirror (3) as shown in FIG.

さらに上記実施例では固体レーザ媒質として。Furthermore, in the above embodiments, it is used as a solid laser medium.

該レーザ媒質中でレーザビームが内部全反射をしつつジ
グザグ経路をとるものを示したが1本発明の主旨の達成
にはレーザビームのレーザ媒質内ジグザグ経路は必要な
く、レーザ媒質の断面の縦・横の比が大きく、念とえば
3以上であれば、レーザビームがレーザ媒質内をストレ
ートに通過しても良いことはもちろんである。この場合
、P平面に光軸と端面の鉛直ベクトルとで決定される平
面であり、S平面はこのP平面に垂直な平面となる。
Although the laser beam takes a zigzag path while undergoing total internal reflection in the laser medium, the zigzag path of the laser beam in the laser medium is not necessary to achieve the purpose of the present invention. - Of course, if the lateral ratio is large, for example 3 or more, the laser beam may pass straight through the laser medium. In this case, the P plane is a plane determined by the optical axis and the vertical vector of the end face, and the S plane is a plane perpendicular to the P plane.

〔発明の効果〕〔Effect of the invention〕

以上のように0本発明によればP平面においては安定形
共振器を構成し、上記P平面に対して垂直なS平面にお
いては、共振器内レーザビームが平行となる不安定形共
振器を構成すると共に、上記レーザ光振器を構成する出
口ミラーは、上記S平面において中央が部分反射部1両
端が無反射部となるように構成したので、レーザ媒質の
断面積にあった低次モードのレーザビームを効率よく得
ることかできると共に、伝送が容易で、かつ集光性の良
いレーザビームを得ることができる効果がある。
As described above, according to the present invention, a stable resonator is constructed in the P plane, and an unstable resonator is constructed in which the laser beam within the resonator is parallel to the S plane perpendicular to the P plane. At the same time, since the exit mirror constituting the laser beam oscillator is configured such that the center is a partially reflective part 1 and both ends are non-reflective parts in the S plane, the low-order mode corresponding to the cross-sectional area of the laser medium is This has the effect of not only being able to efficiently obtain a laser beam, but also being able to easily transmit and obtain a laser beam with good convergence.

さらに、上記部分反射部と上記無反射部を通過するレー
ザビーム間の位相差を打消す手段を設けることによって
、さらに集光性の良いレーザビームを得ることができる
効果がある。
Further, by providing a means for canceling the phase difference between the laser beam passing through the partially reflecting section and the non-reflecting section, it is possible to obtain a laser beam with even better convergence.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による固体レーザ装置を示す
斜視図、第2図は第1図のS平面での断面構成図、第3
図は第1図のP平面での断面構成図、第4図は本発明の
一実施例によるレーザ装置より出射するレーザビームの
集光性を示す光強度分布口、第5図は本発明の他の実施
例に係る出口ミラーを示す断面図。並びに第6図及び第
1図は各々従来の固体レーザ装置を示す斜視図および断
面構成図である。 +11・・・レーザ媒質、【2)・・・全反射鏡、(3
)・・・出口ミラー、+61・・・光軸、(8)・・・
P平面、(9)・・・S平面、13.αj・・・端面、
Gl・・・部分反射膜、 DI)・・・無反射膜、al
。 (1o1)、 (1o2) 、 (1os)・・・レー
ザビーム、(至)・・・段部。 なお0図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a perspective view showing a solid-state laser device according to an embodiment of the present invention, FIG. 2 is a cross-sectional configuration diagram taken on the S plane of FIG.
The figure is a cross-sectional configuration diagram on the P plane of FIG. 1, FIG. 4 is a light intensity distribution aperture showing the condensing property of a laser beam emitted from a laser device according to an embodiment of the present invention, and FIG. FIG. 7 is a sectional view showing an exit mirror according to another embodiment. 6 and 1 are a perspective view and a cross-sectional configuration diagram, respectively, showing a conventional solid-state laser device. +11... Laser medium, [2]... Total reflection mirror, (3
)...Exit mirror, +61...Optical axis, (8)...
P plane, (9)...S plane, 13. αj... end face,
Gl...partially reflective film, DI)...non-reflective film, al
. (1o1), (1o2), (1os)...laser beam, (to)...stepped portion. Note that in the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)光軸に対し傾斜した端面を有し、上記光軸と直交
する断面がほぼ矩形のレーザ媒質、及びこのレーザ媒質
をはさんで設けられた複数のミラーによりレーザ共振器
を構成するものにおいて、上記レーザ共振器は、上記光
軸と上記端面の鉛直ベクトルとで決定されるP平面にお
いては安定形共振器を構成し、上記P平面に対して垂直
なS平面においては、共振器内レーザビームが平行とな
る不安定形共振器を構成すると共に、上記レーザ共振器
を構成する出口ミラーは、上記S平面において中央が部
分反射部、両端が無反射部で構成されたことを特徴とす
る固体レーザ装置。
(1) A laser resonator configured by a laser medium having an end surface inclined with respect to the optical axis and having a substantially rectangular cross section perpendicular to the optical axis, and a plurality of mirrors provided across this laser medium. In the above, the laser resonator constitutes a stable resonator in the P plane determined by the optical axis and the vertical vector of the end face, and the laser resonator constitutes a stable resonator in the S plane perpendicular to the P plane. An unstable resonator in which the laser beam is parallel is configured, and the exit mirror constituting the laser resonator is characterized in that, in the S plane, the center is a partially reflective part and both ends are non-reflective parts. Solid state laser device.
(2)部分反射部と無反射部とを通過するレーザビーム
間の位相差を打消す手段を設けた請求項1記載の固体レ
ーザ装置。
(2) The solid-state laser device according to claim 1, further comprising means for canceling a phase difference between the laser beams passing through the partially reflecting section and the non-reflecting section.
JP63099819A 1988-04-22 1988-04-22 Solid-state laser device Expired - Fee Related JP2666350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63099819A JP2666350B2 (en) 1988-04-22 1988-04-22 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63099819A JP2666350B2 (en) 1988-04-22 1988-04-22 Solid-state laser device

Publications (2)

Publication Number Publication Date
JPH01270375A true JPH01270375A (en) 1989-10-27
JP2666350B2 JP2666350B2 (en) 1997-10-22

Family

ID=14257445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63099819A Expired - Fee Related JP2666350B2 (en) 1988-04-22 1988-04-22 Solid-state laser device

Country Status (1)

Country Link
JP (1) JP2666350B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188688A (en) * 1989-12-18 1991-08-16 Mitsubishi Electric Corp Solid laser

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser
JPS6116585A (en) * 1984-06-18 1986-01-24 ゼネラル・エレクトリツク・カンパニイ Surface pump type longitudinal thick plate laser having light resonance cavity
JPS61199686A (en) * 1985-03-01 1986-09-04 Mitsubishi Electric Corp Unstable laser resonator
JPS61503066A (en) * 1984-08-20 1986-12-25 ゼネラル・エレクトリック・カンパニイ optical transmission filter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5481794A (en) * 1977-11-14 1979-06-29 Gen Electric Plane ponping laser
JPS6116585A (en) * 1984-06-18 1986-01-24 ゼネラル・エレクトリツク・カンパニイ Surface pump type longitudinal thick plate laser having light resonance cavity
JPS61503066A (en) * 1984-08-20 1986-12-25 ゼネラル・エレクトリック・カンパニイ optical transmission filter
JPS61199686A (en) * 1985-03-01 1986-09-04 Mitsubishi Electric Corp Unstable laser resonator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03188688A (en) * 1989-12-18 1991-08-16 Mitsubishi Electric Corp Solid laser

Also Published As

Publication number Publication date
JP2666350B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
EP0369281A2 (en) Optically pumped solid laser
WO1990009690A1 (en) Solid state laser
JP2000506676A (en) Optical resonator with helical optical element
JPH01270375A (en) Solid-state laser device
JPH05121803A (en) Semiconductor excitation solid-state laser
JP3060493B2 (en) Solid state laser oscillator
JPH07106669A (en) Laser oscillator
JP3003172B2 (en) Solid state laser oscillator
JPH0669569A (en) Optical wavelength conversion apparatus
JP2663497B2 (en) Laser device
JP2738053B2 (en) Solid-state laser device
JPS61287189A (en) Laser device
JPH01152787A (en) Semiconductor laser light source
JPH0637368A (en) Laser and beam expander
JPH07106684A (en) Solid state laser
JPS63233592A (en) Dye cell
JPH03188688A (en) Solid laser
JPH1117255A (en) Semiconductor excitation solid-state laser device and infrared laser device using the same
JPH11177165A (en) Light excitation method for solid state laser
JPH04123479A (en) Laser diode(ld) excited solid state laser oscillator
JP2673301B2 (en) Solid-state laser device
JPH01270370A (en) Laser device
JPH06268289A (en) Slab laser
JPH04247674A (en) Laser
JPS62211977A (en) Narrow-band oscillation excimer laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees