JPH01270214A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH01270214A
JPH01270214A JP9895988A JP9895988A JPH01270214A JP H01270214 A JPH01270214 A JP H01270214A JP 9895988 A JP9895988 A JP 9895988A JP 9895988 A JP9895988 A JP 9895988A JP H01270214 A JPH01270214 A JP H01270214A
Authority
JP
Japan
Prior art keywords
capacitor
capacitor element
case
solid electrolytic
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9895988A
Other languages
Japanese (ja)
Inventor
Koichi Kitaura
北浦 孝一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP9895988A priority Critical patent/JPH01270214A/en
Publication of JPH01270214A publication Critical patent/JPH01270214A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

PURPOSE:To prevent characteristics of a capacitor from varying or deteriorating, and to improve reliability by sealing the opening of a case with fluorine rubber packing, and then coating the packing with thermosetting resin to seal the opening. CONSTITUTION:After the opening of a case 4 containing a capacitor element 3 is sealed with a fluorine rubber packing 8 having excellent heat resistance, the packing 8 is coated with thermosetting resin 10 to seal the opening of the case 4. Accordingly, since it is sealed with high airtightness and the packing 8 having excellent heat resistance is employed, it can endure against high temperature at the time of impregnating a melted organic semiconductor 5, the heat at the time of curing the resin 10 does not affect directly the semiconductor 5, thereby preventing an external appearance from deteriorating and a lead pitch from deforming. Thus, it can prevent characteristics of a capacitor from varying or deteriorating, and improve reliability.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、民生用あるいは産業用の固体電解コンデンサ
を製造する固体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a solid electrolytic capacitor manufacturing method for manufacturing consumer or industrial solid electrolytic capacitors.

〔従来の技術〕[Conventional technology]

一般に、固体電解コンデンサを製造する場合、第6図に
示すように、アルミニウム、タンタル。
Generally, when manufacturing solid electrolytic capacitors, aluminum and tantalum are used, as shown in Figure 6.

ニオブなどの弁作用を有する金属の化成箔からなる陽極
箔に陽極リード(1]を接合すると共に、陰甑箔に陰1
ijJ−ドf2+を接合し、前記陽極箔、一方のセパレ
ータ紙、前記陰極箔及び他方のセパレータ紙を重合し巻
回してコンデンサ素子(31を形成し、有底円筒状の金
属ケース(4)内に有機半導体!51を収容して融解し
、熱処理を施こしたコンデンサ素子(31をケースf4
1内に挿入して融解した有機半導体f51をコンデンサ
素子(31に含浸し、ケース(4)ごとコンデンサ素子
(31を冷却して有機半導体C51を固化したのち、エ
ポキシ樹脂などの熱硬化性樹脂(6)ヲケーヌ(4(内
に充填し、ケース(41の開口部を密封して固体電解コ
ンデンサ(7)を製造している。
An anode lead (1) is bonded to an anode foil made of a chemically formed foil of a metal with valve action such as niobium, and an anode lead (1) is bonded to the anode foil.
The anode foil, one separator paper, the cathode foil and the other separator paper are polymerized and wound to form a capacitor element (31), and the capacitor element (31) is placed inside a cylindrical metal case (4) with a bottom. A capacitor element (31 is placed in case f4
The capacitor element (31) is impregnated with the organic semiconductor C51 inserted into the capacitor element (31) and melted, and the capacitor element (31) together with the case (4) is cooled to solidify the organic semiconductor C51. 6) A solid electrolytic capacitor (7) is manufactured by filling the inside of the case (41) and sealing the opening of the case (41).

ところが、この場合、融解した有機半導体(5)を収容
したケース(4)内にコンデンサ素子(31を収納し、
コンデンサ素子(3)をケース(41ごと冷却して有機
半導体(5)を固化する際に、コンデンサ素子+31が
第6図に示すように傾いたまま有機半導体151が固化
することがあり、熱硬化性樹脂(6)による密封では、
コンデンサr71の外観不良やリードピッチの変形など
を招くという欠点がある。
However, in this case, the capacitor element (31) is housed in the case (4) containing the molten organic semiconductor (5),
When cooling the capacitor element (3) along with the case (41) to solidify the organic semiconductor (5), the organic semiconductor 151 may solidify while the capacitor element +31 is tilted as shown in FIG. In the case of sealing with synthetic resin (6),
This has the drawback of causing a defective appearance of the capacitor r71 and deformation of the lead pitch.

さらに、熱硬化性樹脂(6)により密封する際、高温で
硬化させるため、有機半導体(5)と熱硬化性樹脂(6
)とが化学反応することがあシ、その結果コンデンサ(
7)の静電容量の減少や漏洩電流の増大を招き、コンデ
ンサ【7)の信頼性の低下を招くという不 −都合が生
じる。
Furthermore, when sealing with the thermosetting resin (6), the organic semiconductor (5) and the thermosetting resin (6) are cured at high temperatures.
) may undergo a chemical reaction, resulting in a capacitor (
This leads to a decrease in the capacitance of capacitor [7] and an increase in leakage current, resulting in a disadvantage that the reliability of capacitor [7] decreases.

そこで、実開昭52−120939号公報(HQIG9
/10)に記載のように、ケースの開口部をゴムパツキ
ンなどの弾性封口体により封着することや、特公昭62
−38848号公報(HoIG 9/24)に記載のよ
うに、弾性封口体によりケースの開口部を封口したのち
、補強用に樹脂を塗布し、前記開口部を2重封口するこ
とが考えられている。
Therefore, Japanese Utility Model Application Publication No. 52-120939 (HQIG9
/10), the opening of the case may be sealed with an elastic sealing body such as a rubber seal, or
As described in Publication No. 38848 (HoIG 9/24), it has been considered that after sealing the opening of the case with an elastic sealing body, a resin is applied for reinforcement and the opening is double sealed. There is.

このように、弾性封口体によυケースの開口部を封着す
ることにより、前記したようなコンデンサ素子(31の
傾斜を防止してコンデンサ(7)の外観不良やリードピ
ッチの変形の発生を防止できると共に、熱硬化性樹脂【
6)の硬化時の熱に起因するコンデンサ(7>の信頼性
の低下を防止することができる。
In this way, by sealing the opening of the υ case with the elastic sealing body, it is possible to prevent the capacitor element (31) from tilting as described above, thereby preventing appearance defects of the capacitor (7) and deformation of the lead pitch. In addition to being able to prevent thermosetting resin [
It is possible to prevent the reliability of the capacitor (7>) from decreasing due to the heat generated during curing of the capacitor (6).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、ゴムパツキンなどの弾性封口体だけでは、熱硬
化性樹脂に比べて気密性の点で劣るため、コンデンサf
71の舒電容量9等価直列抵抗(ESR)。
However, using only an elastic sealing material such as a rubber seal is inferior to thermosetting resin in terms of airtightness, so the capacitor f
71 capacitance 9 equivalent series resistance (ESR).

−δ、漏洩電流などの特性が大きく変化するという問題
点がある。
There is a problem in that characteristics such as −δ and leakage current vary greatly.

しかも、固体電解コンデンサの場合、電解液型電解コン
デンサのような強い自己修復作用がないため、弾性封口
体をコンデンサ素子(31に取シ付ける際にコンデンサ
素子+31に外力が加わり、素子+31の陽極箔である
化成箔を損傷することによって、コンデンサr7)のE
 S R、漏洩電流が増大し、歩留りの低下を招くおそ
れがある。
Moreover, solid electrolytic capacitors do not have a strong self-repairing action like electrolytic capacitors, so when attaching the elastic sealing body to the capacitor element (31), external force is applied to the capacitor element +31, causing the anode of element +31 to By damaging the chemically formed foil, the E of the capacitor r7)
SR and leakage current may increase, leading to a decrease in yield.

また、前記した弾性封口体と樹脂による2重封口の場合
、高い気密性を保って密封できるだめ、前記した弾性封
口体のみの場合のよう碌コンデンサ(7)の特性変化の
抑制効果を期待できるが、弾性封口体及び樹脂の材質に
よっては、製造されたコンデンサ(7)の特性変化や劣
化を十分に抑制することができないという問題点がある
In addition, in the case of double sealing using the above-mentioned elastic sealing body and resin, since it is possible to seal while maintaining high airtightness, it can be expected to have the effect of suppressing changes in the characteristics of the capacitor (7) as in the case of using only the above-mentioned elastic sealing body. However, depending on the materials of the elastic sealing body and the resin, there is a problem in that changes in characteristics and deterioration of the manufactured capacitor (7) cannot be sufficiently suppressed.

そこで、本発明は前記の諸点に留意してなされ、固体電
解コンデンサの信頼性の低下を防止できるようにするこ
とを目的とする。
Therefore, the present invention has been made with the above-mentioned points in mind, and an object of the present invention is to prevent a decrease in reliability of a solid electrolytic capacitor.

〔課題を解決するための手段〕[Means to solve the problem]

つぎに、前記目的を達成するだめの手段を、実施例に対
応する第1図を用いて説明する。
Next, means for achieving the above object will be explained using FIG. 1 which corresponds to an embodiment.

すなわち、アルミニウム、タンタル、ニオブなどの弁作
用を有する金属の化成箔からなる陽極箔、一方のセパレ
ータ紙、陰極箔及び他方のセパレータ紙を重合し巻回し
てコンデンサ素子(3)を形成し、前記コンデンサ素子
(31に融解した有機半導体(5+を含浸し、前記コン
デンサ素子(3)を有底の筒状ケース+41に収納し、
前記ケース(41の開口部を密封して固体電解コンデン
サを製造する固体電解コンデンサの製造方法において、
本発明では、 前記開口部をフッ素系ゴムパツキン(8)により封口し
たのち、前記パツキン(8)上に熱硬化性樹脂1Gをコ
ーティングし、前記開口部を密封することを特徴、とし
ている。
That is, a capacitor element (3) is formed by polymerizing and winding an anode foil made of a chemically formed foil of a metal having valve action such as aluminum, tantalum, or niobium, one separator paper, a cathode foil, and the other separator paper. A capacitor element (31) is impregnated with a molten organic semiconductor (5+), and the capacitor element (3) is housed in a bottomed cylindrical case +41,
In the method for manufacturing a solid electrolytic capacitor, the method includes manufacturing a solid electrolytic capacitor by sealing the opening of the case (41),
The present invention is characterized in that after the opening is sealed with a fluorine rubber gasket (8), thermosetting resin 1G is coated on the gasket (8) to seal the opening.

さラニ、アルミニウム、タンタル、ニオブなどの弁作用
を有する金属の化成箔からなる陽極箔、一方のセパレー
タ紙、陰極箔及び他方のセパレータ紙を重合し巻回して
コンデンサ素子(3)を形成し、前記コンデンサ素子イ
3)にフッ素系ゴムパツキン(8)を装着したのち、前
記コンデンサ素子(3)を再化成処理し7、前記コンデ
ンサ素子+31に融解した有機半導体+51を含浸し、
前記コンデンサ素子(31を有底の筒状ケースに収納し
、前記パツキンfl’ilにより前記ケース(4)の開
口部を封口するようにしてもよい。
A capacitor element (3) is formed by polymerizing and winding an anode foil made of a chemically formed foil of a metal having a valve action such as aluminum, tantalum, niobium, separator paper on one side, cathode foil on the other hand, and separator paper on the other side; After attaching a fluorine-based rubber gasket (8) to the capacitor element A3), the capacitor element (3) is subjected to reconversion treatment 7, and the capacitor element +31 is impregnated with a molten organic semiconductor +51,
The capacitor element (31) may be housed in a cylindrical case with a bottom, and the opening of the case (4) may be sealed with the packing fl'il.

〔作用〕[Effect]

したがって、本発明によると、コンデンサ素子f3+を
収納したケース(4)の開口部が、耐熱性の優れたフッ
素系ゴムパツキン(8)により封口されたのち、ゴムパ
ツキン+8を上に熱硬化性樹脂00がコーティングされ
てケース(41の開口部が密封され、ゴムパツキンある
いは熱硬化性樹脂単体により封口する場合に比べ、高い
気密性を保って密封されることになり、しかも耐熱性に
優れ、かつ同じく高耐熱性とにより、融解した有機半導
体+51の含浸時の高温にも耐え、熱硬化性樹脂noの
硬化時の熱が直接有機半導体15+に及ぶことがなく、
固体電解コンデンサの外観不良やリードピッチの変形が
防止されるのは勿論のこと、コンデンサの特性の変化や
劣化が防止され、固体電解コンデンサの信頼性の低下が
防止される。
Therefore, according to the present invention, after the opening of the case (4) housing the capacitor element f3+ is sealed with a fluorine-based rubber gasket (8) having excellent heat resistance, the thermosetting resin 00 is placed over the rubber gasket +8. The opening of the case (41) is sealed with a coating, and compared to sealing with rubber gaskets or thermosetting resin alone, it is sealed with high airtightness, and has excellent heat resistance, and is also highly heat resistant. Due to its properties, it can withstand high temperatures during impregnation with molten organic semiconductor +51, and the heat during curing of thermosetting resin No. does not directly reach organic semiconductor 15+.
Not only is it possible to prevent appearance defects and deformation of the lead pitch of the solid electrolytic capacitor, but also changes and deterioration of the characteristics of the capacitor are prevented, and a decrease in the reliability of the solid electrolytic capacitor is prevented.

さらに、フッ素系ゴムパツキン【8)を、コンデンサ素
子+31の再化成処理前にコンデンサ素子(31に装着
すれば、ゴムパツキンr81の装着時に加わる外力によ
シ、コンデンサ素子(31の化成箔が損傷しても、次の
再化成処理により損傷した化成箔が修復されるため、従
来のような固体電解コンデンサのESRや漏洩電流の増
大もなく、歩留りの低下が防止される。
Furthermore, if the fluorine rubber gasket [8] is attached to the capacitor element (31) before the reconversion treatment of the capacitor element +31, the chemical foil of the capacitor element (31) will be damaged by the external force applied when the rubber gasket R81 is attached. However, since the damaged chemical foil is repaired by the subsequent re-forming treatment, there is no increase in the ESR or leakage current of the solid electrolytic capacitor, which is the case with conventional solid electrolytic capacitors, and a decrease in yield is prevented.

〔実施例〕〔Example〕

つぎに、本発明を、その実施例を示した第1図ないし第
5図とともに詳細に説明する。
Next, the present invention will be explained in detail with reference to FIGS. 1 to 5 showing embodiments thereof.

まず、実施例1を示した第1図及び第2図について説明
する。なお、第1図において、第6図と同一記号は同一
もしくは対応するものを示している。
First, FIG. 1 and FIG. 2 showing Example 1 will be explained. In FIG. 1, the same symbols as in FIG. 6 indicate the same or corresponding parts.

いま、第1図に示すように、アルミニウム,タンタル,
ニオブなどの弁作用を有する金属の化成箔からなる陽極
箔に陽極リード(1)を接合すると共に、陰極箔に陰極
リード(2)を接合し、前記陽極箔。
Now, as shown in Figure 1, aluminum, tantalum,
An anode lead (1) is bonded to an anode foil made of a chemically formed foil of a metal having valve action such as niobium, and a cathode lead (2) is bonded to the cathode foil.

一方のセパレータ紙、前記陰極箔及び他方のセパレータ
紙を重合して巻回し、コンデンサ素子+31を形成する
One separator paper, the cathode foil, and the other separator paper are polymerized and wound to form a capacitor element +31.

つぎに、フッ素系ゴムパツキン(3)に形成した2に装
着し、有底円筒状の金属ケース(4)内に有機半導体+
51を収容して融解し、熱処理を施こしたコンデンサ素
子(3)をケース(4)内に挿入すると共に、ゴムパツ
キン+81をケース(41の開口部に嵌装し、融解した
有機半導体+51をコンデンサ素子r31に含浸し、ケ
ースf41ごとコンデンサ素子(3)を冷却して有機半
導体(5)を固化し、ゴムパツキン【8)の局面に対向
したケース(4)の上部を横絞り加工してケース(41
の開口部を封口したのち、エポキシ系樹脂からなる熱硬
化性樹脂aOをゴムパツキン181上にコーティングし
て硬化きせ、ケース(4)の開口部を密封して固体電解
コンデンサを製造する。
Next, the organic semiconductor +
The capacitor element (3) containing and melting 51 and subjected to heat treatment is inserted into the case (4), and the rubber gasket +81 is fitted into the opening of the case (41), and the molten organic semiconductor +51 is inserted into the capacitor. The organic semiconductor (5) is impregnated into the element r31, the capacitor element (3) together with the case f41 is cooled, and the organic semiconductor (5) is solidified. 41
After sealing the opening of the case (4), a thermosetting resin aO made of epoxy resin is coated on the rubber packing 181 and cured, and the opening of the case (4) is sealed to manufacture a solid electrolytic capacitor.

ところで、前記したようにして製造された固体電解コン
デンサ(以下コンデンサAという)の特性変化を調べる
ため、125℃における2000時間の高温負荷試験を
行い、500 、1000 、2000時間の経過時の
容量変化を測定した結果、第2図に示すようになり、比
較のために、第6図に示すように熱硬化性樹脂のみでケ
ースの開口部を封口した固体電解コンデンサ(以下コン
デンサBという)、及びフッ素系ゴムパツキンのみでケ
ースの開口部を封口した固体電解コンデンサ(以下コン
デンサCという)に対しても、同じ<125℃の高温負
荷試験を行い、500 、1000 、2000時間経
過時の容量変化を測定し、その結果を第2図に併せて示
している。ただし、第2図の縦軸は、試験開始前の容量
に対する各測定時間径過後の容量変化分の比率を示して
いる。
By the way, in order to investigate changes in the characteristics of the solid electrolytic capacitor (hereinafter referred to as capacitor A) manufactured as described above, a high temperature load test was conducted at 125°C for 2000 hours, and the capacitance changes after 500, 1000 and 2000 hours were measured. The results of the measurements were as shown in Figure 2. For comparison, a solid electrolytic capacitor (hereinafter referred to as capacitor B) whose case opening was sealed only with thermosetting resin as shown in Figure 6, and A solid electrolytic capacitor (hereinafter referred to as capacitor C) whose case opening was sealed only with a fluorine-based rubber gasket was also subjected to the same high-temperature load test at <125°C, and the capacitance change was measured after 500, 1000, and 2000 hours. The results are also shown in Figure 2. However, the vertical axis in FIG. 2 indicates the ratio of the change in capacity after each measurement time period to the capacity before the start of the test.

なお、この高温負荷試験に供した各コンデンサA 、 
B 、 co定格ハ15wv 15%Fテロ り、フッ
素系ゴムパツキン(8)には、旭硝子株式会社製の商品
名「アフラス」のフッ素系ゴムパッキンヲ使用シた。
In addition, each capacitor A subjected to this high temperature load test,
B, CO rating: 15wv 15%F Terrorism The fluorine-based rubber packing (8) was a fluorine-based rubber packing manufactured by Asahi Glass Co., Ltd. under the trade name ``Afras''.

そして、第2図から明らかなように、コンデンサAは、
他のコンデンサB、Cに比べ、 2000時間経過後の
容量変化がほとんどなく、フッ素系ゴムパツキンr8)
と熱硬化性樹脂110とによる2重の封口により、コン
デンサの特性の変化や劣化を防止することが可能になる
ことがわかる。
As is clear from Fig. 2, capacitor A is
Compared to other capacitors B and C, there is almost no change in capacitance after 2000 hours, and the fluorine rubber gasket R8)
It can be seen that the double sealing by the thermosetting resin 110 and the thermosetting resin 110 makes it possible to prevent changes and deterioration of the characteristics of the capacitor.

これは、フッ素系ゴムパツキンが、耐熱性に優れ、かつ
同じく高耐熱性のシリコン系ゴムパツキンよりもガス遮
断性が約400倍も優れており、このような特長を有す
るフッ素系ゴムパツキン(8)とエポキシ系樹脂からな
る熱硬化性樹脂noとによシ、第1図に示す如くケース
r41の開口部を2重に封口することにより、フッ素系
ゴムパツキンあるいは熱硬化性樹脂単体による封口の場
合に比べ、高い気密性を保ってケースr41の開口部を
密封することができ、しかも熱硬化性樹脂GOの硬化時
の熱が直接有機半導体(5)に及ぶことを防止できるた
めであシ、その結果、固体電解コンデンサの特性の変化
や劣化を防止することが可能になったものである。
This is because fluorine-based rubber gaskets have excellent heat resistance and are about 400 times better in gas barrier properties than silicone-based rubber gaskets, which also have high heat resistance. By doubly sealing the opening of the case R41 as shown in Fig. 1, compared to the case of sealing with a fluorine-based rubber gasket or a thermosetting resin alone, This is because the opening of the case r41 can be sealed with high airtightness, and the heat during curing of the thermosetting resin GO can be prevented from directly reaching the organic semiconductor (5). This makes it possible to prevent changes and deterioration in the characteristics of solid electrolytic capacitors.

つぎに、実施例2を示した第3図及び第4図について説
明する。
Next, FIGS. 3 and 4 showing Example 2 will be explained.

第3図において、第1図と同一記号は同一のものを示し
、第1図と異なる点は、コンデンサ素子(3)ヲケース
(4)に収納してフッ素系ゴムパツキン(8)をケース
f41の開口部に嵌装し、ケース(4)の上端に横絞り
加工を施こしてゴムパツキン(8)によりケース(4)
の開口部を封口したのち、ケース(4)の上端をカール
加工し、ケース(4)を円筒状のビニールヌリー7” 
(111で被覆し、スリーブ011の上端内側のゴムパ
ツキン(8)上にエポキシ系樹脂からなる熱硬化性樹脂
GOをコーティングして硬化させ、ケース(4)を密封
した点である。
In Fig. 3, the same symbols as in Fig. 1 indicate the same things, and the difference from Fig. 1 is that the capacitor element (3) is housed in the case (4) and the fluorine rubber gasket (8) is inserted into the opening of the case f41. The upper end of the case (4) is horizontally drawn, and the rubber gasket (8) is used to secure the case (4).
After sealing the opening of the case (4), the upper end of the case (4) is curled, and the case (4) is wrapped in a 7" cylindrical vinyl nullie.
(111), thermosetting resin GO made of epoxy resin was coated on the rubber gasket (8) inside the upper end of the sleeve 011 and cured, and the case (4) was sealed.

そして、このようにして製造された固体電解コンデンサ
(以下コンデンサDという)に対して、125°Cにお
ける2時間の高温無負荷試験を行い、0.5 、1.0
 、2.0時間経過時の漏洩電流を測定した結果、第4
図に示すようになり、比較のために、第6図に示すよう
に熱硬化性樹脂のみでケースの開口部を封口した固体電
解コンデンサ(以下コンデンサEという)に対して、同
じ<125℃の無負荷試験を行い、0.5 、1.0 
、2.0時間経過時の漏洩電流を測定し、その結果を第
4図に併せて示している。ただし、ゴムパツキン(8)
には、前記した旭硝子(株)製の「アフラス」を用いて
いる。
The solid electrolytic capacitor (hereinafter referred to as capacitor D) manufactured in this way was subjected to a high temperature no-load test at 125°C for 2 hours.
, as a result of measuring the leakage current after 2.0 hours, the fourth
For comparison, a solid electrolytic capacitor (hereinafter referred to as capacitor E) whose case opening is sealed only with thermosetting resin as shown in Fig. A no-load test was performed and the results were 0.5 and 1.0.
, the leakage current was measured after 2.0 hours had elapsed, and the results are also shown in FIG. However, rubber pads (8)
The above-mentioned "Afras" manufactured by Asahi Glass Co., Ltd. is used.

なお、この試験に供したコンデンサD、Eの定格は、1
0WVIOμFであり、IOVの電圧を印加して15秒
後の漏洩電流を測定した。
Note that the ratings of capacitors D and E used in this test are 1
The leakage current was measured 15 seconds after applying a voltage of 0WVIOμF and IOV.

そして、第4図から明らかなように、コンデンサDは、
コンデンサEに比べ、2時間経過後の漏洩電流は当初と
ほとんど変化がなく、これは前記した実施例1における
コンデンサAと同様の理由により、固体電解コンデンサ
の特性の変化や劣化を防止することが可能になったため
である。
As is clear from FIG. 4, the capacitor D is
Compared to Capacitor E, the leakage current after 2 hours has hardly changed from the initial value, and this is due to the same reason as Capacitor A in Example 1 described above, and it is possible to prevent changes and deterioration of the characteristics of the solid electrolytic capacitor. This is because it has become possible.

ところで、実施例3として、第5図に示すように、フッ
素系ゴムパツキン(8)の厚さを、:lンテンサ素子(
31のケース【4]内での傾斜を防止できる最小限度ま
で薄くしても、前記両実施例の場合と同等の効果が得ら
れる。
By the way, as Example 3, as shown in FIG.
Even if the thickness is reduced to the minimum value that can prevent the inclination in case [4] of No. 31, the same effect as in both of the above embodiments can be obtained.

つぎに、実施例4として、熱硬化性樹脂flOを除く他
の構成は第1図に示すものと同一で、以下に記載する製
造手順で製造した固体電解コンデンサについて説明する
。なお、以下の説明では、第1図を参照している。
Next, as Example 4, a solid electrolytic capacitor having the same structure as that shown in FIG. 1 except for the thermosetting resin flO and manufactured by the manufacturing procedure described below will be described. In addition, in the following description, FIG. 1 is referred to.

コンデンサ素子(31の両リードill 、 f21の
リードボヌをフッ素系ゴムパツキン(8)の透孔(9)
に挿通し、ゴムパツキン(8)をコンデンサ素子(31
に装着したのち、コンデンサ素子(3]を再化成処理し
、融解した有機半導体(5)を収容したケース(4)に
コンデンサ素子(3)を挿入すると共に、ゴムパツキン
(8)をケース(4)の開口部に嵌装し、コンデンサ素
子+31に有機半導体(5)を含浸し、その後ケース(
4)ごとコンデンサ素子+31を冷却し、コンデンサ素
子(3)をケース(4)に収納した状態でケース(4)
の上端を横絞シ加工し、ゴムパツキン48+によりケー
ス(4)の開口部を封口し、固体電解コンデンサを製造
する。
Connect the capacitor element (both leads of 31, lead bonne of f21 to the through hole (9) of the fluorine rubber gasket (8)
into the capacitor element (31), and then insert the rubber gasket (8) into the capacitor element (31
After the capacitor element (3) is reconstituted, the capacitor element (3) is inserted into the case (4) containing the melted organic semiconductor (5), and the rubber gasket (8) is inserted into the case (4). The capacitor element +31 is impregnated with the organic semiconductor (5), and then the case (
4) Cool down the capacitor element +31 and store the capacitor element (3) in the case (4).
The upper end of the case (4) is laterally drawn and the opening of the case (4) is sealed with a rubber gasket 48+ to produce a solid electrolytic capacitor.

そして、このようにフッ素系ゴムパツキン+8+ ヲ。And like this, fluorine rubber gasket +8+〇.

コンデンサ素子(31の再化成処理前にコンデンサ素子
(3)に装着したことKよるコンデンサの特注への影響
を調べるため、r 6WV 4.7μFの定格の8個の
固体電解コンデンサを前記した手順で製造し、各コンデ
ンサN11l〜トh8について、容量 tanδ、漏洩
電流、 F、 S R(等価直列抵抗)の初期値を測定
した結果、表1に示すようになった。ただし、表1中の
(は標準偏差を示す。
In order to investigate the effect on customization of capacitors due to the fact that they were installed on capacitor elements (3) prior to the reconstitution treatment of capacitor elements (31), eight solid electrolytic capacitors rated at 6WV 4.7 μF were assembled using the procedure described above. The initial values of capacitance tan δ, leakage current, F, and S R (equivalent series resistance) were measured for each of the capacitors N11l to H8 as shown in Table 1.However, in Table 1, ( indicates standard deviation.

(表1) なお、容量及び−δは120H2での値であυ、漏洩電
流は16Vの電圧を印加して10秒後の値であり、F′
;S几は100 KHzでの値であシ、いずれも室温(
20℃)における値である。
(Table 1) Capacity and -δ are the values at 120H2 υ, leakage current is the value 10 seconds after applying a voltage of 16V, and F'
; S temperature is the value at 100 KHz, both are at room temperature (
20°C).

一方、比較のために、フッ素系ゴムパツキン(8)を、
コンデンサ素子(3)の再化成処理後にコンデンサ素子
(31に装着した場合について、同様に15WV4.7
μFの定格のコンデンサ阻1−48の各特性を調べた結
果を、表2に示す。
On the other hand, for comparison, fluorine rubber gasket (8)
Similarly, when the capacitor element (31) is installed after the reconversion treatment of the capacitor element (3), 15WV4.7
Table 2 shows the results of examining the characteristics of the μF rated capacitor 1-48.

(表2) したがって、表11表2のデータから明らかなように、
コンデンサ素子(3)の再化成処理前に、フッ素系ゴム
パツキンfl’llをコンデンサ素子(3)に装着する
ことによシ、漏洩電流及びESRの増大、ばらつきを抑
制することができ、とくに漏洩電流において顕著である
(Table 2) Therefore, as is clear from the data in Table 11 and Table 2,
By attaching a fluorine rubber gasket fl'll to the capacitor element (3) before the reconversion treatment of the capacitor element (3), it is possible to suppress increases and variations in leakage current and ESR. It is noticeable in

コレハ、フッ素系ゴムパツキン(8)を、コンデンサ素
子(31の再化成処理前にコンデンサ素子(3)に装着
すれば、ゴムパツキン(8)の装着時に加わる外力によ
シ、コンデンサ素子(3)の化成箔が損傷しても、次の
再化成処理により損傷した化成箔を修復できるためであ
り、その結果漏洩電流及びEAHの増大、ばらつきを抑
制し、歩留りの向上を図ることか可能になったものであ
る。
If the fluorine-based rubber gasket (8) is attached to the capacitor element (3) before the reconstitution treatment of the capacitor element (31), the external force applied when the rubber gasket (8) is attached will be avoided, and the chemical conversion of the capacitor element (3) will be avoided. This is because even if the foil is damaged, the damaged chemically formed foil can be repaired by the next re-forming process, and as a result, it has become possible to suppress the increase and variation in leakage current and EAH, and improve yield. It is.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように構成されているので、以
下に記載する効果を奏する。
Since the present invention is configured as described above, it produces the effects described below.

フッ素系ゴムパツキン及び熱硬化性樹脂により、ケース
の開口部を2重に封口しただめ、ゴムパツキンあるいは
熱硬化性樹脂単体により封口する場合に比べ、高い気密
性を保ってケースを密封することができ、しかも耐熱性
、ガヌ遮断性の優れたフッ素系ゴムパツキンを用いるこ
とにより、融解した有機半導体の含浸時の高温にも耐え
、熱硬化性樹脂の硬化時の熱が直接有機半導体に及ぶこ
とを防止でき、固体電解コンデンサの外観不良やり一ド
ピッチの変形を防止できるのは勿論のこと、コンデンサ
の特性の変化や劣化を防止でき、固体電解コンデンサの
信頼性の低下を防止することができる。
The fluorine-based rubber gasket and thermosetting resin double seal the opening of the case, making it possible to seal the case with higher airtightness than when sealing with a rubber gasket or thermosetting resin alone. Furthermore, by using a fluorine-based rubber gasket with excellent heat resistance and barrier properties, it can withstand high temperatures during impregnation with molten organic semiconductors, and prevents heat during curing of thermosetting resin from directly reaching the organic semiconductors. This not only prevents appearance defects and deformation of the pitch of the solid electrolytic capacitor, but also prevents changes and deterioration of the characteristics of the capacitor, and prevents a decrease in the reliability of the solid electrolytic capacitor.

サラニ、フッ素系ゴムパツキンを、コンデンサ素子の再
化成処理前にコンデンサ素子に装着することにより、コ
ンデンサ素子の化成箔が損傷しても、次の再化成処理に
より損傷した化成箔を修復できるため、従来のような固
体電解コンデンサのESRや漏洩電流の増大を防止でき
歩留りの向上を図ることが可能となる。
By attaching a fluorine-based rubber gasket to the capacitor element before the reconversion treatment of the capacitor element, even if the condensed foil of the capacitor element is damaged, the damaged chemical foil can be repaired by the next reconversion treatment. It is possible to prevent an increase in the ESR and leakage current of solid electrolytic capacitors such as solid electrolytic capacitors, and to improve yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図は本発明の固体電解コンデンサの製
造方法の実施例を示し、第1図及び第2図は実施例1を
示し、第1図は固体電解コンデンサの断面図、第2図は
高温負荷試験における時間と容量変化との関係図、第3
図及び第4図は実施例2を示し、第3図は固体電解コン
デンサの断面図、第4図は高温無負荷試験における時間
と漏洩電流との関係図、第5図は実施例3の固体電解コ
ンデンサの断面図、第6図は従来例の断面図である。 13)・・・コンデンサ素子、(4)・・・ケース、(
5)・・・有機半導体、j8)・・・フッ素系ゴムパツ
キン、flO・・・熱硬化性樹脂。
1 to 5 show an embodiment of the solid electrolytic capacitor manufacturing method of the present invention, FIGS. 1 and 2 show Example 1, FIG. 1 is a sectional view of the solid electrolytic capacitor, and FIG. The figure is a diagram of the relationship between time and capacity change in a high-temperature load test.
Figure 4 shows Example 2, Figure 3 is a cross-sectional view of the solid electrolytic capacitor, Figure 4 is a relationship between time and leakage current in a high temperature no-load test, and Figure 5 shows the solid electrolytic capacitor of Example 3. A sectional view of an electrolytic capacitor, FIG. 6 is a sectional view of a conventional example. 13)...Capacitor element, (4)...Case, (
5)...Organic semiconductor, j8)...Fluorine rubber gasket, flO...Thermosetting resin.

Claims (2)

【特許請求の範囲】[Claims] (1)アルミニウム,タンタル,ニオブなどの弁作用を
有する金属の化成箔からなる陽極箔、一方のセパレータ
紙、陰極箔及び他方のセパレータ紙を重合し巻回してコ
ンデンサ素子を形成し、前記コンデンサ素子に融解した
有機半導体を含浸し、前記コンデンサ素子を有底の筒状
ケースに収納し、前記ケースの開口部を密封して固体電
解コンデンサを製造する固体電解コンデンサの製造方法
において、 前記開口部をフッ素系ゴムパッキンにより封口したのち
、前記パッキン上に熱硬化性樹脂をコーティングし、前
記開口部を密封することを特徴とする固体電解コンデン
サの製造方法。
(1) A capacitor element is formed by polymerizing and winding an anode foil made of a chemically formed metal foil having a valve action such as aluminum, tantalum, or niobium, one separator paper, a cathode foil, and the other separator paper, and the capacitor element A method for manufacturing a solid electrolytic capacitor in which a solid electrolytic capacitor is manufactured by impregnating the capacitor element with a molten organic semiconductor, storing the capacitor element in a bottomed cylindrical case, and sealing the opening of the case, A method for producing a solid electrolytic capacitor, which comprises sealing the opening with a fluorine-based rubber packing, and then coating the packing with a thermosetting resin to seal the opening.
(2)アルミニウム,タンタル,ニオブなどの弁作用を
有する金属の化成箔からなる陽極箔、一方のセパレータ
紙、陰極箔及び他方のセパレータ紙を重合し巻回してコ
ンデンサ素子を形成し、前記コンデンサ素子にフッ素系
ゴムパッキンを装着したのち、前記コンデンサ素子を再
化成処理し、前記コンデンサ素子に融解した有機半導体
を含浸し、前記コンデンサ素子を有底の筒状ケースに収
納し、前記パッキンにより前記ケースの開口部を封口す
ることを特徴とする固体電解コンデンサの製造方法。
(2) A capacitor element is formed by polymerizing and winding an anode foil made of a chemically formed foil of a metal having a valve action such as aluminum, tantalum, or niobium, one separator paper, a cathode foil, and the other separator paper; After attaching a fluorine-based rubber packing to the capacitor element, the capacitor element is reconstituted, the capacitor element is impregnated with a molten organic semiconductor, the capacitor element is housed in a cylindrical case with a bottom, and the packing is used to seal the case. A method for manufacturing a solid electrolytic capacitor, the method comprising: sealing an opening of a solid electrolytic capacitor.
JP9895988A 1988-04-20 1988-04-20 Manufacture of solid electrolytic capacitor Pending JPH01270214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9895988A JPH01270214A (en) 1988-04-20 1988-04-20 Manufacture of solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9895988A JPH01270214A (en) 1988-04-20 1988-04-20 Manufacture of solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH01270214A true JPH01270214A (en) 1989-10-27

Family

ID=14233618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9895988A Pending JPH01270214A (en) 1988-04-20 1988-04-20 Manufacture of solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH01270214A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114118A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
WO2012117820A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Electrolytic capacitor
US20140168860A1 (en) * 2011-08-26 2014-06-19 Fujitsu Limited Electronic component and manufacturing method thereof
EP3282462A4 (en) * 2015-04-09 2019-01-09 Nesscap Co., Ltd. Electric double-layer device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114118A (en) * 1998-09-30 2000-04-21 Nippon Chemicon Corp Solid electrolytic capacitor and its manufacture
WO2012117820A1 (en) * 2011-03-01 2012-09-07 日本ケミコン株式会社 Electrolytic capacitor
CN103403824A (en) * 2011-03-01 2013-11-20 日本贵弥功株式会社 Electrolytic capacitor
US20140168860A1 (en) * 2011-08-26 2014-06-19 Fujitsu Limited Electronic component and manufacturing method thereof
US9384900B2 (en) * 2011-08-26 2016-07-05 Fujitsu Limited Electronic component and manufacturing method thereof
EP3282462A4 (en) * 2015-04-09 2019-01-09 Nesscap Co., Ltd. Electric double-layer device
US10658128B2 (en) 2015-04-09 2020-05-19 Nesscap Co., Ltd. Electric double-layer device

Similar Documents

Publication Publication Date Title
US5707407A (en) Method of forming chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
US5117333A (en) Solid electrolytic capacitor with organic semiconductor and method of manufacturing the same
JPH01270214A (en) Manufacture of solid electrolytic capacitor
US7675736B2 (en) Solid electrolytic capacitor and production method thereof
US10236132B2 (en) Hermetically sealed electrolytic capacitor with double case
US3300692A (en) Seal structure in electrolytic device including disc-members and anode spacer
JPH02306609A (en) Solid-state electrolytic capacitor
JP2869131B2 (en) Solid electrolytic capacitors
JPH06252014A (en) Solid electrolytic capacitor
JP2002313683A (en) Manufacturing method of solid electrolytic capacitor
JP2771767B2 (en) Method for manufacturing solid electrolytic capacitor
JP3363508B2 (en) Organic semiconductor solid electrolytic capacitors
JP2726009B2 (en) Solid electrolytic capacitors
JPH07115042A (en) Manufacture of electrolytic capacitor
JP3556045B2 (en) Solid electrolytic capacitors
JP2000114112A (en) Solid electrolytic capacitor and its manufacture
JP2000114117A (en) Solid electrolytic capacitor and its manufacture
JP3253126B2 (en) Solid electrolytic capacitors
JPH01287919A (en) Solid electrolytic capacitor
JPH01278713A (en) Electrolytic capacitor
JPH0125219B2 (en)
JPH03256313A (en) Solid aluminum electrolytic capacitor
JPS63100710A (en) Solid electrolyte capacitor and manufacture of the same
JPH02128416A (en) Manufacture of solid electrolytic capacitor
JPH08153654A (en) Electrolytic capacitor