JPH0127017B2 - - Google Patents

Info

Publication number
JPH0127017B2
JPH0127017B2 JP59148474A JP14847484A JPH0127017B2 JP H0127017 B2 JPH0127017 B2 JP H0127017B2 JP 59148474 A JP59148474 A JP 59148474A JP 14847484 A JP14847484 A JP 14847484A JP H0127017 B2 JPH0127017 B2 JP H0127017B2
Authority
JP
Japan
Prior art keywords
mgf
ppm
hot
less
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59148474A
Other languages
Japanese (ja)
Other versions
JPS6126553A (en
Inventor
Hajime Ichanagi
Kenichiro Shibata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP59148474A priority Critical patent/JPS6126553A/en
Publication of JPS6126553A publication Critical patent/JPS6126553A/en
Publication of JPH0127017B2 publication Critical patent/JPH0127017B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (技術分野) 本発明は、弗化マグネシウム(MgF2)多結晶
体及びその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to a magnesium fluoride (MgF 2 ) polycrystal and a method for producing the same.

MgF2は、波長9μm以下のいわゆる、可視、近
赤、赤外域の光線の透過性能が良好なため、赤外
線機器用窓材、赤外光フイルター等へ適用され
る。多くの場合は単結晶の形で製造され、使用さ
れるが、大寸法なものが必要な場合及び高い機械
的強度が必要とされる用途には、大型材の製造が
比較的容易で且つ、微細な結晶構造を有する多結
晶体の方が適当である。
MgF 2 has good transmission performance for visible, near-infrared, and infrared light with a wavelength of 9 μm or less, so it is used in window materials for infrared equipment, infrared light filters, etc. In many cases, it is produced and used in the form of a single crystal, but in cases where large dimensions are required and for applications where high mechanical strength is required, it is relatively easy to produce large materials, and A polycrystalline material having a fine crystal structure is more suitable.

(従来技術とその問題点) MgF2多結晶体の製造方法として従来知られて
いるのは、原料としてMgF2粉末を用い、これを
型を用いたホツトプレス又は熱間静水圧成形又は
ホツトプレスと熱間静水圧成形を組み合せた方法
等により高密度化し赤外透光性を得る方法であ
る。これらによれば材質的にはかなり良好な多結
晶体を得ることができ、波長2〜8μmの範囲での
赤外光透過率が70%(3mm厚み)以上のものが製
作可能である。
(Prior art and its problems) Conventionally known methods for producing MgF 2 polycrystals include using MgF 2 powder as a raw material, hot pressing using a mold, hot isostatic pressing, hot pressing and hot pressing. This is a method of increasing the density and obtaining infrared transparency using a method that combines isostatic pressing. According to these methods, it is possible to obtain a polycrystalline material of very good quality, and it is possible to manufacture a polycrystalline material having an infrared light transmittance of 70% or more (thickness of 3 mm) in the wavelength range of 2 to 8 μm.

しかし、波長0.4〜2μmのいわゆる可視光から
近赤外域の光透過性能に関しては、それ程良好で
はなく、第1図実線で示す通り短波長側になる程
透過性能は急激に低下する。2〜8μm帯以外にこ
れら0.4〜2μm帯をも合わせ使用する光学系に対
しては、0.4〜2μ帯の透過性能をできるだけ改善
する必要があつた。
However, the light transmission performance in the range from so-called visible light with a wavelength of 0.4 to 2 μm to the near-infrared region is not so good, and as shown by the solid line in FIG. 1, the transmission performance decreases rapidly as the wavelength becomes shorter. For optical systems that use the 0.4-2 μm band in addition to the 2-8 μm band, it is necessary to improve the transmission performance in the 0.4-2 μm band as much as possible.

(発明の目的) 本発明者らは上記の事実に鑑み、0.4〜2μmの
波長範囲で透光性を改善し、0.4〜8μmの広い波
長範囲で透光性の良好なMgF2多結晶体を得るこ
とを目的とし、製造方法を種々検討した。
(Objective of the Invention) In view of the above facts, the present inventors have improved the translucency in the wavelength range of 0.4 to 2 μm, and created a MgF 2 polycrystalline material with good translucency in the wide wavelength range of 0.4 to 8 μm. With the aim of obtaining this, various manufacturing methods were investigated.

(発明の内容) 上記の目的を達成するための方法として、本発
明者らは、MgF2原料粉末に各種の添加物を種々
の割合で添加することを検討し、最適な添加元素
及び添加量を見い出すことができた。即ち、添加
元素としてV、Fe、Cu、Agの少なくとも1種以
上を10ppm以上、500ppm以下含有する原料粉末
を用い、これをホツトプレスし、理論密度の98%
以上に高密度化することにより、波長0.4〜8μm
の光の透過性能が改善されたMgF2多結晶体が得
られることが明らかになつたものである。
(Contents of the invention) As a method for achieving the above object, the present inventors investigated adding various additives to MgF2 raw material powder in various proportions, and determined the optimum additive elements and amounts. I was able to find out. That is, a raw material powder containing at least one of V, Fe, Cu, and Ag as an additive element of 10 ppm or more and 500 ppm or less is used, and this is hot pressed to a density of 98% of the theoretical density.
By increasing the density, wavelengths of 0.4 to 8 μm can be achieved.
It has become clear that MgF 2 polycrystals with improved light transmission performance can be obtained.

添加元素の種類としては、検討の結果V、Fe、
Cu、Agの4種が採択された。これらの元素は、
各々単独で添加しても効果があるが、2種あるい
は3〜4種の組み合せでも効果が認められた。
As a result of the study, the types of additive elements are V, Fe,
Four types were adopted: Cu and Ag. These elements are
Although each of them was effective when added alone, effects were also observed when two or a combination of three to four types were added.

添加の方法としては、原料粉末の状態で可能な
限り均一に混合されていることが望ましい。本発
明者らは、原料粉末合成工程の溶液状態にてこれ
らの添加物を溶液状で、湿式添加する方法を採用
した。しかし粉末状態での乾式混合にても同様な
効果が認められると考えられる。混合状態の不均
一性は、これらの元素のホツトプレス材での偏析
となつて現われ、外観的には黒い点状の介在物と
して観察される。
As for the method of addition, it is desirable that the raw material powder be mixed as uniformly as possible. The present inventors adopted a method of wet-adding these additives in a solution state during the raw material powder synthesis process. However, it is thought that similar effects can be observed even by dry mixing in a powdered state. Non-uniformity in the mixed state appears as segregation of these elements in the hot-pressed material, and is visually observed as black dot-like inclusions.

添加元素の添加量は、10ppm以上、500ppm以
下に限定される。この理由は、10ppm未満では透
過特性改善効果が認められず、500ppmを越えた
場合は、添加元素のホツトプレス材での偏析が
量、大きさともに顕著となり返つて透過特性に悪
影響を及ぼすためである。
The amount of additional elements added is limited to 10 ppm or more and 500 ppm or less. The reason for this is that if it is less than 10 ppm, no improvement in transmission properties is observed, and if it exceeds 500 ppm, the segregation of the added element in the hot-pressed material becomes significant in both quantity and size, and has a negative impact on the transmission properties. .

各々元素に付き、添加量を変化させ全く同一条
件でホツトプレスした場合の波長1.5μmでの透過
率改善の状況を第2図A,B,Cに示す、Aは
Cu又はAgの場合を示し、500ppm付近にゆるや
かなピークをもち、Bに示すVの場合は数百ppm
が最適範囲であり、CはFeの場合を示す。数種
の元素を混合して添加した場合は、それらの平均
的な効果が認められた。
Figure 2 A, B, and C show the improvement in transmittance at a wavelength of 1.5 μm when the added amount of each element was changed and hot-pressed under exactly the same conditions.
In the case of Cu or Ag, it has a gentle peak around 500 ppm, and in the case of V shown in B, it is several hundred ppm.
is the optimum range, and C indicates the case of Fe. When a mixture of several elements was added, an average effect was observed.

これらの元素添加による透光性改善効果の原因
を考察するため、各々のホツトプレス試料の破断
面を走査型電顕(SEM)にて観察した結果、透
光性が改善された試料に関してはいずれも平均結
晶粒径が微細化している傾向が認められた。すな
わち無添加材の平均結晶粒径が2〜4μm程度に対
し、添加材は0.5〜2μm程度であり、この変化が
可視〜近赤外光の透光性改善に影響していると考
えられる。
In order to examine the cause of the effect of improving translucency due to the addition of these elements, we observed the fractured surfaces of each hot-pressed sample using a scanning electron microscope (SEM). A tendency for the average grain size to become finer was observed. That is, the average crystal grain size of the non-additive material is about 2 to 4 μm, while that of the additive material is about 0.5 to 2 μm, and this change is considered to have an effect on the improvement of visible to near-infrared light transmittance.

またこれらの試料を光学顕微鏡にて観察した結
果、微細な(数10μm以下)点状の介在物が分散
しており、これらの介在物はV、Fe、Cu、Ag等
の偏析したものであることが明らかになつた。元
素添加による結晶粒の微細化は、これらの析出物
による粒成長防止効果も寄与していると考察され
る。
In addition, as a result of observing these samples with an optical microscope, fine (several tens of micrometers or less) point-like inclusions were dispersed, and these inclusions were segregated V, Fe, Cu, Ag, etc. It became clear. It is considered that the effect of preventing grain growth by these precipitates also contributes to the refinement of crystal grains due to the addition of elements.

なお、ホツトプレス条件としては、温度550〜
850℃、圧力1.5〜4.0ton/cm2の範囲を用いた。温
度条件として550℃未満では、理論密度の98%以
上の十分な高密度化が達成されず残留した空孔に
より透過光が散乱され透過性は著しく減少する。
In addition, the hot press conditions include a temperature of 550~
A temperature range of 850°C and a pressure of 1.5 to 4.0 ton/cm 2 was used. If the temperature is below 550°C, sufficient densification of 98% or more of the theoretical density is not achieved, and the transmitted light is scattered by the remaining pores, resulting in a significant decrease in transmittance.

これはこの温度ではMgF2粉末が十分な塑性変
形を起さないためと考えられる。また、850℃を
越える温度では粒成長が著しくなり粗大結晶内部
に空孔がトラツプされるため、粒界を通じての拡
散による空孔の減少効果が小さくなり空孔が残留
する結果十分な透光性が得られないことが判つ
た。更には、粒成長は機械的強度の低下をも起す
ことが判つた。
This is thought to be because the MgF 2 powder does not undergo sufficient plastic deformation at this temperature. In addition, at temperatures exceeding 850°C, grain growth becomes significant and vacancies are trapped inside coarse crystals, so the effect of reducing vacancies due to diffusion through grain boundaries is reduced and the vacancies remain, resulting in sufficient light transmittance. It was found that it was not possible to obtain Furthermore, it was found that grain growth also caused a decrease in mechanical strength.

ホツトプレスの圧力条件に関しては、0.5〜
4.0ton/cm2の範囲で検討した結果、1.5ton/cm2
上で透光性の良好なものが得られることが判つ
た。
Regarding the pressure conditions of hot press, 0.5~
As a result of investigation in the range of 4.0 ton/cm 2 , it was found that good translucency can be obtained at 1.5 ton/cm 2 or more.

1.5ton/cm2未満では理論密度の98%以上の十分
な高密度化を達成できず、4.0ton/cm2を越える圧
力は設備能力的に不経済なものとなる。
If the pressure is less than 1.5 ton/cm 2 , sufficient densification of 98% or more of the theoretical density cannot be achieved, and if the pressure exceeds 4.0 ton/cm 2 , it becomes uneconomical in terms of equipment capacity.

第1図の鎖線は、本発明法による厚さ3mmの
MgF2多結晶体の赤外光透過特性の一例を示す。
添加元素なしの第1図Aと比較し、0.4〜2μm域
の透過率が明らかに改善されていることを示す。
The chain line in Fig. 1 indicates the thickness of 3 mm obtained by the method of this invention.
An example of the infrared light transmission characteristics of MgF 2 polycrystalline material is shown.
This shows that the transmittance in the 0.4-2 μm region is clearly improved compared to FIG. 1A without additive elements.

実施例 MgF2原料粉末の化学的合成工程(溶液反応)
において、各々Cuを500ppm、Agを500ppm、V
を200ppm、Feを500ppm含有する様に調整した
後、乾燥粉砕し、純度99.8%、1次粒子径0.2〜
0.4μmの粉末とした。この粉末をいずれも内径15
mmφのアルミナ型に充てんし、10-3torrの真空中
で、温度650℃、圧力2.5ton/cm2にて30分間ホツ
トプレスした。この試料を0.3μmのアルミナ砥粒
を用い、両面を鏡面に研磨加工し、厚さを3mmに
仕上げダブルビーム式分光測定器を用い可視〜赤
外域での分光測定を行つた。
Example Chemical synthesis process of MgF 2 raw material powder (solution reaction)
In each case, Cu was 500ppm, Ag was 500ppm, and V
After adjusting the content to contain 200ppm of Fe and 500ppm of Fe, dry and crush it to obtain a powder with a purity of 99.8% and a primary particle size of 0.2~
It was made into a powder of 0.4 μm. Both of these powders have an inner diameter of 15
It was filled into an alumina mold of mmφ and hot pressed in a vacuum of 10 −3 torr at a temperature of 650° C. and a pressure of 2.5 ton/cm 2 for 30 minutes. This sample was polished to a mirror finish on both sides using 0.3 μm alumina abrasive grains to a thickness of 3 mm, and spectroscopic measurements in the visible to infrared range were performed using a double beam spectrometer.

一方、V、Fe、Cu、Agの含有量を計10ppm以
下に低域し、上記と全く同一の方法でホツトプレ
スした試料も同様に研磨加工し分光測定を行つ
た。
On the other hand, a sample hot-pressed in the same manner as above with the contents of V, Fe, Cu, and Ag reduced to a total of 10 ppm or less was similarly polished and subjected to spectroscopic measurements.

その結果、後者は第3図Aと同等の光透過特性
を示し、前者はいずれも第3図Bと同等の0.4〜
2μm帯での改善された光透過特性を示した。
As a result, the latter showed light transmission characteristics equivalent to those in Figure 3A, and the former both showed light transmission characteristics of 0.4 to 0.4, which were equivalent to those in Figure 3B.
It showed improved light transmission properties in the 2μm band.

本発明により特に、0.4〜2μmの波長範囲で透
光性の良好なMgF2多結晶体が容易に得られ、0.4
〜8μmの広い波長範囲にわたる光透過性の必要な
用途に適用できる道がひらけた。
In particular, according to the present invention, MgF 2 polycrystals with good translucency in the wavelength range of 0.4 to 2 μm can be easily obtained, and
This opens the door for applications that require optical transparency over a wide wavelength range of ~8 μm.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は代表的なMgF22種の分光特性を示す。
第2図A〜Cは各々、Cu又はAg、V、Feの添加
量と1.5μm波長に於る3mm厚み材の透過率の関係
を示す。
Figure 1 shows the spectral characteristics of two typical types of MgF 2 .
FIGS. 2A to 2C each show the relationship between the amounts of Cu, Ag, V, and Fe added and the transmittance of a 3 mm thick material at a wavelength of 1.5 μm.

Claims (1)

【特許請求の範囲】 1 V、Fe、Cu、Agの少なくとも1種以上を
10ppm以上、500ppm以下含有してなるMgF2
結晶体。 2 V、Fe、Cu、Agの少なくとも1種以上を
10ppm以上、500ppm以下含有する原料粉末をホ
ツトプレスすることにより、理論密度の98%以上
に高密度化してなることを特徴とするMgF2多結
晶体の製造方法。
[Claims] 1 At least one of V, Fe, Cu, and Ag
MgF2 polycrystal containing 10ppm or more and 500ppm or less. 2 At least one of V, Fe, Cu, and Ag
A method for producing MgF 2 polycrystalline material, characterized in that the density is increased to 98% or more of the theoretical density by hot pressing raw material powder containing 10 ppm or more and 500 ppm or less.
JP59148474A 1984-07-16 1984-07-16 Mgf2 polycrystal and manufacture Granted JPS6126553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59148474A JPS6126553A (en) 1984-07-16 1984-07-16 Mgf2 polycrystal and manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59148474A JPS6126553A (en) 1984-07-16 1984-07-16 Mgf2 polycrystal and manufacture

Publications (2)

Publication Number Publication Date
JPS6126553A JPS6126553A (en) 1986-02-05
JPH0127017B2 true JPH0127017B2 (en) 1989-05-26

Family

ID=15453556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59148474A Granted JPS6126553A (en) 1984-07-16 1984-07-16 Mgf2 polycrystal and manufacture

Country Status (1)

Country Link
JP (1) JPS6126553A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039335A (en) * 1998-11-24 2007-02-15 Nippon Electric Glass Co Ltd Manufacturing method for ceramic article

Also Published As

Publication number Publication date
JPS6126553A (en) 1986-02-05

Similar Documents

Publication Publication Date Title
US3026210A (en) Transparent alumina and method of preparation
US4331048A (en) Cutting tip for metal-removing processing
DE2733354C2 (en) A method of making a ceramic product comprising at least 80% by volume of a single phase silicon aluminum oxynitride
US4520116A (en) Transparent aluminum oxynitride and method of manufacture
US5762768A (en) Target for cathodic sputtering and method for producing the target
DE60306428T2 (en) GRINDING AGENTS BASED ON ALUMINUM AND ZIRCONIUM OXYNITRIDE
DE2412339C2 (en) Monolithic high density bodies made of silicon nitride and silicon carbide
US4183760A (en) High-strength alumina ceramic product and method of forming
DE112015000148B4 (en) Composite substrate and process for its production
DE3108677A1 (en) "OPTICALLY TRANSPARENT POLYCRYSTALLINE SINTER BODY AND METHOD FOR THE PRODUCTION THEREOF"
DE112015000214B4 (en) Sintered cordierite body, process for its preparation and its use
DE69932377T2 (en) Optical component, sintered zinc sulfide compact and manufacturing method therefor
US4587067A (en) Method of manufacturing low thermal expansion modified cordierite ceramics
DE3633030A1 (en) ALUMINUM OXIDE-TITANIUM DIOXIDE COMPOSITE POWDER AND METHOD FOR THE PRODUCTION THEREOF
FR2527590A1 (en) PROCESS FOR PRODUCING OPTICALLY TRANSLUCENT POLYCRYSTALLINE MULLITE BODY AND BODY OBTAINED
DE102017002735B4 (en) Cordierite-based sintered body, method for producing the same and use
DE2264759A1 (en) POLYCRYSTALLINE CHALCOGENIDE SPINEL ELEMENT
US4376652A (en) High density high strength Si3 N4 ceramics prepared by pressureless sintering of amorphous Si3 N4 powder and Ti
FR2594433A1 (en) ABRASIVE GRAIN AND METHOD FOR MANUFACTURING THE SAME
JPH0127017B2 (en)
DE19730770C2 (en) Non-porous sintered bodies based on silicon carbide, process for their production and their use as substrates for hard disk storage
US5330937A (en) Boron suboxide material and method for its preparation
DE19630114A1 (en) Coarsely crystalline silicon nitride powder - with narrow particle size distribution, prepd. by controlled starting material calcination under nitrogen@
JPS62108B2 (en)
JPH0236293A (en) Cubic boron nitride grinding abrasive grain, production thereof and grindstone