JPH01269492A - Production of thermostable protease - Google Patents

Production of thermostable protease

Info

Publication number
JPH01269492A
JPH01269492A JP9663288A JP9663288A JPH01269492A JP H01269492 A JPH01269492 A JP H01269492A JP 9663288 A JP9663288 A JP 9663288A JP 9663288 A JP9663288 A JP 9663288A JP H01269492 A JPH01269492 A JP H01269492A
Authority
JP
Japan
Prior art keywords
protease
thermostable
thermostable protease
gene
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9663288A
Other languages
Japanese (ja)
Inventor
Yoshiaki Nishiya
芳昭 西矢
Shinji Tarama
田羅間 眞二
Yoshihiko Maekawa
前川 宜彦
Yukihiro Sogabe
曽我部 行博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP9663288A priority Critical patent/JPH01269492A/en
Publication of JPH01269492A publication Critical patent/JPH01269492A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

PURPOSE:To eliminate dispersion in productivity under the same culture conditions and efficiently obtain the subject enzyme by cultivating nonthermophilic bacteria containing a gene capable of coding a thermophilic bacteria-delived thermostable protease. CONSTITUTION:A gene capable of coding a thermophilic bacteria-derived thermostable protease [preferably thermostable protease gene of Bacillus.stearothermophilus TELNE (FERM-P 9439)] is initially integrated into a chromosomic DNA of nonthermophilic bacteria (preferably Bacillus.subtilis and the above-mentioned bacteria are cultivated to collect the aimed enzyme from the afore-mentioned culture.

Description

【発明の詳細な説明】 (産業上の利用分野) 耐熱性プロテアーゼは食品製造、洗浄剤製造、ペプチド
合成等の用途に使用可能であり、その有効な製造方法の
開発は極めて意義深いものである。
[Detailed Description of the Invention] (Industrial Application Field) Thermostable proteases can be used in food production, detergent production, peptide synthesis, etc., and the development of an effective production method is extremely significant. .

(従来の技術) 耐熱性プロテアーゼの製造方法は、通常、耐熱性プロテ
アーゼ生産菌を培養し、その分泌する耐熱性プロテアー
ゼを培養上澄液より単離し、精製するものである。しか
し、プロテアーゼの生産性が十分でないことから、近年
耐熱性プロテアーゼの生産に間予する遺伝子を含む組み
換え体プラスミドにより形質転換された形質転換株を用
いた耐熱性プロテアーゼの製造方法が開発されている。
(Prior Art) A method for producing a thermostable protease generally involves culturing a thermostable protease-producing bacterium, and isolating and purifying the secreted thermostable protease from the culture supernatant. However, since the productivity of protease is not sufficient, in recent years a method for producing heat-stable protease has been developed using a transformant strain that has been transformed with a recombinant plasmid containing a gene necessary for the production of heat-stable protease. .

例えば、ジャーナル・オブ・ハクテリオロジ−(Jou
rnal of Bacteriology)第154
巻第831項(1983年)ではバチルス・ステアロザ
ーモフィラス(Bacillus stearther
mophilus)CU21の耐熱性プロテアーゼ遺伝
子を含む組み換え体プラスミドpNP22により形質転
換されたバチルス・ズブチリス(Bacillus s
ubtilts)MT−2(pNP22)を用いた耐熱
性プロテアーゼの製造方法が報告されている。
For example, the Journal of Hacteriology (Jou
RNA of Bacteriology) No. 154
Volume 831 (1983) describes Bacillus stearothermophilus.
Bacillus subtilis (Bacillus s.
A method for producing a thermostable protease using MT-2 (pNP22) has been reported.

(発明が解決しようとする問題点) 耐熱性プロテアーゼ遺伝子を含む組み換え体プラスミド
により形質転換された微生物を用いるプロテアーゼの製
造方法は、その生産性において工業的に使用し得るもの
ではあるが、長時間(100〜150時間)の培養を行
なうには、培養期間中に組み換え体プラスミドの微生物
からの欠落、或いは耐熱性プロテアーゼ遺伝子のプラス
ミドがらの欠失がしばしば起こるので、プロテアーゼの
生産性にばらつきが見られるため、より安定に製造する
方法が望まれていた。
(Problems to be Solved by the Invention) Although the method for producing protease using a microorganism transformed with a recombinant plasmid containing a thermostable protease gene can be used industrially in terms of productivity, it does not require long-term use. (100 to 150 hours), the recombinant plasmid is often missing from the microorganism during the culture period, or the heat-stable protease gene is deleted from the plasmid, so protease productivity may vary. Therefore, a more stable manufacturing method was desired.

(問題を解決するだめの技術的手段) 」1記の問題点を解決する方法として、本発明は、好熱
性細菌由来の耐熱性プロテアーゼをコードする遺伝子が
染色体DNA内に組み込まれた非好熱性細菌を用いて耐
熱性プロテアーゼを製造するものである。また、更には
好熱性細菌由来の耐熱性プロテアーゼをコードする遺伝
子が染色体DNA内に組の込まれたバチルス・ズブチリ
ス(Bacillussubtilis)を用いて耐熱
性プロテアーゼを製造するものである。
(Technical means to solve the problem) As a method for solving the problem described in 1, the present invention provides a method for solving the problem described in 1. This method uses bacteria to produce heat-stable protease. Furthermore, a thermostable protease is produced using Bacillus subtilis, which has a gene encoding a thermostable protease derived from a thermophilic bacterium incorporated into its chromosomal DNA.

本発明の好熱性細菌としては、バチルス・ステアロサー
モフィラス(Bacillus stearother
moph−がある。
The thermophilic bacteria of the present invention include Bacillus stearothermophilus.
There is moph-.

本発明の好熱性細菌由来の耐熱性プロテアーゼとしては
、上記菌株から得たプロテアーゼであり、例えばバチル
ス・ステアロザーモフイラス属菌株由来の80°Cにお
いて60分間加温処理しても70%以上の残存活性を示
す中性プロテアーゼ(特願昭62−193409号)、
バチルス・ステアロサーモフィラスNCA 1503の
産生ずるアルカリ性プロテアーゼなどがある。
The thermostable protease derived from a thermophilic bacterium of the present invention is a protease obtained from the above-mentioned bacterial strain, for example, a protease derived from a strain of the genus Bacillus stearothermophilus, which retains 70% or more even when heated at 80°C for 60 minutes. Neutral protease exhibiting residual activity (Patent Application No. 193409/1982),
Examples include alkaline protease produced by Bacillus stearothermophilus NCA 1503.

本発明の好熱性細菌由来の耐熱性プロテアーゼをコード
する遺伝子とは」二記耐熱性プロテアーセをコードする
遺伝子、例えばバチルス・ステアロサーモフィラス(B
acillus stearothermopbilu
s)TIELNETERM−P No、9439の生産
する耐熱性プロテアーゼをコードする遺伝子(特願昭6
2−184323号)、バチルス・ステアロサーモフィ
ラスC112]の中性フロテアーゼ遺伝子などがある。
Genes encoding thermostable proteases derived from thermophilic bacteria of the present invention include genes encoding thermostable proteases derived from thermophilic bacteria, such as Bacillus stearothermophilus (B.
acillus stearothermopbilu
s) Gene encoding a thermostable protease produced by TIELNETERM-P No. 9439 (patent application 1986)
2-184323) and the neutral flotease gene of Bacillus stearothermophilus C112].

前記耐熱性プロテアーゼをコードする遺伝子の上流には
、プロモーター・SD配列等の耐熱性プロテアーゼ遺伝
子の発現に必要な遺伝子配列が含まれている。
Upstream of the gene encoding the thermostable protease, gene sequences necessary for expression of the thermostable protease gene, such as a promoter and SD sequence, are included.

本発明にある染色体DNAとは、非好熱性細菌のもつ染
色体11 N I’lである。好ましくはバチルス・ズ
ブチリスの染色体DNAである。
The chromosomal DNA in the present invention is chromosome 11 NI'l of a non-thermophilic bacterium. Preferably it is Bacillus subtilis chromosomal DNA.

染色体DNAへの上記遺伝子の組み込みは非好熱性細菌
の体内で行なわれる。
Integration of the above gene into chromosomal DNA takes place within the body of a non-thermophilic bacterium.

耐熱性プロテアーゼ遺伝子が染色体DNA内に組み込ま
れたバチルス・ズブチリス(Bacillussubt
ilis)の取得方法を以下に順を追って述べる。
Bacillus subtilis has a thermostable protease gene integrated into its chromosomal DNA.
iris) will be described in order below.

(八)耐熱性プロテアーゼをコードする遺伝子DN八、
カナマイシンやテトラサイクリンなどの抗生物質を不活
化する酵素をコードする遺伝子DNA及び宿主とするバ
チルス・ズブチリス(Bacillussubtili
s)の染色体DNAを酵素的或いは機械的処理により塩
基数1〜10kbに切断したフラグメントDNAを従来
の方法に従い調製後、水溶液中に混合し酵素(”F4D
NAリガーゼ)を用いて連結する。
(8) gene DN8 encoding a thermostable protease;
Genetic DNA encoding an enzyme that inactivates antibiotics such as kanamycin and tetracycline and the host Bacillus subtilis
After preparing fragment DNA by cutting the chromosomal DNA of s) into 1 to 10 kb bases by enzymatic or mechanical treatment according to a conventional method, it is mixed in an aqueous solution and treated with an enzyme ("F4D").
ligate using NA ligase).

(B)上記(八)で連結されたDNAを用いて、バチル
ス・ズブチリス(Bacillus 5ubtilis
)を常法に従い形質転換し、抗生物質耐性を示す形質転
換体を選択する。
(B) Using the DNA ligated in (8) above, Bacillus subtilis
) is transformed according to a conventional method, and transformants exhibiting antibiotic resistance are selected.

(C)上記(B)で得られた形質転換体をプロテアーゼ
生産用の培地に植菌し、10〜150時間培養後、上澄
液のプロテアーゼ活性を測定することにより、耐熱性プ
ロテアーゼ遺伝子が染色体DNAに組め込まれ、耐熱性
プロテアーゼを生産するバチルス・ズブチリス(Bac
目1us 5ubtilis)を取得する。
(C) The transformant obtained in (B) above was inoculated into a medium for protease production, and after culturing for 10 to 150 hours, the protease activity of the supernatant was measured, and the thermostable protease gene was detected in the chromosome. Bacillus subtilis is integrated into DNA and produces thermostable protease.
1 us 5 ubtilis).

形質転換体を培養する方法は通気培養で温度は25〜3
7°C時間は100〜150時間である。培養物から耐
熱性プロテアーゼを採取する方法としては培養終了液を
集め、遠心分離或いは濾過分離によって菌体を除いた上
清液より塩析、イオン交換樹脂、その他の公知の方法を
組み合わせることにより行われる。
The method of culturing the transformant is aeration culture at a temperature of 25-3.
The 7°C time is 100-150 hours. Thermostable protease can be collected from a culture by collecting the culture solution, removing bacterial cells by centrifugation or filtration, and using a combination of salting out, ion exchange resin, and other known methods from the supernatant. be exposed.

(効果) 耐熱性プロテアーゼ遺伝子が染色体DNAに組み込まれ
たバチルス・ズブチリス(Bacillus 5ubt
−i l is)を使用することにより、耐熱性プロテ
アーゼ遺伝子を含む組み換え体プラスミドを保持するバ
チルス・ズブチリス(Bacillus 5ubtil
is)に比べ、長時間(100〜150時間)の培養を
行なった際に、耐熱性プロテアーゼの生産性が上昇し、
同一の培養条件における生産性のばらつきも減少する。
(Effect) Bacillus subtilis (Bacillus 5ubt) in which a thermostable protease gene has been integrated into the chromosomal DNA
By using Bacillus subtilis carrying a recombinant plasmid containing a thermostable protease gene,
is), the productivity of thermostable protease increases when cultured for a long time (100 to 150 hours),
Variations in productivity under the same culture conditions are also reduced.

このため、耐熱性プロテアーゼをより効率よく製造する
ことが可能である。
Therefore, it is possible to produce thermostable protease more efficiently.

(実施例) 以r、本発明を実施例により更に詳しく説明するが、本
発明は何らこれらに限定されるものではない。
(Examples) Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited to these in any way.

(1)  バチルス・ステアロリ゛−モフィラス(ll
ac−illus  stearothermophi
lus)   TIELNIj  FIERM暑〕 N
o。
(1) Bacillus stearolymophilus (ll
ac-illus stearothermophi
lus) TIELNIj FIERM heat] N
o.

9439の耐熱性中性プロテアーゼ遺伝子を含む組み換
え体プラスミドpsp124 (塩基数19.3kb、
カナマイシン耐性)〔第1図]を常法に従い調製する(
′特願昭62−11E323号)。制限酵素EcoRI
で切断し、耐熱性中性プロテアーゼ遺伝子(95]、b
)及びカナマイシン不活化酵素遺伝子(759b)を含
む8 、6’に’ bの直鎖状D N A約10118
を核酸回収器(ELICA−Vl、 Waka−mor
i製)を用いて調製した。
Recombinant plasmid psp124 containing the thermostable neutral protease gene of 9439 (base number 19.3 kb,
Kanamycin resistant) [Figure 1] is prepared according to the conventional method (
'Patent Application No. 1982-11E323). Restriction enzyme EcoRI
cleaved with thermostable neutral protease gene (95), b
) and the kanamycin inactivating enzyme gene (759b).
using a nucleic acid recovery device (ELICA-Vl, Waka-mor
(manufactured by i).

(2)バチルス・ズブチリス(Bacillus su
btilis)MT−2の染色体DNAを常法に従い調
製し7、制限酵素1i c、 o Rlで処理後核酸回
収器により1〜1o kb=のフラグメントDNA約5
0mgを調製した。
(2) Bacillus subtilis
MT-2 chromosomal DNA was prepared according to a conventional method, and after treatment with restriction enzymes 1ic, o Rl, fragment DNA of 1 to 1 okb was obtained using a nucleic acid recovery device.
0 mg was prepared.

(3)  上記(+)、 (2)で得られたDNAを混
合し、1mMATP、 10m Mジチオスレイトール
の存在下にIOUのT4DNAリガーゼを用いて4°C
212時間のD N A鎮の連結反応を行なった。
(3) Mix the DNA obtained in (+) and (2) above and incubate at 4°C using IOU of T4 DNA ligase in the presence of 1mM ATP and 10mM dithiothreitol.
A 212 hour DNA ligation reaction was performed.

(4)  上記(3)の反応液を用いてバチルス・ズブ
チリス(Bacillus subtilis)MT−
2をコンピテント・セル法により形質転換し、1%カゼ
イン、 0.0004%カナマイシン及び1.5%寒天
を含む培地に広げた。37°C,2日間でコロニーを形
成させ、耐熱性中性プロテアーゼの分泌によりコロニー
の周囲に形成されるハローによって生産菌を選択した。
(4) Using the reaction solution of (3) above, Bacillus subtilis MT-
2 was transformed by the competent cell method and spread on a medium containing 1% casein, 0.0004% kanamycin and 1.5% agar. Colonies were formed at 37°C for 2 days, and producing bacteria were selected by the halo formed around the colonies due to secretion of heat-stable neutral protease.

(5)  上記(4)で得られた耐熱性中性プロテアー
ゼ生産17S地を、プロテアーゼ生産培地(1%カゼイ
ン11%グルコース、0.2%酵母エキス0.02%硫
酸マグネシウl1.0.02%塩化カルシウム。
(5) The heat-resistant neutral protease production 17S medium obtained in (4) above was mixed with protease production medium (1% casein, 11% glucose, 0.2% yeast extract, 0.02% magnesium sulfate, 1.0.02% Calcium chloride.

0.002%硫酸亜鉛、 0.0004%カナマイシン
0.002% zinc sulfate, 0.0004% kanamycin.

pH7,0) 5滅を20威容試験管に分注したものに
1白金耳植菌し30°Cで100時間培養後上澄液のプ
ロテアーゼ活性を測定することにより、生産性の最も高
い株(IK−25)を選抜した。
The most productive strain (pH 7.0) was inoculated into a 20-capacity test tube and inoculated with one platinum loop, and after culturing at 30°C for 100 hours, the protease activity of the supernatant was measured. IK-25) was selected.

= 7− (6)  I K −25とMT−2(psP124)
を、15m2容試験管に分注した2 mQのプロテアー
ゼ生産17S地に1白金耳摺種し、30°C,30時間
振盪培養した後、500mρ容坂に1フラスコに分注し
た50mF、のプロテアーゼ生産ifH地に] mj!
植菌し、30’C,100時間振盪培養した。
= 7- (6) I K -25 and MT-2 (psP124)
One platinum loopful was inoculated into 2 mQ of protease production 17S solution, which was dispensed into a 15 m2 test tube, and cultured with shaking at 30°C for 30 hours. Production ifH place] mj!
The cells were inoculated and cultured with shaking at 30'C for 100 hours.

計5回同様の培養を行ない、IK−25とMT−2(p
SP124)の培養力価を比較した(第1表〕。その結
果、IL25の力価はMT−2(psPI24)の力価
の1.2〜1.7倍の値を示し、各培養間の力価のばら
つきもIK−25の方が小規模であった。
The same culture was performed a total of 5 times, and IK-25 and MT-2 (p
The culture titers of SP124) were compared (Table 1).As a result, the IL25 titer was 1.2 to 1.7 times that of MT-2 (psPI24), and the The variation in titer was also smaller for IK-25.

第  1  表 第1回   11.3     9.11第2回   
10.9     6.48第3回   12゜1  
   9.32第4回   11.8     7.9
0第5回   12,5     10.25(発明の
効果) 本発明を用いれば耐熱性プロテアーゼを効率よく製造す
ることが可能となる。
Table 1 1st 11.3 9.11 2nd
10.9 6.48 3rd 12゜1
9.32 4th 11.8 7.9
0 5th 12.5 10.25 (Effects of the Invention) Using the present invention, it becomes possible to efficiently produce a thermostable protease.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は組の換え体プラスミl”psP+24の制限酵
素地図である。実施例で用いた直鎖状DNAに当たる部
分を黒線で示している。EcoRIはニジエリシア・コ
リ(Eacherichia coli)由来の制限酵
素、BamHI はバチルス・アミロリヶファシェンス
(Bacillis amyloliquefacie
ns)由来の制限酵素、Kmrはカナマイシン不活化酵
素遺伝子、Nprは耐熱 。 性中性プロテアーゼ遺伝子をそれぞれ意味している。 特許出願人  東洋紡績株式会社
Figure 1 is a restriction enzyme map of the recombinant plasmid l"psP+24. The part corresponding to the linear DNA used in the Examples is indicated by a black line. EcoRI is a restriction enzyme map derived from Eacherichia coli. The enzyme, BamHI, is derived from Bacillus amyloliquefaciens.
ns), Kmr is a kanamycin inactivating enzyme gene, and Npr is a thermostable enzyme. Each represents a neutral protease gene. Patent applicant: Toyobo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 好熱性細菌由来の耐熱性プロテアーゼをコードする遺伝
子が染色体DNAに組み込まれた非好熱性細菌を培養し
、該培養物から耐熱性プロテアーゼを採取することを特
徴とする耐熱性プロテアーゼの製造方法。
A method for producing a thermostable protease, which comprises culturing a non-thermophilic bacterium in which a gene encoding a thermostable protease derived from a thermophilic bacterium has been integrated into its chromosomal DNA, and collecting the thermostable protease from the culture.
JP9663288A 1988-04-19 1988-04-19 Production of thermostable protease Pending JPH01269492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9663288A JPH01269492A (en) 1988-04-19 1988-04-19 Production of thermostable protease

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9663288A JPH01269492A (en) 1988-04-19 1988-04-19 Production of thermostable protease

Publications (1)

Publication Number Publication Date
JPH01269492A true JPH01269492A (en) 1989-10-26

Family

ID=14170212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9663288A Pending JPH01269492A (en) 1988-04-19 1988-04-19 Production of thermostable protease

Country Status (1)

Country Link
JP (1) JPH01269492A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198779A (en) * 1989-12-27 1991-08-29 Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai Neutral protease ii gene, prepro type neutral protease ii gene, new recombinant dna and production of neutral protease ii

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205996A (en) * 1983-04-28 1984-11-21 ジェネックス・コーポレイション Production of protein a
JPS59205983A (en) * 1983-04-28 1984-11-21 ジエネツクス・コ−ポレイシヨン Development of different kind gene by procaryotic microorganism

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59205996A (en) * 1983-04-28 1984-11-21 ジェネックス・コーポレイション Production of protein a
JPS59205983A (en) * 1983-04-28 1984-11-21 ジエネツクス・コ−ポレイシヨン Development of different kind gene by procaryotic microorganism

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03198779A (en) * 1989-12-27 1991-08-29 Shokuhin Sangyo Kouso Kinou Henkan Gijutsu Kenkyu Kumiai Neutral protease ii gene, prepro type neutral protease ii gene, new recombinant dna and production of neutral protease ii
JPH0817710B2 (en) * 1989-12-27 1996-02-28 キッコーマン株式会社 Neutral protease (II) gene, prepro-type neutral protease (II) gene, novel recombinant DNA, and method for producing neutral protease (II)

Similar Documents

Publication Publication Date Title
JPH04507346A (en) Alkaline proteolytic enzyme and its production method
GB2133408A (en) Method for improving the production of proteins in bacillus
JPS6474992A (en) Dna sequence, plasmid and production of lipase
JPS6055118B2 (en) Novel bacterial alkaline protease and its production method
JPH06506347A (en) Catalase, its preparation and use
Jang et al. Molecular cloning of a subtilisin J gene from Bacillus stearothermophilus and its expression in Bacillus subtilis
EP0870833B1 (en) Ultrathermostable protease genes
DK157879B (en) CHIMERARY PLASTERING A GENE CODEING A GENER CODE OF A TERMost STORABLE ALFA-AMYLASE, MICRO ORGAN ORGANISMS, MIXTURES, INC.
JPH05252949A (en) Alkaline protease, its production, its usage and microorganism producing the same protease
AU4114596A (en) A process of producing extracellular proteins in bacteria
EP0859050A4 (en) Alkaline protease, process for the production thereof, use thereof, and microorganism producing the same
JPS6246153B2 (en)
US5569599A (en) Kerainase from fervidobacterium pennavorans DSM 7003
JPH01269492A (en) Production of thermostable protease
US4161424A (en) Novel endonuclease and process for production thereof
JPS6356277A (en) Novel bacillus brevis and use thereof
US5766913A (en) Cloning, expression and nucleotide sequence of an alkaline lipase gene from pseudomonas pseudoalcaligenes F-111
JPH0829083B2 (en) Method for producing neutral protease
JPS63192387A (en) Thermostable protease and production thereof
JP2590462B2 (en) Method for producing thermostable protease
JPS62179382A (en) Medium composition for extracellular secretion enzyme of bacillus genus
CN100532556C (en) A gene encoding vitamin B 6 phosphate phosphatase and use thereof
CN100434525C (en) Novel glycerol kinase, gene thereof and process for producing the glycerol kinase by using the gene
JPS6123994B2 (en)
JPS63279782A (en) Microorganism producing alkaline protease