JPH01269014A - Temperature compensation circuit for magnetic encoder - Google Patents

Temperature compensation circuit for magnetic encoder

Info

Publication number
JPH01269014A
JPH01269014A JP9668888A JP9668888A JPH01269014A JP H01269014 A JPH01269014 A JP H01269014A JP 9668888 A JP9668888 A JP 9668888A JP 9668888 A JP9668888 A JP 9668888A JP H01269014 A JPH01269014 A JP H01269014A
Authority
JP
Japan
Prior art keywords
magnetic
output voltage
output voltages
temperature
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9668888A
Other languages
Japanese (ja)
Inventor
Tokio Sekiguchi
関口 時雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Advanced Motor Corp
Original Assignee
Nidec Servo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Servo Corp filed Critical Nidec Servo Corp
Priority to JP9668888A priority Critical patent/JPH01269014A/en
Publication of JPH01269014A publication Critical patent/JPH01269014A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To always obtain output voltages of a constant amplitude even when the temperature changes by providing an adder, square root extracting operator, comparator, etc. CONSTITUTION:The output voltages of sensors 4-A and 4-B at temperature t1 are respectively set at Ea1 and Eb1 and, when the temperature rises, a resistance R increases since the resistance temperature coefficient is positive and, when the output voltages drop, outputs of operational amplifiers 11 and 12 decline. In addition, outputs of adders 25 and 26 also decline and the output voltage of a square root extracting operator 27 drops. Therefore, the output of a comparator 28 increases and the input of a current controller 30 increases. As a result, currents of the sensors 4-A and 4-B are increased and, accordingly, the output voltages of the sensors are increased. Thus the input voltage of the comparator 28 is controlled so that the input voltage can be balanced with a reference voltage. Moreover, the output voltages of the sensors 4-A and 4-B are controlled so that the output voltages appearing at terminals 13 and 14 can have a constant amplitude irrespectively of temperature. When the temperature drops, rises in the output voltages are suppressed so that the output voltages can have the constant amplitude.

Description

【発明の詳細な説明】 (1)発明の目的 [産業上の利用分野] 本発明は回転角度の正弦波出力電圧が得られる磁気エン
コーダの温度特性を改善する為の温度補償回路に関する
ものである。
Detailed Description of the Invention (1) Purpose of the Invention [Field of Industrial Application] The present invention relates to a temperature compensation circuit for improving the temperature characteristics of a magnetic encoder that can obtain a sine wave output voltage of rotation angle. .

[従来技術] 第2図は従来より実施されている磁気エンコーダの概念
を示す図で(a)は構造を、(b)は展開図を(Q)は
出力電圧波形を、(d)は等価電気回路を夫々示してい
る。
[Prior art] Figure 2 is a diagram showing the concept of a conventional magnetic encoder, in which (a) shows the structure, (b) shows the developed diagram, (Q) shows the output voltage waveform, and (d) shows the equivalent Each shows an electrical circuit.

(a)、(b)図において1は回転軸、2は磁気ドラム
、3は磁気記録、4は磁気センサ、である。
In the figures (a) and (b), 1 is a rotating shaft, 2 is a magnetic drum, 3 is a magnetic recording device, and 4 is a magnetic sensor.

回転軸1に設けられた磁気ドラム2の外周に固着した磁
気記録媒体にN、S極の磁極を交互に着磁した磁気記録
3を設け、該磁気ドラム2と空隙を介して対向し磁気セ
ンサ4が配設され、該磁気センサ4の複数個の磁気抵抗
効果素子R0は対向する磁気ドラム2の磁気記録3のピ
ッチλに対しλ/2のピッチに設けられており、更に詳
述すると4個の磁気抵抗効果素子R0で構成されたAセ
ンサ4−Aと、Aセンサとλ/4ピッチの位置に配設さ
れた他の4個の磁気抵抗効果素子R0で構成されたBセ
ンサ4−Bとにより構成されている。
A magnetic recording medium fixed to the outer periphery of a magnetic drum 2 provided on a rotating shaft 1 is provided with a magnetic recording medium in which N and S magnetic poles are alternately magnetized, and is opposed to the magnetic drum 2 through an air gap to form a magnetic sensor. 4 is arranged, and the plurality of magnetoresistive elements R0 of the magnetic sensor 4 are provided at a pitch of λ/2 with respect to the pitch λ of the magnetic recording 3 of the opposing magnetic drum 2. An A sensor 4-A made up of magnetoresistive elements R0, and a B sensor 4-A made up of four other magnetoresistive elements R0 arranged at a pitch of λ/4 from the A sensor. It is composed of B.

磁気センサ4の等価電気回路は(d)図に示すように4
個の磁気抵抗効果素子R6でブリッジを構成し、該ブリ
ッジの端子abに電源のVを接続し、”1fe2端子を
夫々抵抗R,R,を介して増幅器A1に入力し、該増幅
器の入力と出力との間に帰還抵抗R1を接続し、+側端
子を抵抗R4を介して接地しである。
The equivalent electric circuit of the magnetic sensor 4 is as shown in figure (d).
A bridge is configured with magnetoresistive elements R6, and the power supply V is connected to the terminal ab of the bridge, and the 1fe2 terminal is input to the amplifier A1 via resistors R and R, respectively, and the input terminal of the amplifier is A feedback resistor R1 is connected between the output and the + side terminal is grounded via a resistor R4.

4個の磁気抵抗効果素子R0は対向する磁気記録3の磁
界を受けその磁界の強度に応じてその抵抗が変化し、前
記磁気記録3の外周の磁束分布が正弦波状に変化するも
のであればブリッジの出力電圧従って増幅器A1の出力
も正弦波電圧と成り回転体の回転角の正弦に比例した出
力電圧が得られる。
If the four magnetoresistive elements R0 receive the magnetic field of the opposing magnetic recording material 3 and change their resistance according to the strength of the magnetic field, and the magnetic flux distribution around the outer periphery of the magnetic recording material 3 changes sinusoidally. The output voltage of the bridge and therefore the output of the amplifier A1 also becomes a sine wave voltage, and an output voltage proportional to the sine of the rotation angle of the rotating body is obtained.

前記の構成はAセンサとBセンサ共に同じ構成で、其の
出力電圧の波形は(c)図に示すようにAセンサの出力
電圧をsinθとするとBセンサの出力電圧はCO5θ
となる・ 正弦波エンコーダはこの出力電圧を計測して磁気ドラム
を装着した回転軸例えばサーボモータの回転軸の位置及
び回転方向を検出し、高精度のサーボシステムを構成で
きるものである。
The above configuration is the same for both the A sensor and the B sensor, and the waveform of the output voltage is as shown in figure (c).If the output voltage of the A sensor is sinθ, the output voltage of the B sensor is CO5θ.
A sine wave encoder measures this output voltage and detects the position and rotational direction of a rotating shaft equipped with a magnetic drum, such as a servo motor, thereby constructing a highly accurate servo system.

[発明が解決しようとする問題点] ところが磁気エンコーダは検出器である磁気センサの出
力電圧が温度により変化するという性質があり、温度が
変化すると位置の検出値に誤差を生ずるという問題があ
った。
[Problems to be solved by the invention] However, the magnetic encoder has a property that the output voltage of the magnetic sensor that is the detector changes depending on the temperature, and when the temperature changes, an error occurs in the detected position value. .

(2)発明の構成 [問題点を解決するための手段] 磁気センサの出力電圧がsinとaosに比例すること
に着目し、Aセンサの出力電圧とBセンサの出力電圧を
夫々掛け算器により2乗し、其の和を求めると回転角度
に無関係で温度のみに関係する電圧の係数が得られ、こ
の電圧を演算器を介して其の平方根を求め、この演算器
の出力電圧をコンパレータで基準電圧と比較し、コンパ
レータの出力電圧で前記磁気センサA、Hの電流を制御
する構成としたものである。
(2) Structure of the invention [Means for solving the problem] Focusing on the fact that the output voltage of a magnetic sensor is proportional to sin and aos, the output voltage of the A sensor and the output voltage of the B sensor are respectively multiplied by 2. By multiplying and calculating the sum, a voltage coefficient that is unrelated to the rotation angle and related only to temperature is obtained. This voltage is passed through a calculator to find its square root, and the output voltage of this calculator is used as a reference using a comparator. The configuration is such that the currents of the magnetic sensors A and H are controlled by the output voltage of the comparator in comparison with the voltage.

[作  用] Aセンサの出力電圧とBセンサの出力電圧とを夫々掛け
算器と加算器を介して2乗の和を作り。
[Operation] Creates the sum of the squares of the output voltage of sensor A and the output voltage of sensor B via a multiplier and an adder, respectively.

この数値を演算器を介して平方根を求めると磁気センサ
の温度に関する係数電圧が得られるから。
If you calculate the square root of this value using a calculator, you can obtain the coefficient voltage related to the temperature of the magnetic sensor.

この係数電圧をコンパレータで基準電圧と比較し、コン
パレータの出力電圧により前記磁気センサに電流を流す
構成とした結果A、Bセンサの出力電圧を温度に関係な
く一定の振幅と成るように制御する作用が有る。
This coefficient voltage is compared with a reference voltage by a comparator, and the output voltage of the comparator is used to flow a current to the magnetic sensor.As a result, the output voltage of sensors A and B is controlled to have a constant amplitude regardless of temperature. There is.

[発明の実施例] 第1図は本発明の実施例を示す回路図で、4−AはAセ
ンサ、4−BはBセンサ、11,12は夫々A、B両セ
ンサのオペアンプ、13.14はA、8両センサの出力
端子、 23.24は掛け算器、25.26は加算器、
27は開平演算器、28はコンパレータ、29はツェナ
ーダイオード、30は電流制御装置、Rは各回路部を適
切に動作せしめるための抵抗である。
[Embodiment of the Invention] FIG. 1 is a circuit diagram showing an embodiment of the present invention, in which 4-A is an A sensor, 4-B is a B sensor, 11 and 12 are operational amplifiers for both the A and B sensors, 13. 14 is A, the output terminal of both 8 sensors, 23.24 is a multiplier, 25.26 is an adder,
27 is a square root calculator, 28 is a comparator, 29 is a Zener diode, 30 is a current control device, and R is a resistor for properly operating each circuit section.

Aセンサ4−A、Bセンサ4−Bの出力電圧は夫々オペ
アンプ11.12を介して出力し、Ea=Ktsinθ
、Eb=Ktcosθと表され、(Ktは温度tにおけ
る定数) 夫々の出力端子13.14より出力すると共に、掛け算
器23 、24に入力し、掛け算器で夫々2乗されE 
a” 、 E b”が出力し、加算器25.26でEa
”+Eb”が作られる。
The output voltages of the A sensor 4-A and the B sensor 4-B are output via operational amplifiers 11 and 12, respectively, and Ea=Ktsinθ
, Eb=Ktcosθ, (Kt is a constant at temperature t) are output from the respective output terminals 13 and 14, and input to the multipliers 23 and 24, where they are squared and E
a”, E b” are output, and adder 25.26 outputs Ea
"+Eb" is created.

即ちE a” + E b” = Kt2(sin”θ
+CO52θ)となり、ここでsin”θ+cos”θ
=1であるからEa”+Eb”=Kt” となり回転角θとは無関係で温度に関する定数Ktのみ
となる。加算器、26の出力を開平演算器27に入力す
ると其の出力端子にはKtが得られる。
That is, E a" + E b" = Kt2 (sin "θ
+CO52θ), where sin”θ+cos”θ
= 1, so Ea"+Eb"=Kt", which has nothing to do with the rotation angle θ, and only the constant Kt related to temperature. When the output of the adder 26 is input to the square root calculator 27, the output terminal receives Kt. can get.

開平演算器27の出力電圧とツェナーダイオード29で
得られた基準電圧をコンパレータ28で比較し、該コン
パレータ28の出力で、電流制御装置30を制御し、前
記磁気センサ4−A及び4−Bの電流を制御する構成と
成っている。
The output voltage of the square root calculator 27 and the reference voltage obtained by the Zener diode 29 are compared by the comparator 28, and the output of the comparator 28 controls the current control device 30 to control the magnetic sensors 4-A and 4-B. It has a configuration that controls the current.

この回路の動作を詳述すると今温度t1のときにセンサ
4−A、4−Bの出力電圧を夫々Ea、。
To explain the operation of this circuit in detail, when the temperature is now t1, the output voltages of the sensors 4-A and 4-B are Ea, respectively.

Eb工とし、温度が上昇すると磁気センサの抵抗温度係
数が正であるから抵抗が増大し出力電圧が低下するとオ
ペアンプ11.12の出力が低下し、加算器25.26
の出力も低下して開平演算器27の出力電圧が低下し、
従ってコンパレータ28の出力が増加し、電流制御装置
30の入力が増加して前記磁気センサ4−A、4−Bの
電流を増加させて夫々の出力電圧を増加せしめ、前記コ
ンパレータ28の入力電圧が基準電圧と常に平衡するよ
うに制御し、結果として端子13.14に表れる前記磁
気センサ4−A、4−Bの出力電圧が温度に関係なく一
定の振幅と成るように制御するように動作する。
When the temperature rises, the resistance temperature coefficient of the magnetic sensor is positive, so when the resistance increases and the output voltage decreases, the output of the operational amplifier 11.12 decreases, and the adder 25.26
The output of the square root calculator 27 also decreases, and the output voltage of the square root calculator 27 decreases.
Therefore, the output of the comparator 28 increases, the input of the current control device 30 increases, the currents of the magnetic sensors 4-A and 4-B increase, and the respective output voltages increase, so that the input voltage of the comparator 28 increases. It operates to control so that it is always balanced with the reference voltage, and as a result, the output voltage of the magnetic sensors 4-A and 4-B appearing at the terminals 13 and 14 has a constant amplitude regardless of the temperature. .

又温度が低下した場合は前述と反対に出力電圧が上昇す
るのを抑えるように作用し出力電圧が一定の振幅と成る
ように制御する動作をする。
Further, when the temperature decreases, the output voltage is controlled to have a constant amplitude by suppressing the increase in the output voltage, contrary to the above.

[発明の効果] 本発明になる磁気エンコーダの温度補償回路は前記のよ
うな構成であるから、温度が変化しても常に一定の振幅
の出力電圧が得られ、サーボモータの位置検出装置に使
用できる高精度の磁気エンコーダを得ることが出来る。
[Effects of the Invention] Since the temperature compensation circuit of the magnetic encoder according to the present invention has the above-described configuration, an output voltage with a constant amplitude can always be obtained even when the temperature changes, and it can be used in a position detection device for a servo motor. A highly accurate magnetic encoder can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による磁気エンコーダの温度補償回路の
回路図であり、第2図は従来より実施されている磁気エ
ンコーダの概念図で、構造図(a)、展開図(b)、出
力電圧波形図(c)、等価電気回路図(d)である。 符号の説明 l・・・回転軸、2・・・磁気ドラム、3・・・磁気記
録。 4・・・磁気センサ、4−A・・・Aセンサ、4−B・
・・Bセンサ、 11,12・・・オペアンプ、 13
.14・・・出力端子。 23.24・・・掛け算器、 25.26・・・加算器
、27・・・開平演算器、28・・・コンパレータ、2
9・・・ツェナーダイオード30・・・電流制御装置、
A−1・・・オペアンプ。 Ro・・・磁気抵抗効果素子、R,R1−R4・・・抵
抗特許出願人 日本サーボ株式会社
Fig. 1 is a circuit diagram of a temperature compensation circuit of a magnetic encoder according to the present invention, and Fig. 2 is a conceptual diagram of a conventional magnetic encoder, including a structural diagram (a), a developed diagram (b), and an output voltage. They are a waveform diagram (c) and an equivalent electric circuit diagram (d). Explanation of symbols 1...Rotating shaft, 2...Magnetic drum, 3...Magnetic recording. 4... Magnetic sensor, 4-A... A sensor, 4-B.
...B sensor, 11, 12... operational amplifier, 13
.. 14...Output terminal. 23.24... Multiplier, 25.26... Adder, 27... Square root operator, 28... Comparator, 2
9...Zener diode 30...Current control device,
A-1... operational amplifier. Ro...Magnetoresistive element, R, R1-R4...Resistance patent applicant Nippon Servo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 回転体の外周に固着した磁気記録媒体に、N、S極の磁
気記録を等間隔に設けた磁気ドラムと、該磁気ドラムと
空隙を介して対向配設した磁気センサとを有する磁気エ
ンコーダで、前記磁気センサの出力が磁気ドラムの回転
角度の正弦に比例する出力電圧と余弦に比例した出力電
圧とを出力するものにおいて、前記正弦波出力電圧を2
乗する掛け算器と、余弦波出力電圧を2乗する掛け算器
と、前記正弦波電圧の掛け算器と余弦波電圧の掛け算器
の夫々の出力電圧を加える加算器と、前記加算器の出力
電圧の平方根を得る演算器とを備え、当該演算器の出力
電圧と基準電圧とをコンパレータで比較し、該コンパレ
ータの出力電圧で前記磁気センサの電流を制御すること
を特徴とする磁気エンコーダの温度補償回路。
A magnetic encoder having a magnetic drum in which N and S pole magnetic records are provided at equal intervals on a magnetic recording medium fixed to the outer periphery of a rotating body, and a magnetic sensor disposed opposite to the magnetic drum with an air gap interposed therebetween. In the magnetic sensor outputting an output voltage proportional to the sine and a cosine of the rotation angle of the magnetic drum, the sine wave output voltage is
a multiplier for squaring the cosine wave output voltage; an adder for adding the respective output voltages of the sine wave voltage multiplier and the cosine wave voltage multiplier; A temperature compensation circuit for a magnetic encoder, comprising: an arithmetic unit that obtains a square root; the output voltage of the arithmetic unit and a reference voltage are compared by a comparator; and the current of the magnetic sensor is controlled by the output voltage of the comparator. .
JP9668888A 1988-04-21 1988-04-21 Temperature compensation circuit for magnetic encoder Pending JPH01269014A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9668888A JPH01269014A (en) 1988-04-21 1988-04-21 Temperature compensation circuit for magnetic encoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9668888A JPH01269014A (en) 1988-04-21 1988-04-21 Temperature compensation circuit for magnetic encoder

Publications (1)

Publication Number Publication Date
JPH01269014A true JPH01269014A (en) 1989-10-26

Family

ID=14171732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9668888A Pending JPH01269014A (en) 1988-04-21 1988-04-21 Temperature compensation circuit for magnetic encoder

Country Status (1)

Country Link
JP (1) JPH01269014A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538490C1 (en) * 1995-10-16 1996-12-19 Siemens Ag Compensating for interference-noise of esp. signal amplitude of magnetic field influenced sensing system
JP2006520464A (en) * 2003-01-31 2006-09-07 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト Method and apparatus for determining the direction of motion of a rolling bearing member
CN103221790A (en) * 2010-11-18 2013-07-24 三菱电机株式会社 Rotation angle detection device
JP2014134433A (en) * 2013-01-09 2014-07-24 Denso Corp Magnetometric sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114714A (en) * 1983-11-28 1985-06-21 Sankyo Seiki Mfg Co Ltd Magnetic encoder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60114714A (en) * 1983-11-28 1985-06-21 Sankyo Seiki Mfg Co Ltd Magnetic encoder

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19538490C1 (en) * 1995-10-16 1996-12-19 Siemens Ag Compensating for interference-noise of esp. signal amplitude of magnetic field influenced sensing system
JP2006520464A (en) * 2003-01-31 2006-09-07 フアーク・クーゲルフイツシエル・アクチエンゲゼルシヤフト Method and apparatus for determining the direction of motion of a rolling bearing member
CN103221790A (en) * 2010-11-18 2013-07-24 三菱电机株式会社 Rotation angle detection device
JPWO2012066667A1 (en) * 2010-11-18 2014-05-12 三菱電機株式会社 Rotation angle detector
JP5706440B2 (en) * 2010-11-18 2015-04-22 三菱電機株式会社 Rotation angle detector
US9234738B2 (en) 2010-11-18 2016-01-12 Mitsubishi Electric Corporation Rotation-angle detection device
JP2014134433A (en) * 2013-01-09 2014-07-24 Denso Corp Magnetometric sensor

Similar Documents

Publication Publication Date Title
CA1287985C (en) Apparatus for magnetically detecting position or speed of moving body
US6246233B1 (en) Magnetoresistive sensor with reduced output signal jitter and temperature compensation
US4772815A (en) Variable refluctance position transducer
US5218279A (en) Method and apparatus for detection of physical quantities, servomotor system utilizing the method and apparatus and power steering apparatus using the servomotor system
JPH01269014A (en) Temperature compensation circuit for magnetic encoder
JP7242352B2 (en) A system for determining at least one rotational parameter of a rotating member
JPH0448175B2 (en)
JPH0219720B2 (en)
JPH0552583A (en) Magnetic encoder
JPS60114714A (en) Magnetic encoder
JPH075371Y2 (en) Zero-point detection device for incremental magnetic encoder
JPS61189412A (en) Magnetic flux density change detector
JPH01265113A (en) Magnetic encoder
JPH052925B2 (en)
JPH0215889B2 (en)
JP2003161643A (en) Combined detector on angle and angular velocity
JPS6044802A (en) Angle converter
JP2767281B2 (en) Magnetic sensor
JPH0544962B2 (en)
JPS62182620A (en) Resolver
JPS6111982Y2 (en)
JP2003315094A (en) Encoder
JPH0229166B2 (en) KAKUDOHENKANKI
JPH0348120A (en) Position detecting apparatus
JPS63261110A (en) Rotation detector