JPH01268841A - High-toughness sintered high alloy steel - Google Patents

High-toughness sintered high alloy steel

Info

Publication number
JPH01268841A
JPH01268841A JP9428688A JP9428688A JPH01268841A JP H01268841 A JPH01268841 A JP H01268841A JP 9428688 A JP9428688 A JP 9428688A JP 9428688 A JP9428688 A JP 9428688A JP H01268841 A JPH01268841 A JP H01268841A
Authority
JP
Japan
Prior art keywords
powder
added
steel
toughness
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9428688A
Other languages
Japanese (ja)
Inventor
Minoru Hirano
稔 平野
Yoji Kawatani
川谷 洋司
Chiaki Takami
千秋 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP9428688A priority Critical patent/JPH01268841A/en
Publication of JPH01268841A publication Critical patent/JPH01268841A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To manufacture a high-toughness sintered high alloy steel improved in toughness and strength at the time of compaction by adding specific amounts of carbide powder, etc., to an atomized steel powder and further adding specific amounts of Co powder to the above. CONSTITUTION:One or >=2 kinds among carbide powder, nitride powder, and carbonitride powder are added by 1.0-50wt.% in total to an atomized steel powder, and then a Co powder is added to the resulting powder mixture by 3-20wt.%. Further, it is desirable that an atomized steel powder formed by means of gas atomizing or water atomizing is used as the above atomized steel powder and the steel powder has a composition consisting of, by weight, about 0.5-3% C, about 2-30% Cr, 0 or about 0.1-30% W, phi or about 0.1-20% Mo, about 0.5-7.5% V, phi or about 0.2-20% Co, and the balance Fe with inevi table impurities. Moreover, it is desirable that respective powders of the carbides, nitrides, and carbonitrides of the group IVb, Vb elements (Ti, V, Zr, Nb, Ta, etc.) of the periodic table are used as the above carbide powder, nitride powder, and carbonitride powder and they are added by about 1.0-50% based on the total amount of the atomized steel powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば切削工具、冷間、熱間用金型、圧延ロ
ール、耐衝撃用部品あるいは耐摩耗部品用高性能工具材
料として採用される焼結高合金鋼に関し、特に高硬度、
耐摩耗性を確保しながら靭性及び成形体の強度を向上で
きるようにした高合金鋼粉に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention can be used as a high-performance tool material for, for example, cutting tools, cold and hot molds, rolling rolls, impact-resistant parts, or wear-resistant parts. Regarding sintered high alloy steel, especially high hardness,
This invention relates to high-alloy steel powder that can improve toughness and strength of compacts while ensuring wear resistance.

〔従来の技術〕[Conventional technology]

近年、金属材料の素形材加工に対して高精度。 In recent years, high precision has been applied to processing metal materials.

低コストが要求されるとともに、被加工材の高硬度化も
要求されることから、加工条件は一層苛酷なものとなり
、より高性能な切削工具、金型及び圧延ロール用工具材
料が要請されている。このような要請に応えるために、
例えば切削工具では高速度鋼(以下、ハイスという)工
具から超硬合金への転換が進みつつある。一方、機械加
工の容易さ及び靭性に対する要求の高い精密工具には、
上記超硬合金に比べて靭性、加工性の優れたハイス工具
が今後も採用されるものと考えられる。
As low costs are required and the workpiece material is also required to have high hardness, processing conditions are becoming more severe, and higher performance cutting tools, molds, and tool materials for rolling rolls are required. There is. In order to meet such requests,
For example, cutting tools are increasingly being replaced from high-speed steel (hereinafter referred to as high-speed steel) tools to cemented carbide. On the other hand, precision tools with high requirements for ease of machining and toughness are
It is thought that high-speed steel tools, which have superior toughness and workability compared to the cemented carbide mentioned above, will continue to be used in the future.

このようなハイスとして、従来、高硬度(HRC65〜
70)のA I S I M40シリーズがある。この
M40シリーズは、硬度向上のためCoを5%以上添加
し、C量を増加させるとともに、靭性の低下を防止する
ためにv量を下げて製造される場合がある。しかしなが
ら、上記M40シリーズは溶解法により製造されること
から、上記Co、C量を増加させると炭化物の粗大化、
偏析が生じ易く、しかも靭性を著しく低下させるととも
に、熱処理が激しくなり熱間加工が困難となる。また上
記v4を下げ過ぎると耐摩耗性が低下するという問題が
あり、上記要請に応えられる健全な工具材料を製造する
ことは困難である。
Conventionally, such high speed steel has high hardness (HRC65~
70) AISIM40 series. The M40 series is sometimes manufactured by adding 5% or more of Co to increase the amount of C to improve hardness and lowering the amount of v to prevent a decrease in toughness. However, since the above-mentioned M40 series is manufactured by a melting method, increasing the above-mentioned Co and C contents causes coarsening of carbides and
Segregation is likely to occur, and the toughness is significantly reduced, and heat treatment becomes intense, making hot working difficult. Further, if the v4 is lowered too much, there is a problem that the wear resistance decreases, and it is difficult to manufacture a sound tool material that can meet the above requirements.

このことから、上記溶解法に比べて信転性が高く、高硬
度化が可能な粉末冶金法を用いて製造された工具材料を
採用することが行われている。この粉末冶金法によるハ
イスとして、例えばガスアトマイズHIP法により製造
したものがある。このハイスは、耐摩耗性を向上させる
ためにMo。
For this reason, tool materials manufactured using the powder metallurgy method, which has higher reliability and higher hardness than the above-mentioned melting method, are being used. Examples of the high speed steel produced by this powder metallurgy method include those manufactured by the gas atomization HIP method. This high speed steel is made of Mo to improve wear resistance.

W、  Co、  C,N等の添加量を増加させて高合
金化した溶湯からガスアトマイズ法によりハイス粉末を
生成し、この粉末を熱間静水圧プレス(HIP)法によ
り焼結成形したものである。しかしながら、上記ガスア
トマイズ法により製造されたハイスは、各成分添加量の
調整に限界があり、この添加量が限界を超えると良好な
アトマイズが行えなくなるという問題点がある0例えば
、上記ハイスにT1を添加する場合、該添加量が2%を
超えると、仮に真空溶解を行ったとしてもGo反応によ
りバブリングが生じて溶湯の粘性が低下し、アトマイズ
が不可能となる。一方、■量については、耐摩耗性を向
上させるために15%以上添加して大気溶解した場合、
■が酸化してアトマイズが不可能になる。また、上記v
lを7.5%に下げた場合は、アトマイズは可能となっ
ても粉末中の炭化物が巨大化し靭性が低下する。そこで
これらを防止するため、上記不具合が生じない程度にV
量を減少させた場合は、充分な硬度、耐摩耗性得られな
い。
High-speed steel powder is produced by gas atomization from a highly alloyed molten metal with increased amounts of W, Co, C, N, etc. added, and this powder is sintered and formed by hot isostatic pressing (HIP). . However, the high speed steel manufactured by the above gas atomization method has a problem in that there is a limit to the adjustment of the amount of each component added, and if the amount added exceeds the limit, good atomization cannot be performed. When added, if the amount added exceeds 2%, even if vacuum melting is performed, bubbling occurs due to the Go reaction and the viscosity of the molten metal decreases, making atomization impossible. On the other hand, regarding the amount of ■, if 15% or more is added to improve wear resistance and dissolved in the atmosphere,
■ becomes oxidized and atomization becomes impossible. Also, the above v
When l is lowered to 7.5%, even though atomization is possible, the carbides in the powder become huge and the toughness decreases. Therefore, in order to prevent these problems, V
If the amount is decreased, sufficient hardness and wear resistance cannot be obtained.

そこで、上記各成分添加量の調整限界を向上できる方法
が提案されている。これは、アトマイズ鋼粉に、炭化物
粉及び窒化物粉を添加混合して焼結する方法である。こ
の混合焼結ハイスの製造方法は、第9図に示すように、
アトマイズにより生成された合金粉1と、炭化物粉、窒
化物粉及び炭窒化物粉の1種又は2種以上からなる添加
FA2とを、例えばアトライタ、振動ボールミル等の攪
拌機で混合、粉砕して混合粉3を形成する0次に、この
混合粉3に蝋を充填して混錬4.成形5を施した後、脱
蝋6を行い、これを還元、焼結フし、しかる後、HIP
処理8を施して製造する。この製造方法によれば、予め
生成されたアトマイズ鋼粉に、各成分からなる添加粉を
混合して焼結する方法であることから、各成分の含有量
の調整が比較的容易にでき、その結果添加量を増加させ
ることができ、しかも硬度、耐摩耗性、靭性を確保でき
る。
Therefore, a method has been proposed that can improve the adjustment limit of the amount of each component added. This is a method of adding and mixing carbide powder and nitride powder to atomized steel powder and sintering the mixture. The manufacturing method of this mixed sintered high speed steel is as shown in Fig. 9.
The alloy powder 1 produced by atomization and the additive FA 2 consisting of one or more of carbide powder, nitride powder, and carbonitride powder are mixed and pulverized using a stirrer such as an attritor or a vibrating ball mill. 4. Forming the powder 3 Next, fill the mixed powder 3 with wax and knead it. After forming 5, dewaxing 6 is performed, which is reduced and sintered, and then HIP
Manufactured by processing 8. According to this manufacturing method, since the additive powder of each component is mixed and sintered into the atomized steel powder produced in advance, the content of each component can be adjusted relatively easily. As a result, the amount added can be increased, and hardness, wear resistance, and toughness can be ensured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した靭性、加工性向上の要請に応え
るために、上記アトマイズ鋼粉に混合される炭化物粉及
び窒化物粉等の添加量をさらに増加させると、両者の混
合時に該炭化物、窒化物が凝集するという問題点がある
。その結果、靭性が低下するとともに、成形時の成形体
の強度が低下し、割れ等が発生し易いという問題がある
However, in order to meet the above-mentioned demands for improved toughness and workability, if the amount of carbide powder and nitride powder added to the atomized steel powder is further increased, the carbides and nitrides will be added when the two are mixed. There is a problem of agglomeration. As a result, there are problems in that the toughness is reduced and the strength of the molded product during molding is reduced, making cracks and the like more likely to occur.

ここで、例えばアトライタや振動ボールミル等を採用し
て上記両者を混合、攪拌する際の攪拌時間を長くとって
分散させることが考えられるが、実際にはそれほど分散
性は向上できず、しかも攪拌時間を長くする分、生産性
を著しく阻害し、コストが上昇するという弊害が生じる
ことから、攪拌時間延長は回能である。
Here, for example, it is conceivable to use an attritor or a vibrating ball mill to mix and stir both of the above materials and to disperse them by taking a long stirring time, but in reality, the dispersibility cannot be improved that much, and the stirring time Extending the stirring time is a waste of time, since the longer the stirring time, the more detrimental the problem is that it significantly impedes productivity and increases costs.

本発明の目的は、上記機械的手段によることなく凝集の
問題を解決して、靭性及び成形時の強度を向上できる高
靭性焼結高合金鋼を提供することにある。
An object of the present invention is to provide a high-toughness sintered high-alloy steel that can improve toughness and strength during forming by solving the problem of agglomeration without using the above-mentioned mechanical means.

〔問題点を解決するための手段〕[Means for solving problems]

本件発明者らは、上記炭、窒化物等の添加量の増大によ
る凝集を解消するために鋭意研究を重ねたところ、アト
マイズ鋼粉と炭、窒化物等との混合時に、CO絹粉末添
加すれば分散できることを見出し、このCO絹粉末所定
量添加することにより上記凝集に起因する問題点を解決
できることに想到し、本発明を成したものである。
The inventors of the present invention have conducted extensive research in order to eliminate the agglomeration caused by increasing the amount of added charcoal, nitrides, etc., and found that it is possible to add CO silk powder when mixing atomized steel powder with charcoal, nitrides, etc. They discovered that the above-mentioned problems caused by agglomeration could be solved by adding a predetermined amount of this CO silk powder, and thus accomplished the present invention.

そこで本発明は・、アトマイズ鋼粉と、炭化物粉。Therefore, the present invention provides atomized steel powder and carbide powder.

窒化物粉及び炭窒化物粉の1種又は2種以上との混合粉
に、3〜20%の範囲内のCo粉を添加することを特徴
としている。
It is characterized in that Co powder within a range of 3 to 20% is added to a mixed powder of one or more of nitride powder and carbonitride powder.

ここで、上記CO絹粉末添加量を3〜20%の範囲に限
定した理由について説明する。
Here, the reason why the above-mentioned amount of CO silk powder added was limited to the range of 3 to 20% will be explained.

本発明者らの実験によれば、Co粉の添加量が3%以下
では、マトリックスの摩耗時に炭化物。
According to experiments conducted by the present inventors, when the amount of Co powder added is 3% or less, carbides form when the matrix is worn out.

窒化物が脱落し易いことから、耐摩耗性、抗折力の向上
効果が得られず、しかも成形体の強度向上にも寄与して
いない、これはCo粉の添加量が少なすぎて炭化物、窒
化物が凝集し、分散されていないことから生じているも
のと考えられる。また、Co粉の添加量が20%を超え
た場合にも耐摩耗性が低下することから、添加量は上記
3〜20%の範囲内が最適である。
Since the nitrides easily fall off, the effects of improving wear resistance and transverse rupture strength cannot be obtained, and they also do not contribute to improving the strength of the compact. This is because the amount of Co powder added is too small, and the carbides and This is thought to be caused by the fact that the nitrides are aggregated and not dispersed. Furthermore, if the amount of Co powder added exceeds 20%, the wear resistance decreases, so the amount added is optimally within the above range of 3 to 20%.

また、上記アトマイズ鋼粉としては、ガス又は水アトマ
イズにより生成されたものが採用でき、このアトマイズ
鋼粉としての成分範囲は、目標とする特性、炭、窒化物
粉及びCo粉の添加量に応じて変化するので直ちに決定
することはできないが、以下の範囲とすることが望まし
い。
In addition, as the above atomized steel powder, one generated by gas or water atomization can be used, and the composition range of this atomized steel powder depends on the target properties and the amount of charcoal, nitride powder, and Co powder added. Although it is not possible to determine immediately because the value changes depending on the situation, it is desirable to set it within the following range.

C:0.5〜3.  Cr : 2〜30.  W :
 O又は0.1〜30.  MO: O又は0.1〜2
0.  V :0.5〜?、5.CO:0又は0.1〜
20 (重量%)、残部Fe及び不可避不純物 さらに、上記炭化物粉及び窒化物粉が、周期律表のlV
b族、vb族(Ti、 V、 Zr、 Nb、 Ta等
)から選ばれた金属炭化物、窒化物及び炭窒化物の粉末
であることが望ましいとともに、上記添加量はアトマイ
ズ鋼粉の全量に対して1.0〜50%の範囲がよい、こ
れは1%以下では耐摩耗性が著しく低下し、また50%
を超えると抗折力が著しく低下するからである。
C: 0.5-3. Cr: 2-30. W:
O or 0.1-30. MO: O or 0.1-2
0. V: 0.5~? ,5. CO: 0 or 0.1~
20 (wt%), balance Fe and unavoidable impurities.Furthermore, the carbide powder and nitride powder are
It is preferable that the powder is a metal carbide, nitride, or carbonitride selected from group B and group VB (Ti, V, Zr, Nb, Ta, etc.), and the amount added above is based on the total amount of atomized steel powder. The range of 1.0 to 50% is good; if it is less than 1%, the wear resistance will decrease significantly, and if it is less than 50%
This is because if it exceeds this, the transverse rupture strength will drop significantly.

〔作用〕[Effect]

本発明に係る高靭性焼結高合金鋼によれば、アトマイズ
鋼粉と炭化物粉、窒化物粉及び炭窒化物粉との混合粉に
Co粉を添加したので、該Co粉が炭、窒化物等を均一
に分散させる作用を果たし、凝集するのを防止できる。
According to the high-toughness sintered high-alloy steel according to the present invention, since Co powder is added to the mixed powder of atomized steel powder, carbide powder, nitride powder, and carbonitride powder, the Co powder etc., and can prevent them from agglomerating.

その結果高合金鋼のマトリックス自体が耐摩耗性を有す
るとともに、炭化物、窒化物の均一化により靭性を向上
でき、機械加工を可n<超硬合金は不可)にでき、研削
性を向上できる。
As a result, the matrix of the high alloy steel itself has wear resistance, and the uniformity of carbides and nitrides improves toughness, making machining possible (n<not possible with cemented carbide) and improving grindability.

また、本発明はCo粉を添加したことにより、組成分布
のアンバランスがなくなるので、成形体の強度を向上で
きるから、それだけ成形時の割れの発生を防止でき、ひ
いては異形状の成形が可能となるとともに、成形圧力を
下げることができ、大型成形体の製造を可能にできる。
In addition, in the present invention, by adding Co powder, there is no unbalance in the composition distribution, so the strength of the molded product can be improved, which can prevent cracking during molding, which in turn makes it possible to mold irregular shapes. At the same time, the molding pressure can be lowered, making it possible to manufacture large-sized molded bodies.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、本実施例の高靭性焼結高合金鋼の製造方法を簡単
に説明する。
First, a method for manufacturing high-toughness sintered high-alloy steel of this example will be briefly described.

アトマイズ生成されたアトマイズ鋼粉に、炭化物、窒化
物、炭窒化物粉を添加し、この混合粉に、所定量のCo
粉を添加する0次に、これをボールミル、アトライタ等
の攪拌機内に入れて混合、粉砕を行う(1〜12hr)
、次に、この混合粉末に潤滑剤を添加して、成形を行っ
た後、脱蝋処理を行う、しかる後、真空焼結(1200
〜1300℃)を行い、必要に応じて)(IP処理を施
して焼結鋼を得る。最後に、この焼結鋼を焼なまし、機
械加工して工具素材とする。
Carbide, nitride, and carbonitride powders are added to the atomized steel powder produced by atomization, and a predetermined amount of Co is added to this mixed powder.
Add powder Next, put this into a stirrer such as a ball mill or attritor and mix and grind (1 to 12 hours)
Next, a lubricant is added to this mixed powder, and after molding, dewaxing treatment is performed, and then vacuum sintering (1200
~1300°C) and, if necessary, subjected to IP treatment to obtain sintered steel.Finally, this sintered steel is annealed and machined to form a tool material.

次に本発明の効果を確認するための実験について説明す
る。
Next, an experiment for confirming the effects of the present invention will be described.

実験1 この実験は、第1表の第1欄に示す化学成分(%)から
なる水アトマイズ鋼粉(SKH57)に、炭化物粉とし
て6.5%VC粉、窒化物粉として10%TiN粉を混
合し、この混合粉にCo粉を0〜30%添加して焼結合
金鋼を製造し、この焼結合金鋼の抗折力、スプリングバ
ック量、硬さ、耐摩耗性のそれぞれを測定した。なお、
上記各攪拌混合にはアトライタを採用し、アルコール中
、湿式法により5時間攪拌混合した0次に上記混合粉末
を金型及びCIP処理により成形体を成形し、さらにこ
の成形体を真空焼結(1290℃−2hr)して焼結鋼
を得た。そして、この焼結鋼にHIP処理(1150℃
 800atm −2h r )を施し、しかる後上記
焼結鋼を焼なまし、ll械加工して工具素材を製造した
Experiment 1 In this experiment, 6.5% VC powder as carbide powder and 10% TiN powder as nitride powder were added to water atomized steel powder (SKH57) consisting of the chemical components (%) shown in the first column of Table 1. 0 to 30% of Co powder was added to this mixed powder to produce a sintered alloy steel, and the transverse rupture strength, springback amount, hardness, and wear resistance of this sintered alloy steel were measured. . In addition,
An attritor is used for each of the above-mentioned stirring and mixing, and the mixed powder is stirred and mixed in alcohol for 5 hours by a wet method. Next, the above-mentioned mixed powder is molded into a molded body using a mold and CIP treatment, and this molded body is further vacuum sintered ( 1290°C for 2 hours) to obtain sintered steel. Then, this sintered steel was subjected to HIP treatment (1150℃
800 atm -2 hr), and then the sintered steel was annealed and machined to produce a tool material.

以下、上記実験結果を説明する。第1図及び第2図はそ
れぞれ上記成形体のGo添加量と抗折力。
The above experimental results will be explained below. Figures 1 and 2 show the amount of Go added and the transverse rupture strength of the above-mentioned molded body, respectively.

スプリングバック量との関係を示す特性図であり、同図
からも明らかなように、Co粉を添加することにより、
抗折力は向上しており、またスブリングバンク量も少な
くなっており健全な成形体が得られていることがわかる
It is a characteristic diagram showing the relationship with the amount of springback, and as is clear from the diagram, by adding Co powder,
It can be seen that the transverse rupture strength has improved and the amount of sbringing banks has decreased, indicating that a sound molded product has been obtained.

また、第3図ないし第5図はそれぞれ焼結鋼のCO添添
加色抗折力、硬度、比摩耗量との関係を示す特性図であ
り、同図からも明らかなように、抗折力はCoの添加量
が3%を超えると著しく向上している。また、硬度は2
0%まではほとんど硬さの低下はないが、これを超える
と大きく低下している。さらに、比摩耗量は3%を超え
ると減少しているが、20%を超えると逆に大きく増大
している。これらから、Co粉の添加量は3〜20%の
範囲内が望ましい。
In addition, Figures 3 to 5 are characteristic diagrams showing the relationship between the CO addition color, transverse rupture strength, hardness, and specific wear amount of sintered steel, and as is clear from the figures, the transverse rupture strength is significantly improved when the amount of Co added exceeds 3%. Also, the hardness is 2
There is almost no decrease in hardness up to 0%, but beyond this the hardness decreases significantly. Furthermore, the specific wear amount decreases when it exceeds 3%, but on the contrary, it increases significantly when it exceeds 20%. From these, it is desirable that the amount of Co powder added is within the range of 3 to 20%.

さらに、第6図(a)ないし第6図(C1はそれぞれC
OO加量を0.3.10%とした場合の焼結鋼の組織を
示す拡大図であり、同図からも明らがなように、Co量
が0%(第6図(a))では凝集が認められているのに
対して、3.10%(第6図山1. (C1)では均一
に分散しているのがわかる。
Furthermore, FIGS. 6(a) to 6 (C1 is C1, respectively)
This is an enlarged view showing the structure of sintered steel when the OO loading is 0.3.10%, and as is clear from the same figure, the Co content is 0% (Figure 6 (a)). In contrast, agglomeration is observed in 3.10% (Figure 6, Mountain 1. (C1)), where it is seen that it is uniformly dispersed.

実験2 この実験では、第1表の第2欄に示す化学成分(%)か
らなるガスアトマイズ鋼粉(KHA7NH)に、上記実
験1と同様の方法により、TiN粉を0〜55%添加し
て混合し、この各混合粉にCo粉を添加しないものと、
10%添加したものとから焼結高合金鋼を製造した。そ
してこの際に、TiN粉を変化させた場合の抗折力及び
耐摩耗性の違いを調べた。なお、この実験では、焼結温
度は1200℃とした。
Experiment 2 In this experiment, 0 to 55% TiN powder was added and mixed by the same method as in Experiment 1 above to gas atomized steel powder (KHA7NH) consisting of the chemical components (%) shown in the second column of Table 1. However, if Co powder is not added to each of these mixed powders,
A sintered high alloy steel was produced from the 10% additive. At this time, differences in transverse rupture strength and abrasion resistance were investigated when changing the TiN powder. Note that in this experiment, the sintering temperature was 1200°C.

その結果を第7図及び第8図に示し、図中、○はCo粉
無添加、・はCo粉10%添加の特性を示す、第7図は
TfN粉量と抗折力との関係を示し、同図からも明らか
なように、TiN粉が0%では抗折力は大きく、上記T
iN粉を添加するとやや低下し、該添加量が10%を超
えると略安定し、50%近くになると大きく低下してお
り、抗折力向上の点からいえば上記TiN粉は少ないほ
どよいといえる。しかし、第8図のTiN粉量と比摩耗
量との特性図からいえることは、上記TiN粉を添加す
ることにより、例えば0%から1%では略その倍に近い
向上が認められ、10%を超えると安定していることが
わかる。このことから、上記抗折力、耐摩耗性の両者を
確保するためには、TiN粉を1〜50%の範囲で添加
するのが望ましいことがわかる。また、上記耐摩耗性で
は、無添加○も、添加・も略同様の特性を示しているが
、抗折力の点では添加・した方が全体的に向上しており
、これからもCo粉を添加することにより靭性を向上で
きることがわかる。
The results are shown in Figures 7 and 8. In the figures, ○ indicates the characteristics with no addition of Co powder, and . indicates the characteristics with 10% Co powder added. Figure 7 shows the relationship between the amount of TfN powder and the transverse rupture strength. As is clear from the figure, when the TiN powder content is 0%, the transverse rupture strength is large, and the above T
When iN powder is added, it decreases slightly, when the amount added exceeds 10%, it becomes almost stable, and when it approaches 50%, it decreases significantly, so from the point of view of improving transverse rupture strength, the less TiN powder is better. I can say that. However, it can be said from the characteristic diagram of TiN powder amount and specific wear amount in Figure 8 that by adding the above TiN powder, for example, from 0% to 1%, an improvement nearly double that amount is observed, and by 10%. It can be seen that it is stable when it exceeds. From this, it can be seen that in order to ensure both the above-mentioned transverse rupture strength and abrasion resistance, it is desirable to add TiN powder in a range of 1 to 50%. In addition, regarding the wear resistance mentioned above, both cases with no additives and those with additives show almost the same characteristics, but in terms of transverse rupture strength, the ones with additives are overall better, and we will continue to use Co powder in the future. It can be seen that the toughness can be improved by adding Cr.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明に係る高靭性焼結高合金鋼によれば
、アトマイズ鋼粉に、炭化物粉、窒化物粉及び炭窒化物
粉の1種又は2種以上を添加するとともに、Co粉を添
加したので、炭化物、窒化物が均一に分散し、靭性、耐
摩耗性に優れた性質が得られるとともに、成形体の強度
を向上できることから、異形状の成形が可能となるとと
もに、成形圧力を下げることができ、大型成形体の製造
が可能となる効果がある。
As described above, according to the high-toughness sintered high-alloy steel according to the present invention, one or more of carbide powder, nitride powder, and carbonitride powder is added to the atomized steel powder, and Co powder is added to the atomized steel powder. By adding these additives, carbides and nitrides are uniformly dispersed, resulting in properties with excellent toughness and wear resistance, as well as improving the strength of the molded product, making it possible to mold irregular shapes and reducing molding pressure. This has the effect of making it possible to manufacture large molded bodies.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第5図、第7図及び第8図は、それぞれ本
発明の効果を確認するために行った実験結果を説明する
ための特性図、第6図fatないし第6図fc)はそれ
ぞれ本実施例により製造された焼結高合金鋼の金rfr
%&11織を示す図、第9図は一般的な焼結ハイスの製
造過程を説明するための工程図である。 特許出願人  株式会社 神戸製鋼所 高見千秋
Figures 1 to 5, Figures 7 and 8 are characteristic diagrams for explaining the results of experiments conducted to confirm the effects of the present invention, respectively, and Figures 6 (fat to 6 fc) are Gold rfr of sintered high alloy steel produced according to this example, respectively.
% & 11 weave, and FIG. 9 is a process chart for explaining the manufacturing process of a general sintered high speed steel. Patent applicant: Chiaki Takami, Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)アトマイズ鋼粉に、炭化物粉、窒化物粉及び炭窒
化物粉の1種又は2種以上を合計で1.0〜50重量%
(以下、単に%と記す)添加した混合粉に、Co粉を3
〜20%添加することを特徴とする高靭性焼結高合金鋼
(1) Add one or more of carbide powder, nitride powder, and carbonitride powder to the atomized steel powder in a total of 1.0 to 50% by weight.
(hereinafter simply referred to as %) Add 3% of Co powder to the added mixed powder.
High toughness sintered high alloy steel characterized by adding ~20%.
JP9428688A 1988-04-15 1988-04-15 High-toughness sintered high alloy steel Pending JPH01268841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9428688A JPH01268841A (en) 1988-04-15 1988-04-15 High-toughness sintered high alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9428688A JPH01268841A (en) 1988-04-15 1988-04-15 High-toughness sintered high alloy steel

Publications (1)

Publication Number Publication Date
JPH01268841A true JPH01268841A (en) 1989-10-26

Family

ID=14106015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9428688A Pending JPH01268841A (en) 1988-04-15 1988-04-15 High-toughness sintered high alloy steel

Country Status (1)

Country Link
JP (1) JPH01268841A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103162A (en) * 1983-11-09 1985-06-07 Hitachi Metals Ltd High-speed tool steel having superior wear resistance and welding resistance

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60103162A (en) * 1983-11-09 1985-06-07 Hitachi Metals Ltd High-speed tool steel having superior wear resistance and welding resistance

Similar Documents

Publication Publication Date Title
US5482670A (en) Cemented carbide
JP3351970B2 (en) Corrosion resistant high vanadium powder metallurgy tool steel body with improved metal-metal wear resistance and method of making same
EP2064359B1 (en) Metallurgical iron-based powder composition and method of production
JP2000297365A (en) AlTi SERIES ALLOY SPUTTERING TARGET, WEAR RESISTANT AlTi SERIES ALLOY HARD FILM AND FORMATION OF THE FILM
JP2641006B2 (en) Pre-alloyed high vanadium cold work tool steel particles and method for producing the same
SE452634B (en) SET TO MAKE A SINTRATE SPEED QUALITY WITH HIGH VANAD CONTENT
US5137565A (en) Method of making an extremely fine-grained titanium-based carbonitride alloy
EP0646186B1 (en) Sintered extremely fine-grained titanium based carbonitride alloy with improved toughness and/or wear resistance
US4973356A (en) Method of making a hard material with properties between cemented carbide and high speed steel and the resulting material
US4432795A (en) Sintered powdered titanium alloy and method of producing same
JPH01268841A (en) High-toughness sintered high alloy steel
WO2004053178A1 (en) Composite metal product and method for the manufacturing of such a product
JP3368178B2 (en) Manufacturing method of composite sintered alloy for non-ferrous metal melt
JP2932658B2 (en) Powder sintered titanium and method for producing powder sintered titanium base alloy
JP3232599B2 (en) High hardness cemented carbide
JPH06271901A (en) Ti-al intermetallic compound powder having excellent sinterability and sintered compact thereof
JP4058807B2 (en) Hard molybdenum alloy, wear-resistant alloy, wear-resistant sintered alloy and method for producing the same
JPH05247608A (en) Powdery high speed steel
JPS6119756A (en) Preparation of sintered high speed steel
JPH0288747A (en) Wear-resistant roll material
JPH02277746A (en) Wear-resistant low thermal expansion sintered alloy and its manufacture
JP2893887B2 (en) Composite hard alloy material
JPH0364591B2 (en)
JPS6335706B2 (en)
EP0285128A2 (en) Manufacturing method for high hardness member