JPH01268806A - Complex body of high melting point different metals and manufacture thereof - Google Patents

Complex body of high melting point different metals and manufacture thereof

Info

Publication number
JPH01268806A
JPH01268806A JP9539888A JP9539888A JPH01268806A JP H01268806 A JPH01268806 A JP H01268806A JP 9539888 A JP9539888 A JP 9539888A JP 9539888 A JP9539888 A JP 9539888A JP H01268806 A JPH01268806 A JP H01268806A
Authority
JP
Japan
Prior art keywords
layer
powder
melting point
high melting
dissimilar metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9539888A
Other languages
Japanese (ja)
Inventor
Seiji Yabe
矢部 清司
Yukio Takabayashi
幸夫 高林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Tungsten Co Ltd
Original Assignee
Tokyo Tungsten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Tungsten Co Ltd filed Critical Tokyo Tungsten Co Ltd
Priority to JP9539888A priority Critical patent/JPH01268806A/en
Publication of JPH01268806A publication Critical patent/JPH01268806A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a complex body having high joining strength between W layer and Mo layer and further excellent heat resistance at the joined part between the W layer and the Mo layer by sintering the complex green compact composing of both powders of W and Mo. CONSTITUTION:As the W powder and the Mo powder for raw material, the powders having in the range of each 1-6mum the average particle size and in the range of 0-1mum difference of the average particle sizes of Mo and W, are used. The complex green compact obtd. by press-compacting both powders of the above W and Mo is sintered at suitable condition under reducing atmosphere. By this method, W-Mo alloy layer intervening between the W layer, Mo layer and W layer.Mo layer is generated and the complex body having multi-layers construction, in which has large joining strength between the W layer and the Mo layer and further, very excellent heat resistance at the joined part between the W layer and Mo layer, can be obtd.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、X線管用の回転陽極材料として、用いられて
おり、2種以上の金属により構成された多層構造を有す
る高融点異種金属複合体及びその製造方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention is a high melting point dissimilar metal composite material having a multilayer structure composed of two or more metals, which is used as a rotating anode material for an X-ray tube. body and its manufacturing method.

[従来の技術] 一般に、2種以上の金属を重ね合わぜな多層構造の複合
体は、接着、ろう付、溶接等の種々の方法で製造されて
いる。一方、高融点金属であるW。
[Prior Art] Generally, multilayered composites made by laminating two or more metals are manufactured by various methods such as adhesion, brazing, and welding. On the other hand, W is a high melting point metal.

MOの多層構造複合体を得る場合には、W板及びMO板
の接合部に低融点の異種金属バインダを入れた後に熱間
加工する方法が行われている。これは、W板及びMO板
双方ともに融点が高く、一方の金属を溶融して他方に接
着する溶接等は困難であるからである。
In order to obtain an MO multilayer structure composite, a method is used in which a low melting point dissimilar metal binder is placed in the joint between the W plate and the MO plate, and then hot working is performed. This is because both the W plate and the MO plate have high melting points, and it is difficult to weld or otherwise melt one metal and bond it to the other.

第4図は、上記した方法によって製作された従来の異種
金属複合体の接合部分の組a構造を示す顕微鏡写真(×
100)である、この写真中央部の細粒部分はバインダ
に使用した異種金属層が見られ、写真下部には、異種金
属層に続<Mo層の粗大粒子、写真上部には、異種金属
層に続くこの異種金属層と境界部を共有するW層が見ら
れる。
FIG. 4 is a micrograph (×
100), a dissimilar metal layer used as a binder can be seen in the fine-grained part in the center of this photograph, and in the lower part of the photograph, the coarse particles of the Mo layer following the dissimilar metal layer, and in the upper part of the photograph, a dissimilar metal layer. Following this, a W layer can be seen that shares a boundary with this dissimilar metal layer.

[発明が解決しようとする課題] しかしながら、低融点異種金属バインダは、接着強度が
極めて弱くまた熱に対しても極端に弱いので、高融点金
属複合体の利点が損なわれるという不都合を生じた。
[Problems to be Solved by the Invention] However, the low melting point dissimilar metal binder has extremely low adhesive strength and is extremely weak against heat, resulting in the disadvantage that the advantages of the high melting point metal composite are lost.

本発明は、上記欠点に鴬みてなされており、接着強度が
極めて良好であり、さらに大きな耐熱性を有する高融点
異種金属複合体及びその製造方法を提供することを目的
とする。
The present invention has been made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a high melting point dissimilar metal composite having extremely good adhesive strength and greater heat resistance, and a method for manufacturing the same.

[課題を解決するための手段] 本発明によれば、W層、Mo層及びW層及びMoMとの
間に介在するW −M o合金層を含み、このW−M 
o合金層の厚さは10μm〜100)t Inの範囲内
であることを特徴とする高融点異種金属複合体が得られ
る。
[Means for Solving the Problems] According to the present invention, the W-Mo alloy layer includes a W layer, a Mo layer, and a W-Mo alloy layer interposed between the W layer and the MoM.
A high melting point dissimilar metal composite is obtained, characterized in that the thickness of the o-alloy layer is within the range of 10 μm to 100)t In.

本発明によれば、W粉末及びMo粉末からなる複合圧粉
体をプレス成形により得る成形工程と、この複合圧粉体
を還元雰囲気中で焼結する焼結工程とを有し、前記W粉
末及びMo粉末の平均粒度は1〜6μmの範囲内にあり
、前記Mo粉末と前記W粉末の平均粒度の差が0μm〜
1μmの範囲内であることを特徴とする異種金属複合体
の製造方法が得られる。すなわち本発明において、原料
のW粉末及びMo粉末としては、1〜6μmの範囲内で
の平均粒度を有するものを使用する。焼結晶のままで製
品となるものについては接着歩留を上げる為、WとMo
同じ粒度あるいはMo粉末の方がW粉末より粗粒でその
平均粒度の差が1μm以内が好ましい。
According to the present invention, the W powder and the Mo powder have a forming step of obtaining a composite green compact by press molding, and a sintering step of sintering the composite green compact in a reducing atmosphere. The average particle size of the Mo powder is in the range of 1 to 6 μm, and the difference in the average particle size of the Mo powder and the W powder is 0 μm to 6 μm.
A method for producing a dissimilar metal composite characterized in that the particle size is within the range of 1 μm is obtained. That is, in the present invention, the raw material W powder and Mo powder have an average particle size within the range of 1 to 6 μm. For products that remain as fired crystals, W and Mo are used to increase the bonding yield.
It is preferable that the particle size is the same, or that the Mo powder is coarser than the W powder, and the difference in average particle size is within 1 μm.

複合体製造に使用されるW層及びMo層よりなる複合圧
粉体はハンドリングが可能な程度でその強度については
充分ではないので、室温程度の温度から、急激に加熱し
たのでJよ容易に剥離してしまう、また、W層に比較し
て、Mo層の焼結が比較的低温で進むのでW層側の割れ
が生じやすい。
The composite powder compact consisting of the W layer and the Mo layer used for composite production is easy to handle, but its strength is not sufficient, so it was heated rapidly from about room temperature, so it was easily peeled off. Moreover, since the Mo layer is sintered at a relatively low temperature compared to the W layer, cracks tend to occur on the W layer side.

したがって、焼結工程において、W層の強度の増加と、
Mo層の焼結の進行度合のバランスを保つためには、最
高温度までの昇温速度を200℃/Hr以下とする必要
がある。また、MoMとW層ともに切削加工及び塑性加
工が可能な焼結体とするには、その融点に対して幾分低
い1700〜2000℃の範囲内の温度で、15〜40
時間の長時間焼結を行うことが好ましい0本発明におい
ては、W粉末及びMo粉末をプレスし、得られた複合圧
粉体から更にMo層とW層が剥離しない条件で水素雰囲
気中でこの複合圧粉体を焼結して、接合部にW −M 
oの合金層を生じさせる。このため、0℃から1600
℃迄の10分間の昇温・急冷サイクルを繰り返しても、
その接合部で剥れを発生ぜず、圧延力1f工もしくは鍛
造加工品においても、接合強度の大きな複数HJivi
造の高融点異種金属複合体が得られる。
Therefore, in the sintering process, the strength of the W layer increases and
In order to maintain a balance in the progress of sintering of the Mo layer, the rate of temperature increase to the maximum temperature needs to be 200° C./Hr or less. In addition, in order to make a sintered body that can be machined and plastically worked with both the MoM and W layers, it is necessary to use a sintered body at a temperature of 15 to 40°C, which is somewhat lower than the melting point of the MoM layer.
It is preferable to perform sintering for a long time. In the present invention, W powder and Mo powder are pressed, and the Mo layer and W layer are pressed in a hydrogen atmosphere under conditions that the Mo layer and W layer do not separate from the obtained composite compact. Sinter the composite compact and apply W-M to the joint.
This produces an alloy layer of o. For this reason, from 0℃ to 1600℃
Even after repeating the 10-minute heating/quenching cycle to
Multiple HJivi with high bonding strength that does not cause peeling at the joint and can be used in rolling force 1f work or forged products.
A high melting point dissimilar metal composite is obtained.

[実施例] 本発明の実施例を図面を参照しながら説明する。[Example] Embodiments of the present invention will be described with reference to the drawings.

実施例1 本発明の実施例に係る異種金属複合体について説明する
Example 1 A dissimilar metal composite according to an example of the present invention will be described.

第1図は、本発明の実施例に係る複合体の接合部分の組
R構造を示す顕微鏡写真である。この写真の中央部より
上方が粒子径の小さなW層、下方が粒子径の大きなMo
層で、両層に介在する部分には、Wの含有量が1減して
いるW −M oの合金層と呼ぶ固溶体漸移相が認めら
れる。W−Mo合金層の厚さは約80μm程度である。
FIG. 1 is a photomicrograph showing the group R structure of the joint portion of a composite according to an example of the present invention. Above the center of this photo is the W layer with a small particle size, and below is the Mo layer with a large particle size.
In the portion between both layers, a gradual solid solution phase shift called a W--Mo alloy layer in which the W content is reduced by 1 is observed. The thickness of the W-Mo alloy layer is about 80 μm.

第1図に示す本発明の複合体は第4図に示す比較例に係
る複合材のように、異種金属層を接合部に存していない
ため、比較例に比べて、非常に高い接合強度を有する。
Unlike the composite material according to the comparative example shown in FIG. 4, the composite of the present invention shown in FIG. has.

次に、本発明の実施例1に係る高融点異種金属複合体の
製造方法について説明する。平均粒度3.5μmのW粉
と平均粒度3.8μmの粉末各500gを金型にて除圧
時のスプリングバックの差が境界部に集中するのを防ぎ
ながら複合圧粉体を製造した0次に、この複合圧粉体を
200℃/)−I rで10時間昇温して、1800℃
にした後、1800’Cで30時間水素ガス中で焼結を
行ったにの場合、複合体焼結体の直径は98印であり、
W層の厚さは、3.8關、Mo層の厚さは7.0市であ
った。以後、この複合体としての焼結体を後加工工程と
して鍛造率40%で鍛造した後、円周を切削し、直径1
00關、W層の厚さ3.2闇、M o rr4の厚さ3
.8關の試片を作成した。
Next, a method for manufacturing a high melting point dissimilar metal composite according to Example 1 of the present invention will be described. A zero-order composite compact was manufactured by using 500 g each of W powder with an average particle size of 3.5 μm and powder with an average particle size of 3.8 μm in a mold to prevent the difference in springback from concentrating on the boundary when the pressure was released. Then, the temperature of this composite powder compact was raised at 200°C/)-Ir for 10 hours to 1800°C.
After sintering in hydrogen gas at 1800'C for 30 hours, the diameter of the composite sintered body was 98 marks,
The thickness of the W layer was 3.8 mm, and the thickness of the Mo layer was 7.0 mm. Thereafter, this composite sintered body was forged at a forging rate of 40% as a post-processing step, and then the circumference was cut to a diameter of 1.
00 degree, W layer thickness 3.2 darkness, M o rr4 thickness 3
.. Eight specimens were prepared.

次に、本発明の実施例に係る高融点異種金属後3体のヒ
ートサイクル試験について説明する。
Next, a heat cycle test of three high melting point dissimilar metal bodies according to an example of the present invention will be described.

第2図は、本発明の実施例に係る異種金属複合体のヒー
トサイクル試験片の試験後の接合部分を示す顕微鏡写真
である。この写真において、中央より上層はW層、下層
はMo層である。W層に割れが発生している。第5図は
、比較例に係る異種金属複合体のヒートサイクル試験片
の試験結果を示す顕微鏡写真である。この写真において
、中央より上層はW層、下層は、Mo層である。W層に
は、実施例の試験片と同様に割れが生じているがその大
きさは、実施例よりも大きい、更に、第5図には接合部
に剥れが生じている。このことから、実施例に係る高融
点異種金属複合体の試験片は接合強度が熱及び熱変化に
対して強いことが判る。
FIG. 2 is a microscopic photograph showing a bonded portion of a heat cycle test piece of a dissimilar metal composite according to an example of the present invention after a test. In this photograph, the layer above the center is a W layer, and the layer below is a Mo layer. A crack has occurred in the W layer. FIG. 5 is a micrograph showing the test results of a heat cycle test piece of a dissimilar metal composite according to a comparative example. In this photograph, the layer above the center is a W layer, and the layer below is a Mo layer. Cracks occur in the W layer, similar to the test pieces of Examples, but the size of the cracks is larger than in Examples.Furthermore, in FIG. 5, peeling occurs at the joints. From this, it can be seen that the test piece of the high melting point dissimilar metal composite according to the example has a high bonding strength against heat and thermal changes.

第2図及び第5図のような試験片のヒートサイの クル試験は以下1条件のもとで行われた。実施例1の方
法にて作成した直径100關、W層の厚さ3.2n+y
+、Mo層の厚さ3.8団の試験片を用いた。第3図は
異種金属複合体試験片の加熱サイクルを示す図である。
The heat cycle test of the test pieces shown in FIGS. 2 and 5 was conducted under the following conditions. Created by the method of Example 1, diameter 100mm, W layer thickness 3.2n+y
+, Mo layer thickness 3.8 groups of test pieces were used. FIG. 3 is a diagram showing a heating cycle of a dissimilar metal composite test piece.

この図において、曲線10のように実施例に係る試験片
は、一定の昇温速度160°(: / Hrで10分間
1600°C程度まで昇温し、急冷する熱処理を施した
。この熱処理を50回繰り返した後、試料を切断し接合
部の組繊構造の状態を50倍の金属Tgn微鏡で観察し
た。
In this figure, as shown by curve 10, the test piece according to the example was subjected to heat treatment in which the temperature was raised to about 1600 °C for 10 minutes at a constant temperature increase rate of 160 ° (: / Hr), and then rapidly cooled. After repeating 50 times, the sample was cut and the state of the fiber structure at the joint was observed using a metal Tgn microscope with a magnification of 50 times.

本発明の実施例に係る高融点異種金属複合体の抗折試験
について説明する。
A bending test of a high melting point dissimilar metal composite according to an example of the present invention will be explained.

表1は、実施例に係る異種金属複合体の抗折試験の結果
を示している。試験はヒートサイクル試験片と同様の試
料から幅10止、長さ30市、厚さは接合部を中央にし
てW層及びMO層各々2.5市層厚で、全体の厚みが5
Lll+の試験片により行なわれた。比較の為従来例に
係る異種金属複合体の抗折試験結果を併記した。
Table 1 shows the results of the bending test of the dissimilar metal composites according to the examples. The test was conducted using a sample similar to the heat cycle test piece, with a width of 10 mm, a length of 30 mm, a thickness of 2.5 mm each for the W layer and MO layer with the joint at the center, and a total thickness of 5 mm.
The tests were carried out using Lll+ test pieces. For comparison, the results of a bending test of a dissimilar metal composite according to a conventional example are also shown.

第  1  表 この表より実施例に係る異種金属複合体は抗折値の算術
平均は83 、2Kg/mm2、比較例は61 、、 
OK(1/關2で、実施例に係る異種金属複合体の接合
強度が強いことを示している。
Table 1 From this table, the arithmetic mean of the bending values of the dissimilar metal composites according to the examples is 83, 2Kg/mm2, and the comparative example is 61.
OK (1/2) indicates that the bonding strength of the dissimilar metal composite according to the example is strong.

[発明の効果コ 以上説明したように本発明によれば、W粉末及びMo粉
末よりなる複合圧粉体を焼結することによりW層及びM
olとW層及びMONi間に介在するW−MO合金層を
生ぜしめるために、W層及びMo層の接合強度の大きく
、更にW層及びMo層の接合部の耐熱性も極めて優れた
W層、Mo層を含む多層構造を有する高融点異種金属複
合体を得ることができる。
[Effects of the Invention] As explained above, according to the present invention, the W layer and the M
In order to create a W-MO alloy layer interposed between ol, W layer and MONi, a W layer is used which has high bonding strength between the W layer and Mo layer and also has extremely excellent heat resistance at the bonded portion between the W layer and Mo layer. , a high melting point dissimilar metal composite having a multilayer structure including a Mo layer can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

(X100)、第2図は本発明の実施例に係る高第3図
は本発明の実施例に係るヒートサイクル試顕微鏡写真(
X100)、第5図は従来例に係る・4 Il (] 第3図 時 間 (分) □
(X100), Fig. 2 is a photomicrograph of an example of the present invention (
X100), Figure 5 is related to the conventional example. 4 Il (] Figure 3 Time (minutes) □

Claims (1)

【特許請求の範囲】 1、W層、Mo層及びW層及びMo層との間に介在する
W−Mo合金層を含み、前記W−Mo合金層の厚さは1
0μm〜100μmの範囲内であることを特徴とする高
融点異種金属複合体。 2、W粉末及びMo粉末からなる複合圧粉体をプレス成
形により得る成形工程と、前記複合圧粉体を還元雰囲気
中で焼結する焼結工程とを有し、前記W粉末及び前記M
o粉末の平均粒度は1〜6μmの範囲内にあり、前記M
o粉末と前記W粉末の平均粒度の差が0μm〜1μmの
範囲内であることを特徴とする高融点異種金属圧粉体の
製造方法。 3、前記焼結工程の後、圧延加工及び鍛造加工のうち少
くとも1種の加工を施す後加工工程を有することを特徴
とする第2の請求項記載の高融点異種金属複合体の製造
方法。
[Claims] 1. The W-Mo alloy layer includes a W layer, a Mo layer, and a W-Mo alloy layer interposed between the W layer and the Mo layer, and the thickness of the W-Mo alloy layer is 1.
A high melting point dissimilar metal composite having a diameter within the range of 0 μm to 100 μm. 2. A forming step of obtaining a composite green compact made of W powder and Mo powder by press molding, and a sintering step of sintering the composite green compact in a reducing atmosphere, wherein the W powder and the M
o The average particle size of the powder is within the range of 1 to 6 μm, and the M
A method for producing a high melting point dissimilar metal compact, characterized in that the difference in average particle size between the O powder and the W powder is within a range of 0 μm to 1 μm. 3. The method for producing a high melting point dissimilar metal composite according to claim 2, further comprising a post-processing step of performing at least one of rolling and forging after the sintering step. .
JP9539888A 1988-04-20 1988-04-20 Complex body of high melting point different metals and manufacture thereof Pending JPH01268806A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9539888A JPH01268806A (en) 1988-04-20 1988-04-20 Complex body of high melting point different metals and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9539888A JPH01268806A (en) 1988-04-20 1988-04-20 Complex body of high melting point different metals and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01268806A true JPH01268806A (en) 1989-10-26

Family

ID=14136556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9539888A Pending JPH01268806A (en) 1988-04-20 1988-04-20 Complex body of high melting point different metals and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01268806A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590476A (en) * 2018-12-21 2019-04-09 合肥工业大学 The method that one-step method prepares high-compactness WRe/TZM gradient composites

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825850A (en) * 1971-08-05 1973-04-04
JPS493590A (en) * 1972-03-13 1974-01-12
JPS61264104A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd Production of high melting point metallic sintered body

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4825850A (en) * 1971-08-05 1973-04-04
JPS493590A (en) * 1972-03-13 1974-01-12
JPS61264104A (en) * 1985-05-20 1986-11-22 Nippon Mining Co Ltd Production of high melting point metallic sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109590476A (en) * 2018-12-21 2019-04-09 合肥工业大学 The method that one-step method prepares high-compactness WRe/TZM gradient composites

Similar Documents

Publication Publication Date Title
Butt et al. Microstructure and mechanical properties of dissimilar pure copper foil/1050 aluminium composites made with composite metal foil manufacturing
US6732914B2 (en) Braze system and method for reducing strain in a braze joint
US4710235A (en) Process for preparation of liquid phase bonded amorphous materials
US4469757A (en) Structural metal matrix composite and method for making same
KR101054462B1 (en) High strength dissimilar metal joining method between a steel-based alloy using an intermediate layer and a titanium or titanium-based alloy having a joint strength exceeding the strength of the base metal
RU2306227C2 (en) Method of manufacture (versions) of the details or the semi-finished products, which contain the intermetallic titanium-aluminide alloys and also the detail manufactured by the method
US5788142A (en) Process for joining, coating or repairing parts made of intermetallic material
US8557383B2 (en) Method of producing a material composite
JPH0249267B2 (en)
KR940008937B1 (en) Fabricating method of composite material
US11833606B1 (en) Solid state diffusion bonding of refractory metals and their alloys
US5284290A (en) Fusion welding with self-generated filler metal
CN111590997A (en) In-situ synthesized titanium-based composite laminated component and preparation method and application thereof
JPH01268806A (en) Complex body of high melting point different metals and manufacture thereof
KR101039361B1 (en) Low temperature joining method between Ti/Ti-based alloys having a bonding strength higher than those of base metals
JPH0437658A (en) Combined material and its production
Kreider et al. Boron-reinforced aluminum
JP2568332B2 (en) Method for producing composite material at least partially composed of an intermetallic compound
JPS5829589A (en) Manufacture of titanium-clad steel plate
JPH029779A (en) Production of ceramic-metal composite body
JP6690288B2 (en) Titanium-encapsulating structure and method for producing titanium multilayer material
RU2593066C1 (en) Diffusion welding of ceramic-matrix composite with metals
JP2015532211A (en) Layer composite
JPH01312015A (en) Production of thermal expansion adjusting member
Moore et al. Diffusion brazing NiAl with self-generated filler metal