JPH01268478A - Vector control arithmetic unit for induction motor - Google Patents

Vector control arithmetic unit for induction motor

Info

Publication number
JPH01268478A
JPH01268478A JP63094579A JP9457988A JPH01268478A JP H01268478 A JPH01268478 A JP H01268478A JP 63094579 A JP63094579 A JP 63094579A JP 9457988 A JP9457988 A JP 9457988A JP H01268478 A JPH01268478 A JP H01268478A
Authority
JP
Japan
Prior art keywords
magnetic flux
switch
vector control
speed
excitation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63094579A
Other languages
Japanese (ja)
Inventor
Takahiro Hayashida
林田 隆洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP63094579A priority Critical patent/JPH01268478A/en
Publication of JPH01268478A publication Critical patent/JPH01268478A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve cutting accuracy suppressing position error dispersion to a small value, when a C-shaft cutting is performed, by switching a secondary magnetic flux from a weaker variable magnetic flux to a stronger fixed magnetic flux when a main spindle mode is switched to a C-shaft mode. CONSTITUTION:In the time of a main spindle mode, a switch 23 and a switch 25 are set to a position A, and feeding weakening variable magnetic flux, fed from a weakening variable magnetic flux generating circuit 16, to an excitation divider current arithmetic circuit 19, an excitation divider current i'ds is calculated. In the time of a C-shaft mode controlling a position, the switch 23 and the switch 25 are set to a position B, and selecting a position loop while setting secondary magnetic flux phi2 of an electric motor 5 to the fixed magnetic flux fed from a strengthening fixed magnetic flux generating circuit 24, the excitation divider current i'ds is calculated.

Description

【発明の詳細な説明】 〔産業上の利用分野コ この発明は誘導電動機のベクトル制御演算装置、特に位
置を制御するC輔切削の精度の向上に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a vector control calculation device for an induction motor, and in particular to improving the accuracy of C-cutting for position control.

[従来の技術] 第4図はベクトル制御演算装置を有する誘導電動機のイ
ンバータ駆動装置を示すブロック図であり、図において
(1)は三相交流電源、(2)は三相交流型i1K (
1)から送られた交流を整流するためのダイオード等を
用いたコンバータ、(3)はコンバータ(2)によって
整流された電圧を平滑するための平滑コンデンサ、(4
)は平滑コンデンサ(3)で平滑された直流電圧を三相
交流電圧に変換するトランジスタ等からなるインバータ
、(5)はインバータ(4)が出力する三相交流電圧に
より駆動される誘導電動機(以下、電動機という)であ
り、電動機(5)は工作機械の主軸に連結されている。
[Prior Art] Fig. 4 is a block diagram showing an inverter drive device for an induction motor having a vector control calculation device. In the figure, (1) is a three-phase AC power supply, and (2) is a three-phase AC type i1K
1) a converter using a diode or the like to rectify the alternating current sent from the converter (3), a smoothing capacitor to smooth the voltage rectified by the converter (2), and (4)
) is an inverter consisting of transistors, etc. that converts the DC voltage smoothed by a smoothing capacitor (3) into three-phase AC voltage, and (5) is an induction motor (hereinafter referred to as "induction motor") driven by the three-phase AC voltage output by the inverter (4). , an electric motor), and the electric motor (5) is connected to the main shaft of the machine tool.

(6)は電動機(5)に取付けられ、その回転速度に見
合った信号を出力する速度検出器、(7)は電動機(5
)に取付けられ、その位置に見合った信号を出力する高
分解能位置検出器である。
(6) is a speed detector that is attached to the electric motor (5) and outputs a signal commensurate with its rotational speed, and (7) is a speed detector that is attached to the electric motor (5).
) is a high-resolution position detector that outputs a signal commensurate with its position.

(8)は電動機(5)の速度指令ω“あるいは位置指令
θ“を出力する数値制御装置、(9)は速度指令作成回
路であり、速度指令作成回路(9)は速度ループ運転時
には数値制御装置(8)から送られる速度指令をそのま
ま出力し、位置ループ運転時には数値制御装置(8)か
ら送られる位置指令θ8 と位置検出器(7)の位置検
出信号θ とをつき合せて演算した速度指令ωゝを出力
する。(lO)は速度「 指令作成回路(9)から送られる速度指令ω9と速度検
出器(6)の速度検出信号ω とからベクトル制御演算
を行ない、電動機(5)に与える一次電流の振幅111
.角速度ω 2位相角Δθを出力するベクトル制御演算
−路、(11)はベクトル制御演算回路(10)から送
られる一次電流の振幅1■ 1.角速度ω 1位相角Δ
θからU相の一次電流指令l と、■相の一次電流指令
i■sを作S る−次電流基準発生回路、(12)は−次電流基準発生
回路(11)から送られる一次電流指令! 、げus 
   vs と電動機(5)に流れる一次電流のフィードバック信号
とから、インバータ(4)のトランジスタのオン、オフ
を決定する電流制御回路である。
(8) is a numerical control device that outputs the speed command ω" or position command θ" of the electric motor (5), (9) is a speed command creation circuit, and the speed command creation circuit (9) is a numerical control device during speed loop operation. The speed command sent from the device (8) is output as is, and during position loop operation, the speed is calculated by comparing the position command θ8 sent from the numerical control device (8) and the position detection signal θ of the position detector (7). Outputs the command ωゝ. (lO) is the speed "Amplitude 111 of the primary current given to the motor (5) by performing vector control calculation from the speed command ω9 sent from the command generation circuit (9) and the speed detection signal ω of the speed detector (6)
.. A vector control calculation path that outputs angular velocity ω 2 phase angle Δθ, (11) is the amplitude 1 of the primary current sent from the vector control calculation circuit (10). Angular velocity ω 1 phase angle Δ
The -order current reference generation circuit generates the U-phase primary current command l and the ■phase primary current command i s from θ, and (12) is the primary current command sent from the -order current reference generation circuit (11). ! , Ge us
This is a current control circuit that determines whether the transistor of the inverter (4) is turned on or off based on the feedback signal of the primary current flowing through the motor (5).

第5図は第4図に示した速度指令作成回路(9)とベク
トル制御演算回路(工0)の内部ブロック図を示す。図
において(13)は位置指令信号θ1と位置検出信号θ
 との差に位置ループゲインに1.を乗「 算して速度指令ω”とする位置ループゲイン回路、(2
3)は速度ループ運転時と位置ループ運転時の設定を行
なうスイッチ、(14)は速度指令ω率 と速度検出信
号ω との差を比め1および積分制御演算するPI制御
回路、(15)はPI制御回路(14)の出力を一定の
飽和値1 11aXで制限しトルク分電流指S 令五 とするリミッタ回路、(16)は速度検出信号S ω からリミッタ回路(15)の出カビに見合ったr 
                         
    qs二次磁束φ2を発生する弱め可変磁束発生
回路、(17)は二次磁束φ2から二次磁束φ1を出力
する一次遅れ要素、(1g)はφ;から電動機相互リア
クタンスMを発生する相互リアクタンスパターン発生回
路、(19)はφ2とMから励磁分電流指令’ds幅演
算演算回路21)は19および118から一次電流S の位相角Δθを演算する位相角演算回路、(22)は弓
、とφ2かやすべり角周波数ω8を演算するすべり角周
波数演算回路である。
FIG. 5 shows an internal block diagram of the speed command generation circuit (9) and vector control calculation circuit (step 0) shown in FIG. In the figure (13) is the position command signal θ1 and the position detection signal θ
The difference between the position loop gain and the position loop gain is 1. A position loop gain circuit that multiplies `` to obtain a speed command ω'', (2
3) is a switch for setting during speed loop operation and position loop operation; (14) is a PI control circuit that compares the difference between the speed command ω rate and the speed detection signal ω and calculates 1 and integral control; (15) (16) is a limiter circuit that limits the output of the PI control circuit (14) to a constant saturation value 111aX and uses the torque component current command S; worth it

qs A weakening variable magnetic flux generation circuit that generates secondary magnetic flux φ2, (17) is a first-order lag element that outputs secondary magnetic flux φ1 from secondary magnetic flux φ2, and (1g) is a mutual reactance that generates motor mutual reactance M from φ; (19) is a phase angle calculation circuit that calculates the phase angle Δθ of the primary current S from 19 and 118, (22) is a bow; This is a slip angular frequency calculation circuit that calculates φ2 and slip angular frequency ω8.

次に動作について説明する。周知のベクトル制御論理に
よれば、電動機の所要発生トルクをTM、極対数をP 
、二次抵抗をRに次すアクタンスをL 1 トルク分電
流を1 、励磁分電流を2             
     QSids’微分演算子をSとすれば、次の
関係式が成り立つ。
Next, the operation will be explained. According to well-known vector control logic, the required torque generated by the motor is TM, and the number of pole pairs is P.
, the actance following the secondary resistance to R is L 1 , the torque component current is 1 , the excitation component current is 2
If the QSids' differential operator is S, the following relational expression holds true.

しかして、ベクトル制御では速度指令信号ω*、と速度
検出信号ω との誤差をPI制御回路(14)で「 増幅し、リミッタ回路(15)で一定の制限をかけてト
ルク分電流指令ビとする。また、励磁分電流S 演算回路(19)は式(2)より、速度検出信号ω、と
トルク分電流指令19により弱め可変磁束発生口S 路(16)で得られる二次磁束φ にL 2 / R2
を定数とした一次進み演算を行い、相互リアクタンスパ
ターン発生回路(18)から得られる相互リアクタンス
Mを乗じて励磁分電流指令’dsを得る。また、すべり
角周波数ω は式(3)より、すべて角周波数演算回路
(22)でトルク分電流指令1 を二次磁s 束指令φ′で除して(R/L2)  ・Mなる係数を乗
算することによって得られる。
In vector control, the error between the speed command signal ω* and the speed detection signal ω is amplified by the PI control circuit (14), and the limiter circuit (15) applies a certain limit to the torque current command signal. In addition, the excitation current S calculation circuit (19) uses the speed detection signal ω and the torque current command 19 to calculate the secondary magnetic flux φ obtained at the weakening variable magnetic flux generation port S path (16) from the equation (2). L2/R2
A linear advance calculation is performed with the constant as a constant, and the excitation component current command 'ds is obtained by multiplying by the mutual reactance M obtained from the mutual reactance pattern generation circuit (18). In addition, the slip angular frequency ω can be calculated from equation (3) by dividing the torque component current command 1 by the secondary magnetic flux command φ′ using the angular frequency calculation circuit (22) to obtain the coefficient (R/L2)・M. Obtained by multiplying.

−次電流指令の振幅II 1.角周波数ω。。- Amplitude of next current command II 1. Angular frequency ω. .

位相角Δθは次の式で求められる。The phase angle Δθ is determined by the following formula.

II*I   (i”)”+(i”)”  −(4)l
     qs      ds ω0−ω、+ω8          ・・・(5)−
1,*   。
II*I (i”)”+(i”)” −(4)l
qs ds ω0-ω, +ω8...(5)-
1,*.

Δθ−tan  < 198/ t ds>     
−(a)したがって振幅演算回路(20)では式(4)
の演算を行い、位相角演算回路(21)では式(6)の
演算を行なっている。
Δθ-tan <198/tds>
-(a) Therefore, in the amplitude calculation circuit (20), equation (4)
The phase angle calculation circuit (21) calculates equation (6).

上記のように構成されたベクトル制御演算装置において
は、通常の主軸運転モードでは、電動機(5)の速度を
制御する速度ループを構成し、第5図においてスイッチ
23はA側に設定される。また、C軸モードでは電動機
(5)の位置を制御する位置ループを構成し、スイッチ
23はB側に設定される。
In the vector control calculation device configured as described above, in the normal spindle operation mode, a speed loop is configured to control the speed of the electric motor (5), and the switch 23 is set to the A side in FIG. Further, in the C-axis mode, a position loop is configured to control the position of the electric motor (5), and the switch 23 is set to the B side.

このC軸モード時の応答性は速度指令作成回路(9)の
位置ループゲイン回路(13)に設定する位置ループゲ
インKPPとベクトル制御演算回路(10)のPI制御
回路(14)に設定する速度ループ比例ゲインK  積
分ゲインに、一定まる。通常位置ルーP■′ プゲインK の値は30 sec”−’程度の値に設定
し速P 度ループ比例ゲインK 、積分ゲインに1■を速度v 制御系が不安定とならない範囲でなるべく大きな値に設
定して応答性の向上を図っている。
The responsiveness in this C-axis mode is determined by the position loop gain KPP set in the position loop gain circuit (13) of the speed command generation circuit (9) and the speed set in the PI control circuit (14) of the vector control calculation circuit (10). Loop proportional gain K: Depends on the integral gain. Normally, the value of the position loop P■' loop gain K is set to a value of about 30 sec"-', and the speed P loop proportional gain K and the integral gain are set to 1■ and the speed V is set to a value as large as possible within the range that does not make the control system unstable. This is set to improve responsiveness.

[発明が解決しようとする課題] 上記のように構成した従来のベクトル制御演算装置おい
ては、電動機(5)の二次磁束φ2を無負荷時は定格の
約172の磁束負荷が大きくなるに従って徐々に100
%定格磁束まで大きくする弱め可変磁束で定めて励磁分
電流を得ているため。主軸モード時とC時モード時のベ
クトル制御演算回路(10)の速度応答は同じであった
[Problems to be Solved by the Invention] In the conventional vector control calculation device configured as described above, the secondary magnetic flux φ2 of the electric motor (5) is changed from the rated magnetic flux φ2 of about 172 when no load increases as the rated magnetic flux load increases. gradually 100
This is because the excitation current is obtained by determining the weakening variable magnetic flux that increases up to the rated magnetic flux. The speed response of the vector control calculation circuit (10) in the main axis mode and in the C-time mode was the same.

しかしながら、工作機械をC輔切削用として使用する場
合、切削工具の刃出りにより一定しない外力が電動機(
5)に加わる。このため電動機(5)の速度応答が優れ
ていないと、一定しない外力により速度変動が生じ、目
的とする指令位置と実際の位置に大きな誤差のバラツキ
が生じてC軸切削の精度が低下するという問題点があっ
た。
However, when a machine tool is used for C-cutting, the electric motor (
5) Join. For this reason, if the speed response of the electric motor (5) is not excellent, speed fluctuations will occur due to inconsistent external force, and large error variations will occur between the desired commanded position and the actual position, reducing the accuracy of C-axis cutting. There was a problem.

また、位置誤差のバラツキを小さくするため、切削工具
の被切削物への切込みを小さくすると切削限界能力が低
下するという問題点もあった。
Furthermore, if the depth of cut of the cutting tool into the workpiece is reduced in order to reduce the variation in positional errors, there is also the problem that the cutting limit capability is reduced.

この発明はががる問題点を解決するためになされたもの
であり、電動機の位置を制御する位置ループを構成する
C軸切削時に切削精度の向上と、切削工具の被加工物へ
のくい込み防止による切削限界能力の向上を図ることが
できる誘導電動機のベクトル制御演算装置を得ることを
目的とするものである。
This invention was made to solve the problem of peeling, and improves cutting accuracy during C-axis cutting, which constitutes a position loop that controls the position of the electric motor, and prevents the cutting tool from digging into the workpiece. The object of the present invention is to obtain a vector control calculation device for an induction motor that can improve the cutting limit capacity by the following methods.

[課題を解決するための手段] この発明に係る誘導電動機のベクトル制御演算装置は、
主軸モードからC軸モードに変ったときに、励磁分電流
を演算するための誘導電動機の二次磁束を弱め可変磁束
がら強め固定磁束に切換えることを特徴とする。
[Means for Solving the Problems] A vector control calculation device for an induction motor according to the present invention includes:
The present invention is characterized in that when changing from the main shaft mode to the C-axis mode, the secondary magnetic flux of the induction motor for calculating the excitation current is switched from a weak variable magnetic flux to a strong fixed magnetic flux.

[作用] この発明においては、主軸モードからC軸モードに切換
ったときに誘導電動機の二次磁束を主軸モード時の弱め
可変磁束から強め固定磁束に切換ることにより、CIT
o切削時切削度応答を高くする。
[Function] In this invention, when switching from the main shaft mode to the C-axis mode, the secondary magnetic flux of the induction motor is switched from the weakening variable magnetic flux in the main shaft mode to the stronger fixed magnetic flux, thereby increasing the CIT.
o Increase cutting degree response during cutting.

[実施例] 第1図はこの発明の一実施例を示すブロック図である。[Example] FIG. 1 is a block diagram showing one embodiment of the present invention.

なお、この実施例の全体構成は第4図に示したブロック
図と全く同じものである。第1図において、(9) 、
  (10)、 (13)〜(23)は第5図に示した
従来例と全く同じものである。(24)は電動機(5)
の二次磁束φ2を100%定格磁束の強め固定磁束とす
る強め固定磁束発生回路、(25)は主軸モードとC軸
モードとを切換えるときに弱め可変磁束発生回路(16
)と強め固定磁束発生回路(24)を切換えるスイッチ
である。
The overall configuration of this embodiment is exactly the same as the block diagram shown in FIG. 4. In Figure 1, (9),
(10), (13) to (23) are exactly the same as the conventional example shown in FIG. (24) is an electric motor (5)
(25) is a weak variable magnetic flux generation circuit (16) that makes the secondary magnetic flux φ2 into a strong fixed magnetic flux of 100% of the rated magnetic flux.
) and the stronger fixed magnetic flux generation circuit (24).

上記のように構成されたベクトル制御演算装置の動作を
第2図に示したフローチャートを参照して説明する。
The operation of the vector control calculation device configured as described above will be explained with reference to the flowchart shown in FIG.

まず、電動機(5)のf、IJ御が速度を@IJ御する
主軸モードか、位置を制御するC軸モードであるかを判
断しくステップs1)、主軸モードのときにはスイッチ
(23)とスイッチ(25)をA側に設定しくステップ
S2)、スイッチ(23)で速度ループを選択すると共
に、電動機(5)の二次磁束φ2を弱め可変磁束発生回
路(1B)から送られる弱め可変磁束、すなわち無負荷
時はほぼ定格の50%の磁束であり、負荷が大きくなる
にしたがって徐々に100%定格磁束まで大きくなる磁
束としくステップS3)、この二次磁束φ を励磁分電
流演算回路(19)に送り励磁分電流i♂8を演算する
First, it is necessary to judge whether the f and IJ control of the electric motor (5) is in the spindle mode in which the speed is controlled @IJ or in the C-axis mode in which the position is controlled (step s1). When in the spindle mode, the switch (23) and the switch ( 25) to the A side, select the speed loop with the switch (23), and weaken the secondary magnetic flux φ2 of the motor (5) to weaken the variable magnetic flux sent from the variable magnetic flux generation circuit (1B), i.e. When there is no load, the magnetic flux is approximately 50% of the rated magnetic flux, and as the load increases, the magnetic flux gradually increases to 100% of the rated magnetic flux (Step S3). The excitation component current i♂8 is calculated.

電動機(5)の制御が位置を制御するC軸モードである
ときは、スイッチ(23)とスイッチ(25)をB側に
設定しくステップs4)、位置ループを選択すると共に
、電動機(5)の二次磁束φ2を強め固定磁束発生回路
(24)から送られる強め固定磁束としくステップS5
)、励磁分電流’dsを演算する。
When the control of the electric motor (5) is in the C-axis mode that controls the position, set the switch (23) and the switch (25) to the B side (step s4), select the position loop, and control the electric motor (5). Step S5: Strengthen the secondary magnetic flux φ2 to a stronger fixed magnetic flux sent from the fixed magnetic flux generation circuit (24).
), calculate the excitation component current 'ds.

ここで、通常の主軸モード時においては、電動機(5)
の励磁音の低減のために電動機(5)の二次磁束Φ2を
弱め可変磁束としているが、C軸切削のように切削精度
、切削能力が第1に要求される制御においては、予め電
動機(5)の二次磁束Φ2を強め固定磁束としてベクト
ル制御演算回路(■0)の速度応答を高くするのである
Here, in the normal spindle mode, the electric motor (5)
In order to reduce the excitation noise of the motor (5), the secondary magnetic flux Φ2 of the electric motor (5) is weakened and made into a variable magnetic flux. The secondary magnetic flux Φ2 of 5) is strengthened and fixed as a fixed magnetic flux to increase the speed response of the vector control calculation circuit (■0).

第3図(b)は、この実施例により電動機(5)の二次
磁束φ2を100%定格の磁束φとしてC軸切削を行な
ったときの負荷の変動と負荷の変動により変化するトル
ク分電流指令! 及び位置の誤差s のバラツキを示し、第3図(b)は従来により電動機(
5)の二次磁束φ2を50%定格から100%定格に変
化する弱め可変磁束φとしてC軸切削を行なったときの
位置の誤差を比較のために示した波形図である。図に示
すように、この実施例によると位置の誤差及びそのバラ
ツキは従来例と比べて非常に小さくすることができた。
Figure 3(b) shows the load fluctuations and the torque component current that changes due to the load fluctuations when performing C-axis cutting with the secondary magnetic flux φ2 of the electric motor (5) as 100% rated magnetic flux φ in this embodiment. Command! Figure 3(b) shows the variation in the positional error s and the variation in the positional error s.
5) is a waveform chart showing for comparison the position error when C-axis cutting is performed with the secondary magnetic flux φ2 changing from 50% rating to 100% rating and weakening variable magnetic flux φ. As shown in the figure, according to this embodiment, the positional error and its variation can be made much smaller than in the conventional example.

[発明の効果コ この発明は以上説明したように、誘導電動機の磁束を決
める二次磁束を、主軸モードからC軸モードに切換える
ときに弱め可変磁束から強め固定磁束に切換えるように
したので、C軸切削時の位置誤差のバラツキを小さく抑
えることができ、C軸切削の切削精度を向上させること
ができる。
[Effects of the Invention] As explained above, in this invention, when switching the secondary magnetic flux that determines the magnetic flux of the induction motor from the weak variable magnetic flux to the strong fixed magnetic flux when switching from the main axis mode to the C-axis mode, the C Variations in positional errors during axial cutting can be suppressed to a small level, and cutting accuracy in C-axis cutting can be improved.

また、切削精度が向上することから切削限界能力も向上
させることができる。
Furthermore, since the cutting accuracy is improved, the cutting limit capacity can also be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例を示すブロック図、第2図は
上記実施例の動作を示すフローチャート、第3図(a)
 、 (b)は従来例と上記実施例による位置誤差の波
形比較図、第4図はベクトル制御演算装置を有する誘導
電動機のインバータ駆動装置を示すブロック図、第5図
は従来例のブロック図である。 (9)・・・速度指令作成回路、(lO)・・・ベクト
ル制御演算回路、(16)・・・弱め可変磁束発生回路
、(19)・・・励磁分電流演算回路、(23) 、 
(25)・・・スイッチ、(24)・・・強め固定磁束
発生回路。 なお、図中同一符号は同−又は相当部分を示す。
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a flowchart showing the operation of the above embodiment, and FIG. 3(a)
, (b) is a waveform comparison diagram of the position error between the conventional example and the above embodiment, FIG. 4 is a block diagram showing an inverter drive device for an induction motor having a vector control calculation device, and FIG. 5 is a block diagram of the conventional example. be. (9)... Speed command generation circuit, (lO)... Vector control calculation circuit, (16)... Variable weakening magnetic flux generation circuit, (19)... Excitation component current calculation circuit, (23),
(25)...Switch, (24)...Strengthening fixed magnetic flux generation circuit. Note that the same reference numerals in the figures indicate the same or equivalent parts.

Claims (1)

【特許請求の範囲】 誘導電動機に与える一次電流を、トルク分電流と励磁分
電流とに分離して制御するベクトル制御演算装置におい
て、 位置を制御するC軸モード時に、誘導電動機の二次磁束
を強め固定磁束として励磁分電流を得ることを特徴とす
る誘導電動機のベクトル制御演算装置。
[Claims] In a vector control calculation device that separates and controls a primary current given to an induction motor into a torque component current and an excitation component current, the secondary magnetic flux of the induction motor is controlled in a C-axis mode for position control. A vector control calculation device for an induction motor, characterized in that an excitation component current is obtained as a strong fixed magnetic flux.
JP63094579A 1988-04-19 1988-04-19 Vector control arithmetic unit for induction motor Pending JPH01268478A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63094579A JPH01268478A (en) 1988-04-19 1988-04-19 Vector control arithmetic unit for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63094579A JPH01268478A (en) 1988-04-19 1988-04-19 Vector control arithmetic unit for induction motor

Publications (1)

Publication Number Publication Date
JPH01268478A true JPH01268478A (en) 1989-10-26

Family

ID=14114193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63094579A Pending JPH01268478A (en) 1988-04-19 1988-04-19 Vector control arithmetic unit for induction motor

Country Status (1)

Country Link
JP (1) JPH01268478A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150090A (en) * 1989-11-02 1991-06-26 Fanuc Ltd Control system for spindle motor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348183A (en) * 1986-08-15 1988-02-29 Fanuc Ltd Driving mode change-over mechanism for induction motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6348183A (en) * 1986-08-15 1988-02-29 Fanuc Ltd Driving mode change-over mechanism for induction motor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150090A (en) * 1989-11-02 1991-06-26 Fanuc Ltd Control system for spindle motor

Similar Documents

Publication Publication Date Title
JP4235233B2 (en) Electric motor control device
WO1998042070A1 (en) Apparatus and method for controlling induction motor
US5196778A (en) Control apparatus suitable for use in induction motor
US5386186A (en) Stator flux oriented control
JPH0344508B2 (en)
JPH1198900A (en) Current controller for power converter
JPH01268478A (en) Vector control arithmetic unit for induction motor
JP2734095B2 (en) Motor control device
JP2004187460A (en) Inverter control device, induction motor control device, and induction motor system
JP2856564B2 (en) Control device for synchronous motor
JP3513413B2 (en) Induction motor control device
JPS63316687A (en) Vector controlling arithmetic device for induction motor
JP2527161B2 (en) Vector control arithmetic unit for electric motor
JP3322088B2 (en) Induction motor control device
JPS6412194B2 (en)
JPH0213555B2 (en)
JPS63133886A (en) Controller for ac motor
JPS6244089A (en) Induction motor driver
JPS62239888A (en) Control unit for ac motor
JPS61189193A (en) Induction motor drive controller
JPH0510037B2 (en)
JPS6226271B2 (en)
JPS62260593A (en) Output voltage detection system for pwm inverter
JPH0344511B2 (en)
JPH0510034B2 (en)