JPH01268450A - Seawater pump - Google Patents

Seawater pump

Info

Publication number
JPH01268450A
JPH01268450A JP9359688A JP9359688A JPH01268450A JP H01268450 A JPH01268450 A JP H01268450A JP 9359688 A JP9359688 A JP 9359688A JP 9359688 A JP9359688 A JP 9359688A JP H01268450 A JPH01268450 A JP H01268450A
Authority
JP
Japan
Prior art keywords
conduit
magnetic field
electrode plates
seawater
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9359688A
Other languages
Japanese (ja)
Inventor
Kanji Sakai
酒井 寛二
Satohiro Kubo
久宝 聡博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP9359688A priority Critical patent/JPH01268450A/en
Publication of JPH01268450A publication Critical patent/JPH01268450A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To omit a movable part and to facilitate maintenance by arranging a pair of electrode plates and a superconductive magnet within an underwater cylindrical conduit to form a pump. CONSTITUTION:A pair of flat electrode plates 1 are arranged so as to face in parallel and connected with DC power 3 via lead wires 2. Also, a magnetic field generating means 4 generating said magnetic field in the direction perpendicular to both electrode plates 1 is arranged between said electrode plates 1. Said generating means 4 is composed of a superconducting coil 5 and an apparatus for passing the electric current of said coil 5. Further, respective parts arranged in said given positional relation are inserted into a cylindrical conduit 8. In this case, both end openings of the conduit 8 are positioned in the direction perpendicular to both of the line connecting the both electrode plates 1 (direction of electric field) and the longitudinal direction of the winding shaft (direction of the magnetic field) of superconducting coil. Thus, when electric current flows through said pair of electrode plates 1, it is possible to send the seawater into the conduit.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、海水の汲上げや移動等に使用される海水用ポ
ンプに関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a seawater pump used for pumping up or moving seawater.

(従来の技術) 例えば、海底に溜っている栄養塩類を表層に持ち上げ光
合成作用による植物プランクトンの繁殖を促し、新しい
漁場を作る場合、海底の低温海水を表層の高温域に持ち
上げ温度差により対流を生じさせ発電を行う場合、ある
いは養魚場の海水を外洋の海水と入れ替える場合等にお
いて、従来は、自然の湧昇流を利用するか、機械式ポン
プにより海水の吸上げ、移動を行わざるを得なかった。
(Conventional technology) For example, when creating a new fishing area by lifting nutrients accumulated on the seabed to the surface layer and promoting the proliferation of phytoplankton through photosynthesis, the low-temperature seawater on the seabed is brought to the high-temperature region on the surface layer and convection is created by the temperature difference. Conventionally, in cases such as generating electricity by generating electricity from fish farms, or replacing seawater in a fish farm with seawater from the open ocean, it was necessary to use natural upwelling currents or to suck up and move seawater with mechanical pumps. There wasn't.

ところで、近年、水産資源の見直しの気運が高まり、海
洋開発が活発化している中で、湧昇流を人工的に発生さ
せる研究が頻発している。
Incidentally, in recent years, as there has been a growing trend to review fishery resources and ocean development has become more active, research into artificially generating upwelling currents has been occurring frequently.

例えば、海底にコンクリートブロックを並べて人工海底
山脈を作ったり、あるいは衝立型の構造物を並べて湧昇
流発生礁を作り、海底から海面に上昇して行く海流の流
れ、すなわち湧昇流を人工的に発生させるものである。
For example, by lining up concrete blocks on the ocean floor to create an artificial submarine mountain range, or by lining up screen-type structures to create upwelling reefs, the flow of ocean currents that rise from the ocean floor to the sea surface, that is, upwelling currents, can be artificially created. It is generated in

このとき、ブロックや衝立の形状を工夫して大きな渦流
を伴なう湧昇流とすることもできる。
At this time, it is also possible to create an upwelling flow accompanied by a large vortex by devising the shape of the blocks and screens.

(発明が解決しようとする課題) しかしながら、上記したように機械式ポンプで湧昇流を
発生させたり、海水の汲上げ、移動を行う方式では、効
率上の問題がある。
(Problems to be Solved by the Invention) However, as described above, the method of generating an upwelling flow or pumping up and moving seawater with a mechanical pump has problems in terms of efficiency.

すなわち、機械式ポンプは原動機の回転力を推力とする
ため、原動機に供給されるエネルギーの高々60%程度
しか利用することができない。
That is, since mechanical pumps use the rotational force of the prime mover as thrust, they can utilize only about 60% of the energy supplied to the prime mover at most.

しかも、この原動機の回転により大きな騒音や振動の発
生がある。
Moreover, the rotation of this prime mover generates large noise and vibrations.

従って、機械式ポンプの場合、海水を大量に汲上げたり
、移動させることが困難であった。
Therefore, in the case of mechanical pumps, it is difficult to pump up or move large amounts of seawater.

一方、コンクリートブロックや衝立型構造物を並べて湧
昇流を発生させる方式では、これらのブロックや構造物
の原材料の選定や確保上問題がある。
On the other hand, the method of generating upwelling flow by lining up concrete blocks or screen-type structures has problems in selecting and securing raw materials for these blocks and structures.

すなわち、海底で長期間安定して使用でき、しかも周辺
海域の生物に悪影響を及ぼさない材料を選定し、かつ大
量を確保しなければならない。
In other words, it is necessary to select a material that can be used stably for a long period of time on the seabed and that does not have a negative impact on living things in the surrounding sea area, and to secure a large quantity.

現在、この材料として石炭火力発電所から排出される石
炭灰が候補として上げられている。しかし、この石炭灰
を上記要件(海底での長期間の安定使用、海域生物への
悪影響なし)を満たすべく硬化させる実用的技術が未だ
確立していない。
Coal ash discharged from coal-fired power plants is currently being considered as a candidate for this material. However, no practical technology has yet been established to harden this coal ash to meet the above requirements (stable use on the seabed for a long time, no adverse effects on marine life).

本発明は、以上の諸点に鑑みてなされたもので、その目
的とするところは、機械式ポンプや、ブロックや衝立等
の構造物に代えて、電気的なエネルギーで大量の海水の
汲上げや移動、あるいは湧昇流の発生等を行うことので
きる海水用ポンプを提供することにある。
The present invention has been made in view of the above points, and its purpose is to pump up large amounts of seawater using electrical energy instead of mechanical pumps and structures such as blocks and screens. An object of the present invention is to provide a seawater pump that can move or generate an upwelling flow.

(課題を解決するための手段) 上記目的を達成するために、本発明に係る海水用ポンプ
では、海中の所定位置に配置された筒状の導管の内部に
、該導管の径方向略対向位置に一対の電極板を配設する
とともに、超電導磁石からなる磁界発生手段を配設し、
該磁界発生手段により生じる磁界の向きが該導管の径方
向であって、かつ該電極板と略直交する方向となるよう
にした。
(Means for Solving the Problems) In order to achieve the above object, the seawater pump according to the present invention has a cylindrical conduit placed at a predetermined position in the sea, and a position substantially opposite in the radial direction of the conduit. A pair of electrode plates is disposed in the magnetic field, and a magnetic field generating means consisting of a superconducting magnet is disposed.
The direction of the magnetic field generated by the magnetic field generating means is in the radial direction of the conduit and in a direction substantially orthogonal to the electrode plate.

(作 用) まず、1対の電極に電流を流すと導管の直径方向に電界
が生じる。このとき、磁界発生手段にて所定方向の磁界
を生じさせると、導管内の海水が押出される。
(Function) First, when a current is passed through a pair of electrodes, an electric field is generated in the diameter direction of the conduit. At this time, when the magnetic field generating means generates a magnetic field in a predetermined direction, the seawater in the conduit is pushed out.

すなわち、海水中のイオンは上記の電界によって力を受
けて移動し、この移動するイオンが上記の磁界によって
力を受ける。これらの力の合力(ローレンツ力)により
導管内の海水は、ローレンツ力の方向(電界と磁界の両
者に直交する方向)に押出される。
That is, ions in seawater move under the force of the above-mentioned electric field, and these moving ions receive a force due to the above-mentioned magnetic field. The resultant force of these forces (Lorentz force) pushes the seawater in the conduit in the direction of the Lorentz force (a direction perpendicular to both the electric field and the magnetic field).

(実 施 例) 以下、本発明の好適な実施例について添付図面を参照に
して説明する。
(Embodiments) Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

まず、第1図に基づいて本発明の基本構成並びにその動
作原理について説明する。同図に示すように、平板状の
一対の電極板1,1を略平行に対向配置する。そして、
それら画電極板1,1はリード線2を介して直流電源3
に接続されている。
First, the basic configuration of the present invention and its operating principle will be explained based on FIG. As shown in the figure, a pair of flat electrode plates 1, 1 are arranged substantially parallel to each other. and,
These picture electrode plates 1, 1 are connected to a DC power source 3 via a lead wire 2.
It is connected to the.

また、画電極板1.1の中間には画電極と直交する方向
に磁界を発生させる磁界発生手段4が配設されている。
Further, a magnetic field generating means 4 for generating a magnetic field in a direction perpendicular to the picture electrode is disposed in the middle of the picture electrode plate 1.1.

この磁界発生手段4は、超電導コイル5と、この超電導
コイル5に所定方向の電流を流す装置(図示せず)とか
ら構成されている。
The magnetic field generating means 4 is composed of a superconducting coil 5 and a device (not shown) for passing a current in a predetermined direction through the superconducting coil 5.

そして、超電導コイル5は、画電極板1,1の対向面の
略中央位置同士を結ぶ線の垂直2等分線上の仮想線を巻
軸中心としている。
The superconducting coil 5 has its winding axis centered on an imaginary line on the perpendicular bisector of a line connecting substantially central positions of the opposing surfaces of the picture electrode plates 1, 1.

さらに、上記のように所定の位置関係に配置された各部
品を円筒状の導管8内に挿着されている。
Further, each component arranged in a predetermined positional relationship as described above is inserted into the cylindrical conduit 8.

このとき、画電極板1,1を結ぶ線(電界の向き)並び
に超電導コイル5の巻軸中心の方向(磁界の向き)の両
方と直交する方向に、導管8の両端開口部が位置するよ
うになっている。
At this time, the openings at both ends of the conduit 8 are positioned in a direction perpendicular to both the line connecting the picture electrode plates 1 and 1 (direction of the electric field) and the direction of the center of the winding axis of the superconducting coil 5 (direction of the magnetic field). It has become.

次にこの実施例における作用に付いて説明する。Next, the operation of this embodiment will be explained.

まず、電極板1,1間に直流電圧を印加して両者間に電
界を発生されるとともに、超電導コイル5に所定方向の
電流を通電して巻く軸中心線の方向に磁界を発生させる
。すると、電界の向きと磁界の向きの両方に直交する方
向、すなわち、導管8と略同一方向に力(ローレンツ力
)が発生する。
First, a DC voltage is applied between the electrode plates 1, 1 to generate an electric field therebetween, and a current is passed in a predetermined direction to the superconducting coil 5 to generate a magnetic field in the direction of the center line of the winding axis. Then, a force (Lorentz force) is generated in a direction perpendicular to both the direction of the electric field and the direction of the magnetic field, that is, in substantially the same direction as the conduit 8.

すると、その力によって導管8内の海水が付勢され、力
の方向に移動する。そして、この移動する方向は電界並
びに磁界の向きにより決定され、ある一方向に海水を移
動しているときに、それと逆方向に移動させるには、電
界または磁界の向きの内、一方の向きを変えれば良い。
Then, the seawater in the conduit 8 is urged by the force and moves in the direction of the force. The direction of this movement is determined by the directions of the electric and magnetic fields.If seawater is moving in one direction, in order to move it in the opposite direction, one of the directions of the electric field or the magnetic field must be changed. Just change it.

次に、本発明の具体的な適用例について説明する。Next, a specific example of application of the present invention will be described.

まず、第2図は湧昇流を発生させるために好適に用いら
れる海水ポンプを示している。同図に示すように、上記
した所定の部品が挿着された導管8を海底10上に支持
台12を介しモ装置する。
First, FIG. 2 shows a seawater pump suitably used to generate an upwelling flow. As shown in the figure, a conduit 8 into which the above-mentioned predetermined parts are inserted is placed on a seabed 10 via a support 12.

このとき、導管8の両開口部ga、 8bが上下に位置
する。すなわち、導管8が海底10と略垂直になるよう
に位置させる。
At this time, both openings ga and 8b of the conduit 8 are located above and below. That is, the conduit 8 is positioned so as to be substantially perpendicular to the seabed 10.

この状態から海水ポンプを作動させると、導管8内の海
水は、上記のローレンツ力により導管8の上方へ押出さ
れ、導管8の上端開口部から噴出する。この噴出に伴な
い、海水は、導管8の下端開口部から導管8内に吸引さ
れるため、海底10から海面14へ向かう海水の上昇流
(すなわち湧昇流)αが形成される。
When the seawater pump is operated from this state, the seawater in the conduit 8 is pushed upwards by the Lorentz force described above and is ejected from the upper end opening of the conduit 8. Accompanying this ejection, seawater is sucked into the conduit 8 from the lower end opening of the conduit 8, so that an upward flow (that is, an upwelling flow) α of seawater heading from the seabed 10 to the sea surface 14 is formed.

また、電界また磁界の向きを変えてローレンツ力が海面
14から海底10側へ向けて作用するようにすると、海
水は導管8の下端開口部から噴出し一旦海底10に衝突
した後反転し上昇流(すなわち湧昇流)βとなる。この
湧昇流βは海底10に沈漬している栄養塩類を浮上させ
、漁場全体に均一に分散させる。
Furthermore, if the direction of the electric field or magnetic field is changed so that the Lorentz force acts from the sea surface 14 toward the seabed 10 side, the seawater will eject from the lower end opening of the conduit 8, collide once with the seafloor 10, and then reverse and flow upward. (i.e. upwelling flow) becomes β. This upwelling flow β brings the nutrient salts submerged on the seabed 10 to the surface and disperses them uniformly over the entire fishing grounds.

第3図は温度差発電等に用いられる海水用ポンプを示し
ている。本例は第2図に示す例において、導管8をその
上端が海面14近傍部の温度差発電装置15に導かれる
ように延長させたものである。
Figure 3 shows a seawater pump used for temperature difference power generation, etc. In this example, the conduit 8 is extended in the example shown in FIG. 2 so that its upper end is guided to a temperature difference power generation device 15 near the sea surface 14.

図において、海底10の低温海水が導管8を通り、温度
差発電装置15に入り、海面14近傍の高温海水との、
温度差のエネルギーを利用して発電等が行われる。
In the figure, low-temperature seawater on the seabed 10 passes through conduit 8, enters temperature difference power generation device 15, and interacts with high-temperature seawater near sea surface 14.
Power generation is performed using energy from temperature differences.

第4図はさらに他の例を示すもので、本例は海水用ポン
プを導管8の軸線が海底10と平行となるように、海底
10に支持台12を介して配設し、かつ導管8を延長さ
せたものである。
FIG. 4 shows yet another example, in which a seawater pump is installed on the seabed 10 via a support 12 so that the axis of the conduit 8 is parallel to the seabed 10, and the conduit 8 is It is an extension of .

図において、導管8内の海水は延長された導管8の一端
から押出され、同時に導管8の他端から導管8内に吸引
され、海底10とほぼ平行な海水流δが形成される。
In the figure, seawater in the conduit 8 is pushed out from one end of the extended conduit 8 and simultaneously sucked into the conduit 8 from the other end, forming a seawater flow δ substantially parallel to the seabed 10.

従って、例えばこの海水用ポンプを外洋域に配置し、導
管8を養漁場まで延長させれば外洋域の栄養塩類を養漁
場まで移動させることができる。
Therefore, for example, if this seawater pump is placed in the open ocean and the conduit 8 is extended to the fishing grounds, nutrients in the open ocean can be moved to the fishing grounds.

なお、上記した実施例は磁界発生手段として超電導コイ
ルを1個用いたものについて説明したが、例えば電極板
の上下位置に超電導コイルを2個対向位置するようにし
ても良い。
Although the above-mentioned embodiment has been described using one superconducting coil as the magnetic field generating means, two superconducting coils may be placed oppositely above and below the electrode plate, for example.

また導管内に挿着する電極板と超電導コイルの組も1個
に限らず複数個設けても良い。
Furthermore, the number of sets of electrode plates and superconducting coils to be inserted into the conduit is not limited to one, but may be provided in a plurality.

さらに、一対の電極板に印加する電圧は上記した実施例
のように直流電圧に限らないのは言うまでもない。
Furthermore, it goes without saying that the voltage applied to the pair of electrode plates is not limited to a DC voltage as in the above embodiments.

(発明の効果) 以上詳述した本発明に係る海水用ポンプによれば、次の
ような効果を奏することができる。
(Effects of the Invention) According to the seawater pump according to the present invention described in detail above, the following effects can be achieved.

(1)可動部がないので、電極対、超伝導コイルに供給
される電力を有効に利用することができ、機械式ポンプ
に比し高速の噴流にすることができる。
(1) Since there are no moving parts, the electric power supplied to the electrode pair and superconducting coil can be used effectively, and a jet flow can be generated at a higher speed than that of a mechanical pump.

(2)可動部がないので、メンテナンスが容易である。(2) Maintenance is easy because there are no moving parts.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る海水用ポンプの一実施例を示す説
明図、第2図、第3図、第4図は第1図に示す海水用ポ
ンプの使用態様例を示す図である。 1・・・電極板      3・・・直流電源4・・・
磁界発生手段   5・・・超電導コイル8・・・導 
管     10・・・海 底12・・・支持台   
  14・・・海 面α、β・・・海水の湧昇流 δ・・・・・・海水流 特許出願人      株式会社 大 林 組代 理 
人      弁理士 −色 健 輔同       
 弁理士 松 本 雅 利第1図 第2図 ν 第3図 1ら 第4図 一一一一一一二一一一
FIG. 1 is an explanatory diagram showing an embodiment of the seawater pump according to the present invention, and FIGS. 2, 3, and 4 are diagrams showing examples of how the seawater pump shown in FIG. 1 is used. 1... Electrode plate 3... DC power supply 4...
Magnetic field generating means 5... superconducting coil 8... conductor
Pipe 10...Sea floor 12...Support stand
14...Sea level α, β...Sea water upwelling flow δ...Sea water current Patent applicant Obayashi Co., Ltd.
Person Patent Attorney - Ken Sukedo Iro
Patent Attorney Masatoshi Matsumoto Figure 1 Figure 2 ν Figure 3 1 and 4 Figures 111112111

Claims (1)

【特許請求の範囲】[Claims] 海中の所定位置に配置された筒状の導管の内部に、該導
管の径方向略対向位置に一対の電極板を配設するととも
に、超電導磁石からなる磁界発生手段を配設し、該磁界
発生手段により生じる磁界の向きが該導管の径方向であ
って、かつ該電極板と略直交する方向となるようにして
なることを特徴とする海水用ポンプ。
Inside a cylindrical conduit placed at a predetermined position in the sea, a pair of electrode plates are disposed at substantially opposite positions in the radial direction of the conduit, and a magnetic field generating means made of a superconducting magnet is disposed to generate the magnetic field. 1. A seawater pump characterized in that the direction of the magnetic field generated by the means is in the radial direction of the conduit and in a direction substantially orthogonal to the electrode plate.
JP9359688A 1988-04-18 1988-04-18 Seawater pump Pending JPH01268450A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9359688A JPH01268450A (en) 1988-04-18 1988-04-18 Seawater pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9359688A JPH01268450A (en) 1988-04-18 1988-04-18 Seawater pump

Publications (1)

Publication Number Publication Date
JPH01268450A true JPH01268450A (en) 1989-10-26

Family

ID=14086692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9359688A Pending JPH01268450A (en) 1988-04-18 1988-04-18 Seawater pump

Country Status (1)

Country Link
JP (1) JPH01268450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055985A (en) * 2019-12-20 2020-04-24 中国船舶重工集团公司七五0试验场 Ampere force-based buoyancy adjusting device of underwater suspension device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271794A (en) * 1985-09-24 1987-04-02 Nippon Zosen Shinko Zaidan Electromagnetic propulsion ship
JPS63249463A (en) * 1987-03-31 1988-10-17 Sumitomo Electric Ind Ltd Electromagnetic pump
JPS6426358A (en) * 1987-07-20 1989-01-27 Matsushita Electric Ind Co Ltd Superconducting pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6271794A (en) * 1985-09-24 1987-04-02 Nippon Zosen Shinko Zaidan Electromagnetic propulsion ship
JPS63249463A (en) * 1987-03-31 1988-10-17 Sumitomo Electric Ind Ltd Electromagnetic pump
JPS6426358A (en) * 1987-07-20 1989-01-27 Matsushita Electric Ind Co Ltd Superconducting pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111055985A (en) * 2019-12-20 2020-04-24 中国船舶重工集团公司七五0试验场 Ampere force-based buoyancy adjusting device of underwater suspension device

Similar Documents

Publication Publication Date Title
CA2567065C (en) A machine and system for power generation through movement of water
US5136173A (en) Ocean wave energy conversion system
US6756695B2 (en) Method of and apparatus for wave energy conversion using a float with excess buoyancy
US8956103B2 (en) Hydroelectricity generating unit capturing marine wave energy and marine current energy
KR20090021145A (en) A machine and system for power generation through movement of water
US3783302A (en) Apparatus and method for converting wave energy into electrical energy
US20080238103A1 (en) Rigid structural array
WO2021196531A1 (en) Vertical axis magnetic suspension tidal stream energy power generation apparatus and method combined with offshore horizontal axis wind turbine tower
CN110344992A (en) Wave-power device and complementary combinations power supply unit for ocean data buoy
JPH01268450A (en) Seawater pump
KR20160029937A (en) Device for repelling aquatic creatures and array with the same
US4278743A (en) Generation of electrical energy
US11811289B2 (en) Ocean current and tidal power electric generator
CN109329149A (en) Self energizing mariculture equipment
KR20180104994A (en) Wave-force power generation system Using Linear Electric Generator
CN110318934B (en) Low-flow-velocity water body power generation device
US20160079834A1 (en) Low-maintenance cogless electric generator featuring magnetic levitation
CN104712491B (en) Water surface microwave power generation device
KR102397223B1 (en) Tornado wind and pumped complex powergeneration system
CN117060674B (en) Electromagnetic power generation device based on bionic fluctuation fin
DE3001732C2 (en) Device for generating electrical energy
CN112761853A (en) Platform spiral type wave power generation device
LV15625B (en) Magnetic accelerator "wileg"
JPS5692997A (en) Reforming of fuel oil
GB2051462A (en) Generation of electrical energy