JPH01267352A - Fuel injection valve - Google Patents

Fuel injection valve

Info

Publication number
JPH01267352A
JPH01267352A JP9661588A JP9661588A JPH01267352A JP H01267352 A JPH01267352 A JP H01267352A JP 9661588 A JP9661588 A JP 9661588A JP 9661588 A JP9661588 A JP 9661588A JP H01267352 A JPH01267352 A JP H01267352A
Authority
JP
Japan
Prior art keywords
valve body
needle valve
pressure
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9661588A
Other languages
Japanese (ja)
Inventor
Hiroshi Kanesaka
兼坂 弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanesaka Gijutsu Kenkyusho KK
Original Assignee
Kanesaka Gijutsu Kenkyusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanesaka Gijutsu Kenkyusho KK filed Critical Kanesaka Gijutsu Kenkyusho KK
Priority to JP9661588A priority Critical patent/JPH01267352A/en
Priority to GB8908419A priority patent/GB2230559A/en
Priority to FR8905296A priority patent/FR2633332A1/fr
Priority to DE19893912834 priority patent/DE3912834A1/en
Publication of JPH01267352A publication Critical patent/JPH01267352A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/20Closing valves mechanically, e.g. arrangements of springs or weights or permanent magnets; Damping of valve lift
    • F02M61/205Means specially adapted for varying the spring tension or assisting the spring force to close the injection-valve, e.g. with damping of valve lift

Abstract

PURPOSE:To lower the coefficient of fuel injection during the initial stage of combustion injection and to reduce the generation of noise, by a method wherein a pressure accumulating chamber is formed above a needle valve body pressed through the force of a spring and forced into contact with a valve seat, and a fuel passage connected to the valve seat is communicated to the pressure accumulating chamber through a throttle. CONSTITUTION:A lower part 4 of a valve body and a pressure accumulating chamber cover 5 are secured by threadely joining a nut body 3 with an upper part 2 of the valve body. The lower part 4 of the valve body is provided at its tip with an injection nozzle 7 and a valve seat 8, a fuel passage 9 a part of which forms a working chamber 11, a slide hole 10 in which a needle valve body 12 is slid. The needle valve body 12 is formed such that a slide part 13, a needle valve 14 freely capable of making contact with the valve seat 8, a small part 15, and a push rod 16 are formed integrally. A pressure accumulating chamber 18 is formed between an upper end 13a of the slide part 13 of the needle valve body 12 and a lower end 15a of the pressure accumulating chamber cover 5, and is communicated to the working chamber 11 through a throttle groove 19. The needle valve body 12 is pressed downward through a seat 20 through the force of a spring 21. The fuel passage 9 is connected to a fuel injection pump through fuel passages 22 and 23.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、燃料噴射率を可変としたディーゼルエンジン
用燃料噴射弁するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention provides a fuel injection valve for a diesel engine in which the fuel injection rate is variable.

(従来の技術) 一般に良く知られたディーゼルエンジン用燃料噴射弁は
自動弁であり、第5図に示すよう?こ弁本体101内下
部にあけた摺動孔102に先端針弁104が噴口106
付近の弁座107に接する針弁体103を設け、これを
シート109を介して弁ばね108にて下方に押圧する
ようにしたものである。
(Prior Art) A generally well-known fuel injection valve for diesel engines is an automatic valve, as shown in Fig. 5. A tip needle valve 104 is attached to a nozzle 106 in a sliding hole 102 drilled in the lower part of the valve body 101.
A needle valve body 103 is provided in contact with a nearby valve seat 107, and this is pressed downward by a valve spring 108 via a seat 109.

通路110に流入し、針弁体103の受圧部105の下
端に加わった燃料油の圧力Pに上り針弁体103を押し
上げようとし、面積(x−y)X圧力Pの力が前記ばね
108が針弁体+03を押し下げようとする力を越える
と、針弁体103は上方に移動して、針弁104が弁座
107から離れて開弁し、噴口106から燃料油が噴射
される。
The pressure P of the fuel oil flowing into the passage 110 and applied to the lower end of the pressure receiving part 105 of the needle valve body 103 rises and tries to push up the needle valve body 103, and the force of the area (x-y) x pressure P is applied to the spring 108. When the force exceeds the force pushing down the needle valve body +03, the needle valve body 103 moves upward, the needle valve 104 separates from the valve seat 107 and opens, and fuel oil is injected from the nozzle 106.

これにより、針弁体103の受圧面積が(x−y)から
Cx)へと増大し、燃料油の圧力は針弁体+03の下面
にも掛かるので、針弁体103を上方に押しあげる力は
増大して、前記摺動孔上端10Jaに針弁体103の上
端103aが衝突するまで急速に上昇する。
As a result, the pressure receiving area of the needle valve body 103 increases from (x-y) to Cx), and the pressure of the fuel oil is also applied to the lower surface of the needle valve body +03, so there is a force pushing the needle valve body 103 upward. increases and rapidly rises until the upper end 103a of the needle valve body 103 collides with the upper end 10Ja of the sliding hole.

これを第6図により説明すると、同図AないしDは各々
時間を横軸にとって、同図Aは縦軸に燃料噴射ポンプか
ら燃料通路110内への送油による通路内圧力の変化を
、同図Bは燃料通路内圧力により針弁体103を押し上
げる力とばね108により針弁体103を押し下げる力
を、同図Cは針弁体103の揚程を、さらに同図りは燃
料噴射率の変化を各々示している。
To explain this with reference to FIG. 6, the horizontal axis in FIGS. 6A to 6D is time, and the vertical axis in FIG. Figure B shows the force pushing up the needle valve element 103 due to the pressure inside the fuel passage and the force pushing down the needle valve element 103 by the spring 108, Figure C shows the lift of the needle valve element 103, and the same figure shows the change in fuel injection rate. Each is shown.

前記の如く燃料噴射ポンプからの送油によって燃料通路
内圧力はPoよりP、Jこ向かって上昇し、この圧力が
前記のように針弁体103の受圧部103aに加わる。
As described above, the pressure inside the fuel passage increases from Po toward P and J due to oil feeding from the fuel injection pump, and this pressure is applied to the pressure receiving portion 103a of the needle valve body 103 as described above.

このときの受圧面積は(x−y)であるから、針弁体1
03を押し上げる力F1はP+X(x  y)である。
Since the pressure receiving area at this time is (x-y), the needle valve body 1
The force F1 that pushes up 03 is P+X(x y).

一方、ばね108が針弁体103を押し下げる力はF、
となるように設定しであるので、通路内圧力がP、より
高まれば、針弁体103はばね108の押し下げる力F
、に抗して上昇する。このとき針弁104の下面にもP
lなる圧力が加わり、針弁体103を押し上げる力はF
t=P+xxと急激に増大し、針弁体103を急加速し
、その上端が摺動孔102の上端10JFaに衝突する
まで、針弁体103のり。からり、までの揚程は急速に
行われる。ここで、時間差T。とT、は針弁体の質量に
よる加速遅れによるものである。
On the other hand, the force of the spring 108 pushing down the needle valve body 103 is F,
Therefore, if the pressure inside the passage becomes higher than P, the needle valve body 103 will be pushed down by the force F of the spring 108.
, rises against. At this time, P is also applied to the lower surface of the needle valve 104.
When a pressure of l is applied, the force pushing up the needle valve body 103 is F
The needle valve body 103 increases rapidly as t=P+xx, rapidly accelerating the needle valve body 103 until its upper end collides with the upper end 10JFa of the sliding hole 102. The lifting up to Karari is carried out rapidly. Here, the time difference T. and T are due to acceleration delays due to the mass of the needle valve body.

上記針弁体】03の揚程によってばね108の押し下げ
る力は、FlからF3と増大するが、このとき針弁体1
03を押し下げる力は第6図Bの実線に示す如く、ばね
108による押し下げ力F3より大きく、針弁体103
は全揚程を保つ。
The downward force of the spring 108 increases from Fl to F3 due to the lifting height of the needle valve body 03, but at this time the needle valve body 1
As shown by the solid line in FIG.
maintains the total head.

燃料の噴射路わりに近づくと、通路110内の圧力はP
、となり、このとき針弁体103を押し上げる力F3は
F3=P!XXとばね108が針弁体103を押し下げ
る力F、とが等しくなる。
When approaching the fuel injection path, the pressure inside the passage 110 becomes P.
, and at this time, the force F3 pushing up the needle valve body 103 is F3=P! XX and the force F with which the spring 108 pushes down the needle valve body 103 become equal.

燃料通路内圧力の低下とともに、針弁体103はばね1
08の力によって押し下げられ、時間T、で圧カガP、
になると、針弁体103を押し上げる力はF+=PsX
xで前記F、以下となり、針弁体103の揚程は、Lo
となって針弁は閉じる。
As the pressure inside the fuel passage decreases, the needle valve body 103 releases the spring 1.
It is pushed down by the force of 08, and at time T, the pressure force P,
Then, the force pushing up the needle valve body 103 is F+=PsX
x is equal to or less than the above F, and the lift height of the needle valve body 103 is Lo
The needle valve closes.

従って、針弁104の閉弁時の燃料通路内圧力P3はP
 + / xとなり、開弁時の圧力P1はP + = 
F +/ x −yより低くなり、閉弁時の燃料噴射率
を低下させる。
Therefore, the fuel passage internal pressure P3 when the needle valve 104 is closed is P
+ / x, and the pressure P1 when the valve opens is P + =
It becomes lower than F +/x −y, lowering the fuel injection rate when the valve is closed.

実際には、ばね108は質量をもった針弁体■03を加
速して閉弁することとなり、閉弁は時間T、ではなく、
加速遅れを生じ、時間T、で行われ、この加速遅れの間
に燃料通路110内の圧力は更にP4と低下するのであ
る。従って、燃料通路内圧力に比例する前記燃料噴射率
は第6図りに示すように燃料の噴射路わりでは必然的に
小さくなるのである。
In reality, the spring 108 accelerates the needle valve body ■03, which has mass, to close the valve, and the valve closes not at time T, but at
An acceleration delay occurs, which takes place at a time T, and during this acceleration delay, the pressure within the fuel passage 110 further decreases to P4. Therefore, the fuel injection rate, which is proportional to the pressure inside the fuel passage, inevitably becomes smaller near the fuel injection path, as shown in Figure 6.

(発明が解決しようとする問題点) ところが、噴射始めに高い燃料噴射率で噴射された燃料
は、ディーゼルエンジンの燃焼室内において急激に燃焼
して圧力上昇率を高め、いわゆるディーゼルノックによ
る燃焼騒音を発生するとともに、燃焼最高圧力の上昇と
、これに伴う燃焼温度の上昇をもたらし、これにより有
害なNOXを生成し易くなる。
(Problem to be solved by the invention) However, the fuel injected at a high fuel injection rate at the beginning of injection burns rapidly in the combustion chamber of a diesel engine, increasing the rate of pressure rise and causing combustion noise caused by so-called diesel knock. This causes an increase in the maximum combustion pressure and an accompanying increase in the combustion temperature, making it easier to generate harmful NOX.

又、噴射路わりにおける燃料噴射率の低下とこれによる
燃料噴射時間の増大、並び?こ噴射圧力の低下による燃
料噴霧の粗大化は、いわゆる後燃え現象を発生し、この
不完全燃焼による有害な黒煙、C01HCの発生の原因
となるばかりでなく、熱効率を低下させている。
Also, is there a decrease in the fuel injection rate around the injection path and an increase in the fuel injection time due to this? This coarsening of the fuel spray due to the decrease in injection pressure causes a so-called afterburning phenomenon, which not only causes the generation of harmful black smoke and CO1HC due to incomplete combustion, but also reduces thermal efficiency.

これに対し、針弁体103の質量を軽減して前記加速遅
れを短縮させることも行われているが、根本的な性能改
善に到っていない。
In response to this, attempts have been made to reduce the mass of the needle valve body 103 to shorten the acceleration delay, but this has not resulted in a fundamental performance improvement.

本発明は上記に鑑み、燃料噴射弁において、燃料噴射初
めの燃料噴射率を低く、且つ噴射路わりの燃料噴射率を
高め、併せて燃料噴射期間を短縮させ、前記NOX、G
O及びHCの減少と熱効率の向上を目的として発明され
たものである。
In view of the above, the present invention provides a fuel injection valve that lowers the fuel injection rate at the beginning of fuel injection, increases the fuel injection rate around the injection path, and shortens the fuel injection period, thereby reducing the NOx, G and
It was invented for the purpose of reducing O and HC and improving thermal efficiency.

(問題点を解決するための手段) 前記目的を達成するため、本発明燃料噴射弁は、弁体下
部4にあけた摺動孔lOに、針弁14が噴ロア付近の弁
座8に接し、上端をばね21により下方に押圧される針
弁体12を配設し、且つ該針弁体12の上方に蓄圧室1
2を形成し、該蓄圧室!2に前記弁座8に通ずる燃料通
路2’3,22゜9を絞り19.27を介して連通した
ことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the fuel injection valve of the present invention has a sliding hole 10 formed in the lower part 4 of the valve body, in which the needle valve 14 contacts the valve seat 8 near the injection lower part. , a needle valve body 12 whose upper end is pressed downward by a spring 21 is disposed, and a pressure accumulation chamber 1 is disposed above the needle valve body 12.
2, the pressure accumulation chamber! 2, the fuel passage 2'3, 22.9 communicating with the valve seat 8 is communicated via a throttle 19.27.

(作 用) 上記構成により、燃料噴射初めの燃料通路内圧力の上昇
による開弁時には、針弁体12の揚程により蓄圧室18
内の燃料を圧縮して圧力を高め、これによって針弁体1
2の開弁速度を下げ、燃料噴射率を低下させる。そして
、エンジンの燃焼室内においては燃焼初期の熱発生率を
下げ、燃焼圧力の上昇率を低下せしめる。
(Function) With the above configuration, when the valve opens due to an increase in the pressure inside the fuel passage at the beginning of fuel injection, the lift of the needle valve body 12 causes the pressure accumulation chamber 18 to
The fuel inside is compressed to increase the pressure, which causes the needle valve body 1 to
2, the valve opening speed is lowered and the fuel injection rate is lowered. In the combustion chamber of the engine, the rate of heat generation at the initial stage of combustion is lowered, and the rate of increase in combustion pressure is lowered.

燃料噴射路わりの閉弁時には、蓄圧室内圧力は絞り19
.27を通じて燃料通路内圧力によって高められており
、これが針弁体12の上端に加わって、ばね2Iと協動
して針弁体12の針弁■4が弁座8に接して閉弁させる
。 上記閉弁開始時の燃料通路内圧力は、開弁終了時の
より6高くなり、閉弁終了時の燃料通路内圧力を高める
ことによって、燃料噴射路わりにおいて噴ロアから噴射
される噴霧の粒径を小さくし、ディーゼルエンジンにお
ける燃焼状態が改善される。又、これとともに、閉弁時
における高圧噴射は、燃料噴射率を高めて後燃えを回避
させ、黒煙、CO及びHCの排出量を減少せしめ、更に
サバナサイクルの等容度を高めることになり、ディーゼ
ルエンジンの熱効率が改善される。
When the valve near the fuel injection path is closed, the pressure in the pressure accumulator is restricted to 19.
.. The pressure inside the fuel passage is increased through 27, and this pressure is applied to the upper end of the needle valve body 12, and in cooperation with the spring 2I, the needle valve 4 of the needle valve body 12 contacts the valve seat 8 and closes. The pressure inside the fuel passage at the time of the start of valve closing is 6 higher than that at the end of valve opening, and by increasing the pressure inside the fuel passage at the end of valve closing, the spray particles injected from the injection lower near the fuel injection path are By reducing the diameter, combustion conditions in diesel engines are improved. In addition, high-pressure injection when the valve is closed increases the fuel injection rate to avoid afterburning, reduces black smoke, CO, and HC emissions, and further increases the isovolume of the Savana cycle. , the thermal efficiency of diesel engines is improved.

(実施例) 以下本発明の実施例を図面に基づいて詳細に説明する。(Example) Embodiments of the present invention will be described in detail below based on the drawings.

とは本発明燃料噴射弁の弁体で、弁体上部2と、これに
ねじ結合するナツト体3と、該ナツト体3内に装入され
た弁体下部4及び蓄圧室カバー5と、前記弁体上部2に
ねじ結合するストッパ6とからなる。
refers to the valve body of the fuel injection valve of the present invention, which includes an upper valve body 2, a nut body 3 screwed to this, a lower valve body 4 inserted into the nut body 3, and a pressure accumulator cover 5; It consists of a stopper 6 that is screwed to the upper part 2 of the valve body.

前記弁体下部4には、先端に噴ロア及びこれに接近して
弁座8を形成し、該弁座8に通ずる燃料通路9をあける
とともに、軸心には後記針弁体I2が摺動する摺動孔l
Oがあけられている。なお、前記燃料通路9における前
記弁座8の手前付近は、水平方向に拡大して作用室11
を構成している。
The lower part 4 of the valve body has an injection lower at its tip and a valve seat 8 formed close to this, and a fuel passage 9 communicating with the valve seat 8 is formed, and a needle valve body I2 described later slides on the axis. Sliding hole l
O is open. Note that the vicinity of the fuel passage 9 in front of the valve seat 8 is expanded in the horizontal direction to form an action chamber 11.
It consists of

前記針弁体12は、断面積A+の摺動部13の下方に一
体的に前記弁座8に接する断面積A、の針弁14を形成
し、またその上方に断面積A、の小径部15及び押し棒
16を、これも一体的に設けてなるものである。
The needle valve body 12 integrally forms a needle valve 14 with a cross-sectional area A in contact with the valve seat 8 below a sliding portion 13 with a cross-sectional area A+, and has a small diameter portion with a cross-sectional area A above it. 15 and push rod 16 are also integrally provided.

上記針弁体12は、前記摺動部13を前記弁体下部4の
摺動孔10に、又前記小径部15を前記蓄圧室カバー5
の軸心にあけた止まり孔17に各々嵌入され、前記針弁
14が弁座8に接したとき、前記針弁体12の摺動部1
3の上端13aと、前記蓄圧室カバー5の下端5aとの
間に、蓄圧室18を形成している。なお、19は前記摺
動部I3の側面に形成された絞り溝で、前記作用室11
と蓄圧室18を連結するものである。
The needle valve body 12 has the sliding part 13 in the sliding hole 10 of the lower part 4 of the valve body, and the small diameter part 15 in the pressure accumulator cover 5.
When the needle valve 14 contacts the valve seat 8, the sliding portion 1 of the needle valve body 12
A pressure accumulation chamber 18 is formed between the upper end 13a of the pressure accumulation chamber cover 5 and the lower end 5a of the pressure accumulation chamber cover 5. Note that 19 is a throttle groove formed on the side surface of the sliding portion I3, which
The pressure storage chamber 18 is connected to the pressure storage chamber 18.

針弁体12の前記押し棒16の上端はぐ前記弁体上部2
内でばねシート20を介して、該ばねシート20と前記
ストッパ6の間に設置されたばね21により下方に押圧
する力を受け、前記針弁14を首記弁座8に圧接してい
る。
The upper end of the push rod 16 of the needle valve body 12 is removed from the valve body upper part 2.
Inside, the needle valve 14 is pressed against the valve seat 8 by a downward pressing force from a spring 21 installed between the spring seat 20 and the stopper 6 via the spring seat 20.

22は前記蓄圧室カバー5にあけられた燃料通路で、前
記弁体上部4にあけた燃料通路9及び前記弁体上KS2
に形成された燃料通路23に通じ、該燃料通路23は燃
料噴射ポンプ(図示せず)に連絡されている。なお、2
4は前記ストッパ6にあけたリーク孔である。
Reference numeral 22 denotes a fuel passage opened in the pressure accumulator cover 5, which connects the fuel passage 9 opened in the upper part 4 of the valve body and the upper part of the valve body KS2.
The fuel passage 23 is connected to a fuel injection pump (not shown). In addition, 2
4 is a leak hole made in the stopper 6.

次に上記実施例の作動を説明する。Next, the operation of the above embodiment will be explained.

燃料噴射ポンプ(図示せず)からの燃料が前記燃料通路
23.22および9に流入すると、燃料通路内圧力は第
2図P0から上昇し始める。このとき作用室11に絞り
溝19を介して通じた蓄圧室18内の圧力もPoで、該
蓄圧室18内の圧力上昇率は上記絞りWIt19のため
、第2図点線のようにPoPtと低い。
When fuel from a fuel injection pump (not shown) flows into the fuel passages 23, 22 and 9, the pressure in the fuel passages begins to rise from P0 in FIG. At this time, the pressure in the pressure accumulation chamber 18 that communicates with the action chamber 11 via the throttle groove 19 is also Po, and the rate of pressure increase in the pressure accumulation chamber 18 is as low as PoPt as shown by the dotted line in Figure 2 due to the above-mentioned throttle WIt19. .

燃料通路内圧力がP、に達すると、第2図Bに示すf 
+= P +X (A +  A3)なる力で、ばねの
力fl−f!と蓄圧室18内圧力r t−P t X 
(A +−A3)なる力に抗して針弁14を開弁じよう
とし、P、を超えると針弁14は弁座8から離れて開弁
し、噴ロアから燃料の噴射を開始する。
When the pressure inside the fuel passage reaches P, f shown in FIG. 2B
+= P +X (A + A3), the spring force fl-f! and the pressure inside the pressure storage chamber 18 r t-P t
The needle valve 14 attempts to open against a force of (A + - A3), and when the force P exceeds, the needle valve 14 separates from the valve seat 8 and opens, and fuel injection from the injection lower begins.

開弁と同時に針弁体12の受圧面積は(A I−八、)
からA、に増大し、これにより針弁体12を押し上げよ
うとする力は、第2図Bのfs−P+xA、と増大し、
この力f、によって針弁体I2の上昇を加速し、速度を
早めながらり。−tlの期間において1゜−1,にまで
揚程を高めるのである。
At the same time as the valve opens, the pressure receiving area of the needle valve body 12 is (A I-8,)
The force that tries to push up the needle valve body 12 increases to fs-P+xA in FIG. 2B,
This force f accelerates the upward movement of the needle valve element I2, increasing its speed. During the period -tl, the head is increased to 1°-1.

上記針弁体I2の揚程増加とともに、蓄圧室I8内の燃
料は圧縮され、該蓄圧室18内の圧力は第2図Aにおい
てP?  P3  P4と順次高まり、揚程途中(時間
t2JのP3の圧力では、P+X(A、−A3)+ばね
21の力 f 4 ” f s =P s X A I
となり、蓄圧室18内圧力の上昇によって針弁体12の
揚程の増加は制限される。このときの針弁体12の揚程
は第2図Cの1.で、燃料通路内圧力がP、に達するま
での燃料噴射率は燃料通路内圧力と、針弁体12の揚程
も小さいので゛、第2図りにおけるro−rlに示され
るように低い。
As the lift of the needle valve element I2 increases, the fuel in the pressure accumulator chamber I8 is compressed, and the pressure in the pressure accumulator chamber 18 becomes P? in FIG. 2A. P3 P4 increases sequentially, and in the middle of the lift (at the pressure of P3 at time t2J, P + X (A, -A3) + force of the spring 21 f 4 ” f s = P s X A I
Therefore, the increase in the lift of the needle valve body 12 is limited by the increase in the pressure inside the pressure storage chamber 18. The lifting height of the needle valve body 12 at this time is 1.C in FIG. The fuel injection rate until the fuel passage pressure reaches P is low as shown by ro-rl in the second diagram because the fuel passage pressure and the lift of the needle valve body 12 are small.

更に、燃料通路内圧力が高まると、蓄圧室18内の燃料
とばね21は更に圧縮され、時間t、では p e X
 A I = r e = p 4x (A I −A
 3 )十ばね21の力 f7なる状態となり、燃料通
路内圧力がPaを超えると、前記小径部15の上端15
aが止まり孔17の上端17aに接し、第2図Cの1、
以上に揚程を増加することはできない。
Furthermore, when the pressure inside the fuel passage increases, the fuel in the pressure accumulation chamber 18 and the spring 21 are further compressed, and at time t, p e
A I = r e = p 4x (A I - A
3) When the force f7 of the spring 21 is reached and the pressure inside the fuel passage exceeds Pa, the upper end 15 of the small diameter portion 15
a is in contact with the upper end 17a of the blind hole 17, and 1 in FIG.
It is not possible to increase the lift further than this.

燃料噴射率は第2図りに示されるように、時間jt  
jt間においてrl−rtと従来の燃料噴射弁と比較し
て低い。
The fuel injection rate is determined by the time jt as shown in the second diagram.
jt is lower than rl-rt and a conventional fuel injection valve.

この後、燃料通路内圧力は第2図Aに示すように更に高
まるので、針弁14を開弁じようとする力も第2図Bの
ように高まり、針弁I4は開弁を続けるが、蓄圧室18
には絞り溝19を通じて燃料通路9の作用室11内の高
圧の燃料が供給され、蓄圧室18内の圧力を高め続ける
After this, the pressure inside the fuel passage increases further as shown in Fig. 2A, so the force that tries to open the needle valve 14 also increases as shown in Fig. 2B, and the needle valve I4 continues to open, but the pressure builds up. room 18
High-pressure fuel in the working chamber 11 of the fuel passage 9 is supplied through the throttle groove 19 to continue increasing the pressure in the pressure accumulating chamber 18.

蓄圧室18内の圧力が上昇し続ける一方、燃料噴射終わ
りに近づき燃料通路内圧力が低下し始める。この過程に
おいて開弁じようとする力 f8−P ? X A l
と、閉弁しようとする力 P eX (A +−A、)
十ばね21の全揚程時の力 ft=faの両者が等しく
なるt3の時点で針弁14の開閉の力がバランスし、こ
れ以降、燃料通路内圧力の低下に伴ない針弁体12の揚
程は低下し続ける。これによりばね21が針弁体12を
押し下げるので、蓄圧室I8の体積は増大し、蓄圧室1
8内の圧力は低下し、針弁14を開こうとする力も低下
し続ける。
While the pressure within the pressure accumulation chamber 18 continues to rise, the pressure within the fuel passage begins to decrease as the end of fuel injection approaches. The force f8-P that tries to open the valve in this process? X A l
and the force that tries to close the valve P eX (A + - A,)
At time t3 when the force ft=fa at the full lift of the spring 21 becomes equal, the opening and closing forces of the needle valve 14 are balanced, and from then on, the lift of the needle valve body 12 decreases as the pressure inside the fuel passage decreases. continues to decline. As a result, the spring 21 pushes down the needle valve body 12, so the volume of the pressure accumulation chamber I8 increases, and the pressure accumulation chamber 1
The pressure within 8 decreases and the force trying to open needle valve 14 continues to decrease.

針弁14を開弁しようとする力P s x A + ”
 f eが、閉弁しようとする力P +oX (A I
A3)+ばね21の全閉時の力f+  fy=f*とが
バランスしたt4の時点で針弁14は閉じようとするが
、針弁14の質量によるt4 ts間の加速遅れを生じ
、t、の時点で閉弁する。この間に燃料通路内圧力はP
IIにまで低下する。しかしながら、この圧力PIIは
、前記蓄圧室18と絞り溝19の作用により従来公知の
ものに比較して極めて高く、燃料噴射終わりの期間にお
ける燃料噴霧の粒径を小さくするのみでなく、燃料噴射
率の向上゛を可能とした。
Force that tries to open the needle valve 14 P s x A + ”
The force P + oX (A I
The needle valve 14 tries to close at the time t4 when A3) + the force f when the spring 21 is fully closed + fy=f* is balanced, but the mass of the needle valve 14 causes an acceleration delay between t4 and ts, The valve closes at the point of . During this time, the pressure inside the fuel passage is P
It decreases to II. However, this pressure PII is extremely high compared to conventionally known pressure due to the action of the pressure accumulation chamber 18 and the throttle groove 19, and it not only reduces the particle size of the fuel spray in the period at the end of fuel injection, but also reduces the fuel injection rate. This made it possible to improve

燃料噴射終了後において、蓄圧室18内の燃料は燃料通
路内圧力の低下に応じて溢流し続け、第2図Aに示すよ
うに、t6の時点でPoと、燃料噴射開始以前の圧力に
まで低下し、次の燃料噴射に備える。
After the end of fuel injection, the fuel in the pressure accumulator 18 continues to overflow as the pressure inside the fuel passage decreases, and as shown in FIG. and prepare for the next fuel injection.

第3図、第4図に他の実施例を示すが、第1図と同一の
記号、符号のものは同一部品を表すものとして説明する
と、第3図のものでは、第1図における蓄圧室カバー5
がなく、弁体上部2が直接弁体下部4の上に接し、ナツ
ト体3により結合されている。又、針弁体12の小径部
15をなくし、且つ蓄圧室18は前記針弁体12の摺動
部13の上面と弁体上部2の下面2aの間、押し棒16
とその挿通孔25との間及び弁体上部2の中に形成され
た断面角ばね21’ とばねシート20の収納室26に
より形成されている。また、第1図における絞り溝19
に代わり、燃料通路23と前記挿通孔25との間に校り
27を形成している。
Other embodiments are shown in FIGS. 3 and 4, with the same symbols and symbols as in FIG. 1 representing the same parts. cover 5
The upper part 2 of the valve body is in direct contact with the lower part 4 of the valve body, and is connected by the nut body 3. In addition, the small diameter portion 15 of the needle valve body 12 is eliminated, and the pressure accumulation chamber 18 is located between the upper surface of the sliding portion 13 of the needle valve body 12 and the lower surface 2a of the valve body upper part 2, and the push rod 16
It is formed by a rectangular cross-section spring 21' formed between the insertion hole 25 and the valve body upper part 2, and a storage chamber 26 for the spring seat 20. In addition, the aperture groove 19 in FIG.
Instead, a gap 27 is formed between the fuel passage 23 and the insertion hole 25.

28は、ストッパ6に形成したリーク孔24にねじ結合
された空気抜き弁である。又、前記ストッパ6の中心に
突出部6aを形成し、針弁14が閉じているとき、ばね
シート20の上面との間に、針弁体12の摺動部13上
面13aと弁体上部2下面2aの間の距離より小さい、
針弁体12の全揚程時にのみ接する隙間dを設けている
28 is an air vent valve screwed to the leak hole 24 formed in the stopper 6. In addition, a protrusion 6a is formed at the center of the stopper 6, and when the needle valve 14 is closed, the upper surface 13a of the sliding portion 13 of the needle valve body 12 and the upper surface 20 of the valve body are formed between the upper surface of the spring seat 20 smaller than the distance between the lower surfaces 2a,
A gap d is provided that contacts only when the needle valve body 12 is at its full lift.

第4図に示す例は、ばね2Iが丸断面である以外、基本
的には第3図に示す例と同様であり、リーク孔19°に
ねじ29により進退するニードル弁30が挿入され、そ
の断面積を変化できるようになっているところが異なる
のみである。
The example shown in FIG. 4 is basically the same as the example shown in FIG. 3 except that the spring 2I has a round cross section, and a needle valve 30 that moves forward and backward by a screw 29 is inserted into the leak hole 19°. The only difference is that the cross-sectional area can be changed.

上記構成になる第3図、第4図の実施例では、燃料噴射
ポンプから送油されて燃料通路内圧力がPOからP、に
高まると、絞り27から燃料が供給されて蓄圧室18内
の圧力も第2図においてPoからP、と高まる。
In the embodiment shown in FIGS. 3 and 4 having the above configuration, when oil is supplied from the fuel injection pump and the pressure inside the fuel passage increases from PO to P, fuel is supplied from the throttle 27 and the pressure inside the pressure accumulation chamber 18 increases. The pressure also increases from Po to P in FIG.

開弁しようとする力は、第2図Bに示すf+−P +X
 (A +  At)で、摺動部13の上面の全面で蓄
圧室I8内の圧力を受け、蓄圧室18内圧力P tx 
A +なる力と、ばねの力f+  ftに抗して針弁I
4を開弁じようとする。燃料通路内圧力がPlを超える
と針弁14は弁座8から離れて開弁じ、噴ロアから燃料
の噴射を開始する。
The force trying to open the valve is f+-P +X shown in Figure 2B.
(A + At), the entire upper surface of the sliding part 13 receives the pressure in the pressure accumulation chamber I8, and the pressure inside the pressure accumulation chamber 18 P tx
The needle valve I resists the force A + and the force f + ft of the spring.
Trying to open 4. When the pressure inside the fuel passage exceeds Pl, the needle valve 14 moves away from the valve seat 8, opens, and starts injecting fuel from the injection lower.

開弁と同時に針弁体12の受圧面積は(A、−At)か
らA、に増大し、これにより針弁体12を押し上げよう
とする力は、第2図Bのf、=P、xA1と増大し、こ
の力f3によって針弁体12の上昇を加速しながら揚程
を高める。
At the same time as the valve opens, the pressure-receiving area of the needle valve body 12 increases from (A, -At) to A, and as a result, the force that tries to push up the needle valve body 12 is f, =P, xA1 in Fig. 2B. This force f3 increases the lifting height while accelerating the upward movement of the needle valve body 12.

−F記針弁体12の揚程増加とともに、蓄圧室18内の
燃料は圧縮されて圧力は第2図Aのように高まり、揚程
途中(時間11)のP3の圧力では、P 3 X A 
++ばね21の力 f4=fsが針弁14を開こうとす
る力 r〕、×△1 と等しくなり、針弁体12の揚程
の増加は制限される。
-F Note As the lift of the needle valve body 12 increases, the fuel in the pressure accumulator 18 is compressed and the pressure increases as shown in Fig. 2A, and at the pressure of P3 in the middle of the lift (time 11), P 3
The force f4=fs of the ++ spring 21 becomes equal to the force r],×Δ1 that attempts to open the needle valve 14, and the increase in the lift of the needle valve body 12 is limited.

更に、燃料通路内圧力が高まると、蓄圧室18内の燃料
とばね2Iは更に圧縮され、時間り、では P@×AI
=f6=P4XA1+ばね21の力f7となり、燃料通
路内圧力がP6を超えると、ばねシート20の上端はス
トッパ6の突出部6a下端と接して間隙dがゼロとなっ
て、第2図Cの1を以上に揚程を増加することはできな
い。
Furthermore, when the pressure inside the fuel passage increases, the fuel in the pressure accumulation chamber 18 and the spring 2I are further compressed, and after a while, P@×AI
= f6 = P4 The head cannot be increased beyond 1.

この後、燃料通路内圧力は第2図Aに示すように更に高
まるので、針弁14を開弁しようとする力も第2図Bの
ように高まり、針弁14は開弁を続けるが、蓄圧室18
には絞り27を通じて燃料通路23.22及び9内の高
圧の燃料が供給され、蓄圧室18内の圧力を高め続ける
After this, the pressure inside the fuel passage increases further as shown in Fig. 2A, so the force trying to open the needle valve 14 also increases as shown in Fig. 2B, and the needle valve 14 continues to open, but the pressure builds up. room 18
is supplied with high-pressure fuel in the fuel passages 23, 22 and 9 through the throttle 27, which continues to increase the pressure in the pressure accumulator 18.

蓄圧室18内の圧力が上昇し続ける一方、燃料噴射路わ
りに近づき燃料通路内圧力が低下し始めて、開弁しよう
とする力 f a= P tx A Iと、閉弁しよう
とする力 P 、X A 、+ばね2Iの全揚程時の力
 f、−f、の両者が等しくなるt3の時点で針弁14
の開閉の力がバランスし、これ以降、燃料通路内圧力の
低下に伴ない針弁体12の揚程は低下し続ける。これに
よりばね21が針弁体12を押し下げるので、蓄圧室■
8の体積は増大し、蓄圧室18内の圧力は低下し、針弁
14を開こうとする力も低下し続ける。
While the pressure in the pressure accumulation chamber 18 continues to rise, the pressure in the fuel passage begins to decrease as it approaches the fuel injection path, resulting in a force trying to open the valve f a = P tx A I and a force trying to close the valve P , X A, the force f at the full lift of the spring 2I, and -f become equal at time t3, when the needle valve 14
The opening and closing forces are balanced, and from then on, the lift of the needle valve body 12 continues to decrease as the pressure inside the fuel passage decreases. As a result, the spring 21 pushes down the needle valve body 12, so the pressure accumulation chamber ■
8 increases, the pressure within the pressure accumulator 18 decreases, and the force trying to open the needle valve 14 continues to decrease.

針弁14を開弁しようとする力p e X A H−f
 eが、閉弁しようとする力P 、、x A 、+ばね
’21の全開時の力f+  ft−fsとがバランスし
たt4の時点で針弁14は閉じようとするが、針弁I4
の質量による加速遅れを生じ、t、の時点で閉弁する。
Force trying to open the needle valve 14 p e X A H-f
The needle valve 14 tries to close at the time t4 when e is balanced with the force P , , x A , + the force f + ft - fs when the spring '21 is fully opened, but the needle valve I4
An acceleration delay occurs due to the mass of , and the valve closes at time t.

燃料噴射終了後において、蓄圧室18内の燃料は燃料通
路内圧力の低下に応じて絞り27より溢流し続け、第2
図Aに示すように、t8の時点でPaとなる。
After the end of fuel injection, the fuel in the pressure accumulator 18 continues to overflow from the throttle 27 as the pressure in the fuel passage decreases.
As shown in Figure A, Pa becomes Pa at time t8.

第4図に示すものでは、前記ニードル弁30をねじ29
によりリーク孔19°内で進退することにより、首記蓄
圧室18内の圧力を調整でき、燃料噴射弁の特性を変更
し得るものである。
In the one shown in FIG. 4, the needle valve 30 is connected to the screw 29.
By moving forward and backward within the leak hole 19°, the pressure inside the pressure accumulation chamber 18 can be adjusted and the characteristics of the fuel injection valve can be changed.

(発明の効果) 本発明は上述の如く、弁体下部にあけた摺動孔に、針弁
が噴口付近の弁座に接し、上端を弁ばねにより下方に押
圧される針弁体を配設し、且つ該針弁体の上方に蓄圧室
を形成し、該蓄圧室に前記弁座に通ずる燃料通路を絞り
を介して連通したので、燃料噴射初めにおける燃料噴射
率を低下させ、これによりディーゼルエンジンの燃焼室
内において熱発生率を下げて燃焼させ、燃焼圧力F昇率
を低下させて燃焼騒音を低くし1、且っNOXの生成量
を減少せしめることができる。
(Effects of the Invention) As described above, the present invention includes a needle valve body in which the needle valve touches the valve seat near the nozzle, and whose upper end is pressed downward by the valve spring, in the sliding hole drilled in the lower part of the valve body. In addition, a pressure accumulation chamber is formed above the needle valve body, and a fuel passage leading to the valve seat is communicated with the pressure accumulation chamber via a throttle, thereby reducing the fuel injection rate at the beginning of fuel injection, thereby reducing the diesel fuel injection rate. It is possible to perform combustion in the combustion chamber of the engine by lowering the rate of heat release, lowering the rate of increase in combustion pressure F, lowering combustion noise1, and reducing the amount of NOx produced.

又、噴射路わりの燃料噴射率を高め、併せて燃料噴射期
間を短縮させて、ディーゼルエンジンの燃焼における後
燃えの発生を抑制せしめ、黒煙、CO及びHCの減少と
熱効率の向上を図ることができる効果がある。叉、本発
明の燃料噴射弁は構造が簡単で、安価に製造し得る効果
もある。
Furthermore, by increasing the fuel injection rate around the injection path and shortening the fuel injection period, it is possible to suppress the occurrence of afterburning during combustion in a diesel engine, thereby reducing black smoke, CO and HC, and improving thermal efficiency. It has the effect of Furthermore, the fuel injection valve of the present invention has a simple structure and can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明燃料噴射弁の縦断面図、第2図は同性能
曲線図、第3図は本発明燃料噴射弁における他の実施例
の縦断面図、第4図は本発明燃料噴射弁における更に他
の実施例の部分的縦断面図第5図は従来の燃料噴射弁の
縦断面図、第6図は同性能曲線図である。 l;弁体、2:弁体上部、3;ナツト体、4;弁体下部
、5;蓄圧室カバー、 6;ストッパ、7:噴口、8;弁座、 9.22,23.燃料通路、lO;摺・勤口、ll:作
用室、!2.針弁体、13;摺動部、14;針弁、+5
.小径部、16.押し棒、17;止まり孔、+8.蓄圧
室、19;絞り溝、20:ばねシート、21.ばね、 24.24° ;リーク孔、26;ばね収納室、27;
絞り、28;空気抜き弁、 図面の淳X(内容に変更、な−) Ml  図 第2図 第3図 第4図 第5図 第6図 手続補正書(方式) %式% 1、事件の表示 昭和63年特願第96615号 2、発明の名称 燃料噴射弁 3、補正をする者 事件との関係 特許出願人 住 所  川崎市川崎区渡田向町8番2号昭和63年0
7月乙 日 (発送口 昭和62年07月2乙日) 5、補正の対象  図 面 6、補正の内容
Fig. 1 is a longitudinal cross-sectional view of the fuel injection valve of the present invention, Fig. 2 is a performance curve diagram thereof, Fig. 3 is a longitudinal cross-sectional view of another embodiment of the fuel injection valve of the present invention, and Fig. 4 is a longitudinal cross-sectional view of the fuel injection valve of the present invention. FIG. 5 is a partial longitudinal sectional view of still another embodiment of the valve, and FIG. 6 is a longitudinal sectional view of a conventional fuel injection valve, and FIG. 6 is a performance curve diagram thereof. l; Valve body, 2: Upper valve body, 3; Nut body, 4; Lower valve body, 5; Accumulator chamber cover, 6; Stopper, 7: Nozzle, 8; Valve seat, 9.22, 23. Fuel passage, lO; sliding/work opening, ll: action chamber,! 2. Needle valve body, 13; Sliding part, 14; Needle valve, +5
.. Small diameter section, 16. Push rod, 17; blind hole, +8. Pressure accumulation chamber, 19; Throttle groove, 20: Spring seat, 21. Spring, 24.24°; Leak hole, 26; Spring storage chamber, 27;
Throttle, 28; Air bleed valve, Atsushi X on the drawing (change in content, n-) Ml Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Procedural amendment (method) % formula % 1. Indication of incident Patent Application No. 96615 2, filed in 1988, title of invention: Fuel injection valve 3, relationship with the case of the person making the amendment Patent applicant address: 8-2 Watada Mukai-cho, Kawasaki-ku, Kawasaki-shi, 1988 0
July 2nd (Delivery port: July 2nd, 1988) 5. Subject of amendment Drawing 6. Contents of amendment

Claims (1)

【特許請求の範囲】[Claims] 1)弁体下部にあけた摺動孔に、針弁が噴口付近の弁座
に接し、上端をばねにより下方に押圧される針弁体を配
設し、且つ該針弁体の上方に蓄圧室を形成し、該蓄圧室
に前記弁座に通ずる燃料通路を絞りを介して連通したこ
とを特徴とする燃料噴射弁。
1) A needle valve element is disposed in the sliding hole drilled in the lower part of the valve element, the needle valve touches the valve seat near the nozzle, and the upper end is pressed downward by a spring, and pressure is accumulated above the needle valve element. A fuel injection valve characterized in that a chamber is formed, and a fuel passage leading to the valve seat is communicated with the pressure accumulation chamber via a throttle.
JP9661588A 1988-04-19 1988-04-19 Fuel injection valve Pending JPH01267352A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP9661588A JPH01267352A (en) 1988-04-19 1988-04-19 Fuel injection valve
GB8908419A GB2230559A (en) 1988-04-19 1989-04-13 Fuel injection valve
FR8905296A FR2633332A1 (en) 1988-04-19 1989-04-18
DE19893912834 DE3912834A1 (en) 1988-04-19 1989-04-19 FUEL INJECTION VALVE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9661588A JPH01267352A (en) 1988-04-19 1988-04-19 Fuel injection valve

Publications (1)

Publication Number Publication Date
JPH01267352A true JPH01267352A (en) 1989-10-25

Family

ID=14169761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9661588A Pending JPH01267352A (en) 1988-04-19 1988-04-19 Fuel injection valve

Country Status (4)

Country Link
JP (1) JPH01267352A (en)
DE (1) DE3912834A1 (en)
FR (1) FR2633332A1 (en)
GB (1) GB2230559A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29504608U1 (en) * 1995-03-17 1996-07-11 Bosch Gmbh Robert Fuel injection valve for internal combustion engines
US5645224A (en) * 1995-03-27 1997-07-08 Caterpillar Inc. Modulating flow diverter for a fuel injector
GB9624513D0 (en) * 1996-11-26 1997-01-15 Lucas Ind Plc Injector
US5743237A (en) * 1997-01-28 1998-04-28 Caterpillar Inc. Hydraulically-actuated fuel injector with needle valve operated spill passage
JP3704957B2 (en) * 1998-07-06 2005-10-12 いすゞ自動車株式会社 Injector
DE19930832A1 (en) * 1999-07-03 2001-01-11 Bosch Gmbh Robert Fuel injector
US6499467B1 (en) * 2000-03-31 2002-12-31 Cummins Inc. Closed nozzle fuel injector with improved controllabilty
GB2433904A (en) * 2006-01-07 2007-07-11 Shane Richard Wootton Pressure controlled nozzle arrangement

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE713777C (en) * 1939-11-25 1941-11-14 Henschel & Sohn G M B H Fuel injection device for internal combustion engines
US2374614A (en) * 1943-05-20 1945-04-24 American Locomotive Co Liquid fuel injection apparatus
DE1026572B (en) * 1956-11-16 1958-03-20 Friedmann & Maier Ag Injection nozzle for internal combustion engines
US3788546A (en) * 1972-06-26 1974-01-29 Caterpillar Tractor Co Fuel injection system
DE2500644C2 (en) * 1975-01-09 1988-07-07 Klöckner-Humboldt-Deutz AG, 5000 Köln Fuel injection valve for internal combustion engines
US4129256A (en) * 1977-09-12 1978-12-12 General Motors Corporation Electromagnetic unit fuel injector
DE3109961A1 (en) * 1981-03-14 1982-08-26 Daimler-Benz Ag, 7000 Stuttgart "FUEL INJECTION VALVE FOR INTERNAL COMBUSTION ENGINE"
GB2129052B (en) * 1982-10-23 1986-01-29 Lucas Ind Plc Fuel injection nozzle for i c engines
JPS60259764A (en) * 1984-05-10 1985-12-21 Diesel Kiki Co Ltd Fuel injection valve
DE3518945A1 (en) * 1985-05-25 1986-11-27 Robert Bosch Gmbh, 7000 Stuttgart Fuel injection nozzle for internal combustion engines
GB2203795A (en) * 1987-04-24 1988-10-26 Lucas Ind Plc I.C. engine fuel injection nozzle

Also Published As

Publication number Publication date
DE3912834A1 (en) 1990-04-12
GB8908419D0 (en) 1989-06-01
GB2230559A (en) 1990-10-24
FR2633332A1 (en) 1989-12-29

Similar Documents

Publication Publication Date Title
US4993637A (en) Fuel injector
CN103670852B (en) Dual check fuel injector with single actuator
JPH0419381B2 (en)
JPH06510581A (en) injection device
JPH01267352A (en) Fuel injection valve
JP2002155832A (en) Pressure control type injector having optimized injection process relative to stroke distance
JPS5990766A (en) Fuel injection nozzle for internal combustion engine
WO1999067529A1 (en) Rate shaped fuel injector with internal dual flow rate orifice
JPH0719141A (en) Fuel injector
CN101067406B (en) Injector for internal combustion engine
JPS60228766A (en) Fuel injection nozzle of direct-injection type diesel engine
JPS62502699A (en) Fuel and injection nozzles for internal combustion engines
CN208040600U (en) A kind of common-rail injector
JPS5993959A (en) Fuel injection valve nozzle
JP2750715B2 (en) Fuel injection nozzle
JPH0447415Y2 (en)
JPS6029674Y2 (en) fuel injection valve
CN209781112U (en) Hydraulic control valve seat of hydraulic control common rail oil sprayer
KR100371443B1 (en) Injector of Pneumatic Fuel Injection System for Diesel Engine
US20100200678A1 (en) Fuel injection valve of accumulator injection system
JPH10274132A (en) Fuel injection nozzle
JPS6339793B2 (en)
JP2505049Y2 (en) Fuel injector
JPS6114348B2 (en)
JP3814963B2 (en) Fuel injection valve